

Abstract

Driver distraction recognition is an essential computer

vision task that can play a key role in increasing traffic

safety and reducing traffic accidents. In this paper, we

propose a temporal driