
 

 

Abstract 

 

Driver distraction recognition is an essential computer 

vision task that can play a key role in increasing traffic 

safety and reducing traffic accidents. In this paper, we 

propose a temporal driver action localization (TDAL) 

framework for classifying driver distraction actions, as 

well as identifying the start and end time of a given driver 

action. The TDAL framework consists of three stages: 

preprocessing, which takes untrimmed video as input and 

generates multiple clips; action classification, which 

classifies the clips; and finally, the classifier output is sent 

to the temporal action localization to generate the start and 

end times of the distracted actions. The proposed 

framework achieves an F1 score of 27.06% on Track 3 A2 

dataset of NVIDIA AI City 2022 Challenge. The findings 

show that the TDAL framework contributes to fine-grained 

driver distraction recognition and paves the way for the 

development of smart and safe transportation. Code will be 

available soon. 

 

 

1. Introduction 

Statistics from the World Health Organization [1] 

indicate that numerous accidents arise from driver 

distraction. The increase in driver distractions requires an 

understanding of driver actions, which can ensure traffic 

safety and reduce the likelihood of road traffic accidents. 

The problem of recognizing driver distraction has been 

intensively studied in recent years with the advent of 

Autonomous Vehicles (AV) and Advanced Driver 

Assistant Systems (ADAS). An important reason for this is 

the lack of total dependability on AVs. As cases have 

indicated, human attention is required in certain cases, such 

as in Tesla accident cases [2]. In addition, when a driver 

becomes distracted, the ADAS must have the capability to 

control the vehicle. 

Many researchers have offered definitions of the phrase 

“driver distraction.” Lee et al. [3] defined driver distraction 

as “the diversion of attention away from activities for safe  

 

driving toward a competing activity.” Driver distraction 

can be categorized into manual and mental types. In the 

case of manual distraction, the hand is occupied with 

something else rather than the wheel. By contrast, for 

mental distraction, the driver's mind is occupied with 

something other than driving [4]. Manual distractions are 

detectable using advances in the field of computer vision. 

The common challenges of driver distraction recognition 

from the visual perspective are lighting conditions (lighting 

of out-of-road components, sunlight, and vehicle light), 

face occlusions, hand movement and shadow illusion, 

insufficient training data, and changes in the drivers’ head 

pose and eye movements [5]. 

Most existing driver action recognition methods classify 

driver actions based on images [2], [5]–[10]. These 

methods fail to capture long-term actions due to the 

absence of temporal information. Certain methods use pose 

estimation to classify driver actions [11]–[15]. However, 

only using pose information can lead to the loss of 

important spatial data. Finally, to the best of our 

knowledge, no prior research on driver action recognition 

has studied the problem of temporal driver action 

localization. 

With the aim of accounting for the above-mentioned 

research gaps and challenges in the domain, the NVIDIA 

AI City 2022 Challenge established a new challenge track 

(Track 3) to address the naturalistic driver data analytics 

problem. The objective of Track 3 is to find the start time 

and end time for 18 driver distraction actions in an 

untrimmed video. This challenge motivates us to study 

naturalistic driver data analytics problems from the action 

recognition perspective.  

In this paper, we reformulate the problem from temporal 

driver action localization to the action classification 

problem, through the development TDAL framework. The 

proposed framework consists of three stages: 

preprocessing, action classification, and temporal 

localization. The preprocessing stage takes untrimmed 

video and generates equal-length clips. These clips are fed 

into the action classification model. Then, the outputs of 

the classification model are sent to the last stage, which 

performs temporal action localization. This generates the 

start and end times of all the driver distracted actions in the 
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untrimmed video. The proposed method achieved an F1 

score of 27.06% without using external data. 

The rest of the paper is organized as follows. Section 2 

provides a review of the related work. The proposed 

method is present in Section 3. Section 4 Experiments. 

Finally, Section 5 presents the conclusion of the paper. 

2. Related Work 

Driver Action Recognition. Driver action recognition 

has been extensively studied in recent years, but it is still 

undergoing active and continuous exploration. Different 

approaches have been used in several studies. The most 

recent approaches are based on supervised learning 

techniques. Following the success of 2D convolutional 

neural networks (CNN) in extracting spatial information, 

many researchers have used 2D CNNs to classify driver 

actins [2], [5]–[10]. Recently, a hybrid deep learning-based 

approach was proposed [5], which is a stack Bidirectional 

Long Short-Term Memory (BiLSTM) network with the 

pre-trained CNN Inception-V3, to capture both spectral 

and spatial features. The weighted ensemble method in [7] 

was based on evaluating a weighted sum of pre-trained 

networks, Inception-V3 and AlexNet, on five image 

sources: raw images, skin-segmented images, face images, 

hands images, and “face+hands” images. In [8] and [9], the 

authors used a foreground segmentation algorithm to 

differentiate between the driver and the background, and 

then the result was fed into CNNs. By contrast, the authors 

in [2] modified VGG-16 by replacing the fully-connected 

(FC) layers with convolutional layers. This contributed to 

a reduction in the number of parameters. The RCNN object 

detection algorithm was used in [10]. The authors adopted 

Gaussian Mixture Model (GMM) for skin-like region 

extractor as a region proposal, rather than using selective 

search. The main limitation of these approaches is that they 

are designed to learn how to classify driver actions from 

the image level, in the absence of temporal information.  

Diverse approaches have been applied using pose 

estimations [11]–[14]. Existing techniques utilize 2D pose 

features and incorporate them with other features to 

recognize driver distractions. In [11], driver pose is fused 

with other features (flow of pose (HoDF) and the 

interactions of the driver with objects) to construct 

handcrafted features, after which the following three 

classifiers were used: Naive Bayes, Random Forest, and 

Support Vector Machine. On the other hand, [12]–[14] 

integrated pose features with CNN features to generate 

informative and discriminative features. Other techniques 

have used 3D pose with Graph Convolutional Networks 

(GCNs) [15] or Recurrent Neural Networks (RNN)[16]. 

The shared limitation of each of these methods is that they 

only use a limited list of actions. 

Action Recognition. Action recognition focuses on 

studying human behaviors. The emergence of large-scale 

datasets, such as kinetics [17] and something to something 

[18], has significantly improved research works in the 

action classification area. These works often use a trimmed 

video to classify a sampled clip from a video into specific 

action classes. The network architectures that have been 

extensively used in the literature, and that have achieved 

considerable performance, can be classified into two types: 

the first type takes RGB and optical flow frames as input 

to capture spatial (i.e., appearance) and motion 

information, respectively, such as I3D [19] and TSN [20]. 

The main disadvantage of this type is that in some works 

the two streams are learned separately; also, using optical 

flow will increase the system overhead. The second type 

uses a 3D network that captures spatial-temporal 

information using a stack of RGB frames as input, such as 

C3D [21] and SlowFast [22].  

3. Proposed Method 

The TDAL framework consists of three stages, as 

illustrated in Figure 1. The first stage is preprocessing, 

which takes video as input and generates � clips. Each clip 

is passed as input to the action classifier model. The 

classifier output is then sent to the final stage to generate 

the actions’ start and end times. 

3.1. Problem Formulation 

Suppose that � � ������	  , ���
�� is a raw dataset, where 

the training dataset ������ � ���� , Ψ��
��1

������ , and ������  is 

the total number of untrimmed videos. Each data instance 

of ������  consists of an untrimmed video ��� and 

corresponding ground truth Ψ�   (multi-label video). The 

untrimmed videos are infrared with 30 frames per second 

(fps). Ψ� can be represented as tuples  ���� , ��, y
�

��
��1

�
, 

where  �� , �� are the start time and end time, respectively, 

y
�

 is the class number and � is the number of distracted 

driver actions in the untrimmed video ���. The challenge 

Figure 1: TDAL framework. 
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is to develop a framework that can predict the distracted 

driver actions class in each instance in �����, including the 

start and end times, where the test set is ����� �  �����
��1

�����   

and  ����� is the total number of untrimmed videos.   

This paper aims to leverage the large-scale trimmed 

videos dataset in the action classification field. Therefore, 

we propose a method that learns from trimmed videos to 

identify the distracting actions classes, start and end times 

in the untrimmed videos, ����� . As such, we crop each 

untrimmed video in ������ using the associated  �� , ��  for 

each action class y
�

 in � . The new training set is  �

��	 ,   y�	!"
#$ , where each instance in   consists of trimmed 

video ��  with a class label % , and �&  is total number of 

distracted actions trimmed videos. 

3.2. Pre-processing 

Driver Tracking. Since cars may contain drivers and 

passengers, we adopted the You Only Look Once (Yolov5) 

model [23] pre-trained on the COCO dataset [24] to detect 

and track driver spatial location in the video. YOLO [25] 

is a single-stage detector that has high performance in 

processing frames in real-time compared to other state-of-

the-art methods (e.g., Faster-RCNN and SSD). YOLOv5 is 

the last version from the YOLO family, which achieved 

good results in terms of inference speed and accuracy [23]. 

The driver tracking algorithm designed in this research 

consists of two steps. In the first step, we use the Yolov5 

model to identify all the individuals' bounding boxes in the 

��� frames. We set the confidence threshold to '. In the 

second step, we compute the area of all predicted 

individuals' bounding boxes, after which the video is 

cropped using the individual bounding box with the largest 

area. The purpose of considering the bounding box with the 

largest area is to ensure that the whole of the driver is 

included in the video. Cropping ���  frames reduces the 

noise, which enables the next stage to focus only on the 

information relevant to the driver. 

Video Segmentation. We split each instance in ����� 

into �  clips. Each clip should be sufficiently large to 

capture temporal information relating to the relevant 

action. We selected 64 frames as the clip size (��)*�+� , 

which is the typical temporal depth [22]. In this paper, we 

investigated two different splitting settings, as shown in 

Algorithm 1 and Algorithm 2. These two settings aid the 

framework in accurately classifying the actions and 

identifying its boundaries (i.e., start and end times). The 

first setting (type 1) examines driver actions that occur in 

two consecutive seconds. In this case, ��� is divided into 

� clips and the value of N is equal to the video length in 

seconds divided by two seconds.  

By contrast, in the second setting (type 2), driver actions 

are examined that occur only in one second. In the latter 

case, ��� is divided into � clips, where � is equal to video 

length in seconds. As mentioned above, the clip size should  

Algorithm 1 Video Segmentation – type 1 

Input: ,����-���, (��)*�+�, ��.�/-��0�ℎ, ��.�/2���3��� 

1:  �����4�.�& ← 0  

2:  ��.4�.�& ←   (��)*�+� 

3:  ���7��8,���)� ← ��.�/-��0�ℎ / �2 × ��.�/2���3���� 

4:  (��) ← [ ]  

5:  >?@ � �  1 A? ���7��8,���)� B? 

6        >?@ C �  �����4�.�& A? ��.4�.�& B? 

7:           (��). �������,����-���[C]�  

8:      EFB >?@ 

9:      GHIE (��) HG IJBE? 

10:     (��) ← [ ] 

11:    �����4�.�& ← ��.4�.�&  − 4 

12:    ��.4�.�& ← �����4�.�& +   (��)*�+�  

13: EFB >?@ 

 

Algorithm 2 Video Segmentation – type 2 

Input: ,����-���, (��)*�+�, ��.�/-��0�ℎ, ��.�/2���3��� 

1:  �����4�.�& ← 0  

2:  ��.4�.�& ← (��)*�+�  

3:  ���7�����)� ← ��.�/-��0�ℎ / ��.�/2���3���    

4:  (�����4�.�& ← ��.�/2���3��� + ���.�/2���3��� / 2� 

5:  >?@ � �  2 A? ���7�����)� B?  

6:     �����4�.�& ← (�����4�.�& − �(��)*�+� / 2�    

7:     ��.4�.�& ← (�����4�.�& + �(��)*�+� / 2�    

8:     GHIE ,����-���[�����4�.�&] A?  

,����-���[��.4�.�&] HG IJBE? 

9:     (�����4�.�& ←  (�����4�.�& +   (��)*�+�  

10: EFB >?@      

 

contain 64 frames, and so each clip in the type 2 setting 

takes 17 frames from the previous and post seconds. 

3.3. Action Classification Model 

For the TDAL framework to succeed, the action 

classifier plays a central role. Training the action 

classification model requires huge data and computational 

resources to reach a satisfactory result.  Thus, this work 

adopted SlowFast [22] as an action classifier with Resnet50 

[26] as the backbone. This decision was made according to 

a trade-off between training computational resources, 

accuracy, and inference speed. 

Pre-processing. For each video in  , we performed 

driver tracking, but in a different way from Section 3.2. We 

use Yolov5 model to identify all the individuals' bounding 

boxes in the �	 frames with the confidence score equal to 

or greater than '.  We link the bounding boxes through 

frames based on the intersection of union (IoU) threshold 

N to construct a tube for each individual. Then, each tube’s 

frames will be cropped based on the first bounding box and 

stored as a video. After that, we clean the resulted videos 

manually and remove any videos that may negatively affect 

the training phase. 
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The training set of this challenge is relatively small with 

respect to the number of classes and public action 

classification dataset. Additionally, some classes had a 

high similarity, such as a driver singing and driver talking 

to a passenger. If we had trained our model using only the 

training set, either overfitting or underfitting problems 

would have emerged. Therefore, to avoid these problems 

in our research, we increased the number of samples in 

each class using synthetic data in addition to the   

set. Since all the videos are greyscale in terms of color, the 

image colorization technique of Su et al. [27] was applied 

to perform colorization on the entire training set  .  

Training Procedure. We used several techniques in the 

training phase to address the problem of underfitting. We 

initialized the model weights using pre-trained weights for 

similar datasets, such as kinetics [17]. In turn, we trained 

the model using only   set and without using the synthetic 

data until the model was overfitted. Following this, we 

reduced overfitting by resuming training after adding the 

synthetic data (colored data) to the training set. Also, we 

increase the number of random augmentation samples in 

each epoch during training. The last two steps were 

undertaken to improve the model’s generalization 

capability. 

3.4. Temporal Localization 

As indicated in Section 2, the performance of action 

classification is promising. We sought to exploit this fact 

by using the classifier output in this stage and storing the 

action probability ) for each clip in  ���. Following this, 

the probabilities O  are passed through the temporal 

localization algorithm presented in Algorithm 3.  

The temporal localization procedure is undertaken in 

three steps. In the first step, we take the most promising 

temporal information for a certain action. As such, the top 

P probabilities are returned that are associated with its clips 

for a specific action �. The second step aims to construct 

the proposed intervals for a certain action; the interval is 

the period of time where the action is happening, which can 

be specified by the start time and end time of the period. 

However, the two consecutive clips will form an �������� 

if the time that separates them is less than �((�)�*�( . 

Otherwise, it will be considered a new proposed interval. 

After that, the proposed intervals are filtered; if the interval 

must be greater than ��C�(�*�(, then it is sorted based on 

the max-average probability. In the third step, we ensure 

that no two actions’ intervals overlap; otherwise, the action 

with lower priority updates its interval by the next max-

average probability. The action priority is defined as 

follows: the action with the higher priority is that for which 

the action classification model has performed more 

effectively. The above-mentioned steps are repeated for 

each action class. 

 

Algorithm 3 Temporal Localization  

Input: O /* probabilities for each clip in video */ 

1: ��b4������� ← [ ]  /∗  (/������ ��b���(� /, (��) ,/� � (������  

  �(��/� ∗/ 

2: �������� ← [ ]  /* contains all proposed intervals �start and  

                                                end sec� for certain action */ 

3: ��������� ← [ ]  /* contains intervals for all actions */ 

4: >?@ � JF �(��/���-�����  

5:       Step 1: getting the top k probabilities associated with   

                      clips 

6:        (��), )�/7 ←  e��f/)g�O, ��   

7:        Step 2: generating temporal proposals  

8:        >?@ � JF (��)� 

9:             J>  ��&� � <�   � + �((�)�*�(  B?    

10:                   ��b4�������. �������s)  

11:               EiGE  

12:                   �����f��� ←   ��b4�������[0]. �/*�(� �   

13:                   ��.f��� ←   ��b4�������[−1]. �/*�(� � 

14:                   ��������. ������������f���, ��.f���� 

15:                ��b4������� ← [ ] 

16:             EFB J> 

17:      EFB >?@ 

18:      2����� ��������� ���������, ��C�(�*�(� 

19:      */�� ��& ����0� ����������  

20:      ���������[�] ← ��������[0]  

21:  EFB >?@ 

22: Step 3: updating the overlapped action  

23: jkJiE �������� ?IE@iHllEB ��������� 

24:     ���������[�] ←  e�� ��&� )�/)/��. �������� 

25: EFB jkJiE 

  mnAlnA ��������� 

4. Experiments  

4.1. Data Analysis 

Experiments were performed using the NVIDIA AI City 

Challenge 2022 Track 3 dataset. This is a third-party 

dataset [28] consisting of data captured from 10 drivers. 

The drivers performed 18 different tasks in random order 

under two conditions: once in the absence of an appearance 

blocker (e.g., hat or sunglasses) and another in presence of 

an appearance blocker.  

The Track 3 dataset provides three different angles 

recorded simultaneously by infrared cameras, resulting in 

60 videos in total. The average length of a video is 9.3 

minutes with the frame rate of 30 fps. Additionally, the 

dataset is partitioned into two subsets A1, and A2, each 

containing 5 different drivers. The aim of the A1 and A2 

datasets is to develop the algorithm. In which A1 for 

training and A2 for evaluation.  The main objective of this 

challenge is to classify driver actions into predefined 

classes and find the start and end times without using any 

 

3322



 

 

 

 

external data or A2 set in the training phase. 

A1 dataset. A1 is a set of labeled untrimmed videos. We 

trimmed only the rear angle view based on the actions’ 

ground-truth. After that, we analyzed the trimmed videos 

and cleaned them by omitting any driver who engaged in a 

complex action (e.g., singing with music while texting or 

talking to the passenger in the backseat while texting). The 

remaining A1 dataset was divided into a training set 75% 

and a test set 25%. Table 1 shows the A1 dataset. For more 

information about the dataset split, it will be available on 

the GitHub repository soon. 

4.2. Implementation Details 

Driver tracking. We used Yolov5, the small model 

(Yolov5s) version [23] pre-trained on COCO dataset [24]  

to detect and track each person in a video. The input frames 

size is fixed as the benchmark video size (1920 & 1080). 

Experimentally, we conducted the finest confidence 

threshold ' � 0.5. 

Action classification model. For the preprocessing, we 

set N  to 0.30 and '  to 0.5.  We used SlowFast-R50 as 

action classifier model, which is pretrained on the Kinetics-

400 dataset [17] and fine-tuned  on   sets. First, we train it 

using the default hyperparameters with some modification 

on each. We set max epoch to 440, batch size to 12, number  

 

 

 

 

 

 

of samples for data augmentation is set to 1, and the base 

learning rate is set to 1e-5. After that, we increased our 

dataset through applying image colorization [27] using 

their default hyperparameters. Then, we resume the 

training from the last checkpoint in first step till epoch 730, 

with batch size set to 4, number of samples for data 

augmentation is set to 3, base leaning rate is set to 1e-4, 

and train jitter scales [256, 256]. 

Temporal localization. By experimentation, we 

��� P �  12,  �((�)�*�( � 10 and ��C�(�*�( � 4. 

4.3. Evaluation Metrics 

In order to evaluate stage 2, we consider top1- accuracy 

and top-5 accuracy measured by the equation (1). Top-1 

accuracy is prevalent accuracy; it checks if the highest 

probability matches the class label. Whereas top-5 

accuracy, checks if the one of the highest top-5 

probabilities matches the class label to consider it as a 

correctly classified action.  

r((���(% �
f

�
�1� 

 

where f  is the number of correctly classified actions, 

and  � is the total number of actions. 

 

  A1 Train A1 Test 

Class 

Number 
Action Name videos 

Total 

Seconds 

Average 

(secs/video) 
videos 

Total 

Seconds 

Average 

(secs/video) 

0 Normal Forward Driving  6  109 18 2 34 17 

1 Drinking 6 110 18 2 31 16 

2 Phone Call (right) 8 131 16 2 30 15 

3 Phone Call (left) 6 110 18 2 38 19 

4 Eating 6 110 18 2 41 20 

5 Text (Right) 7 108 15 2 32 16 

6 Text (Left) 6 118 20 2 36 18 

7 Hair / makeup 6 145 24 2 29 14 

8 Reaching behind 6 115 19 2 48 24 

9 Adjust control panel 6 125 21 2 45 22 

10 Pick up from Driver floor  6 126 21 2 31 16 

11 Pick up from Passenger floor  7 97 14 2 32 16 

12 Talk to passenger at the right 6 123 20 2 44 22 

13 Talk to passenger at backseat 6 116 19 2 29 14 

14 yawning 7 109 16 3 23 8 

15 Hand on head 7 121 17 2 36 18 

16 Singing with music 6 117 20 2 48 24 

17 shaking or dancing with music 6 140 23 2 29 14 

Table 1: A1training and testing dataset splits. 
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The evaluation of NVIDIA AI CITY CHALLENGE 

2022 for track 3 will be based on the action identification 

performance model, measured by the F1 score presented in 

equation (2). F1 score is a harmonic mean of recall and 

precision. Specifically, a true-positive (TP) activity 

identification will be considered when the action was 

correctly identified as starting within one second of the 

ground-truth start time and ending within one second of the 

ground-truth end time of the activity. Whereas a false-

positive (FP) is the activity in the proposed approach that 

fails to be correctly identified within the slot. Lastly, a 

false-negative (FN) activity is a ground-truth activity that 

was not correctly identified. 

F1 �(/�� �
2fO

2fO + 2� + 2O 
�2� 

4.4. Experiment Results and Discission  

Action Classification Model Evaluation. The first 

experiment investigated the following question: “Is the 

model capable of identifying actions correctly?” The 

proposed action classification model achieved 64% for the 

top-1 accuracy and 97.3% for the top-5 accuracy on the A1 

test set. However, the model failed entirely to identify 

certain actions, as shown in Figure 2. These actions include 

normal driving, texting (left), talking to a passenger on the 

right, talking to a backseat passenger, and singing to music. 

One possible reason is the similarity between the actions, 

such as talking to a passenger on the right and talking to a 

passenger in the backseat, where the two actions require 

gesturing to the right. In addition, the camera angle (rear 

view) influenced the result in the text (left) action, which 

is due to the fact that the phone and hand movements were 

hidden by the vehicle wheel. This result indicates that the 

model needs more information to distinguish between the 

top-5 actions. This can be achieved either by increasing the 

size of the training dataset or using more than one camera 

angle to uniquely represent each action.  

This paper also sought to investigate the learned 

features. Therefore, features were extracted from the last 

global pooling layer, and we used UMAP [29] to project it 

to lower dimensions. Figure 3 presents the feature 

visualization for the A1 test set. As the Figure 3 shows, the 

action classification model was capable of finding a level 

of similarity between the features of each action.  

Evaluation on TDAL framework. The proposed 

TDAL framework was tested on the A2 set provided by the 

NVIDIA AI City 2022 Challenge team. We tested the two 

video segmentation settings in Section 3.2. Table 2 shows 

the F1 score for the two algorithms. From the results in 

Table 2, Algorithm 1 outperformed Algorithm 2 by a 

margin of 14.1%.  

Finally, the proposed framework achieved an F1 score 

of 27.06%. It is reasonable to conclude from Figures 2 and 

3 that the action classification model demonstrates 

superiority and robustness. The reduction in the F1 score is 

a consequence of the poor performance of the temporal 

localization algorithm.  

 

 

 
 

 A B 

F1-score 0.2706 0.1316 

5. Conclusion 

This paper reformulated the temporal driver action 

localization problem to the action classification problem. 

The proposed framework consists of three stages: 

preprocessing, action classification and temporal 

localization. We showed that using an action classification 

Figure 2: Confusion matrix for top-1 accuracy using A1 test set.  

Table 2: The performance of our method using diffirent video 

segmentation seetings on A2 set. A is the results of using 

Algorithme 1 and B is the results of using Algorithme 2. 

 

Figure 3: Features visualization for the A1 test set.  
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algorithm can enable the identification of a given action’s 

start and end time. In Track 3 of the NVIDIA AI City 

Challenge 2022, the proposed framework achieved an F1 

score of 27.06%. In the future, we intend to enhance the 

temporal localization algorithm.  
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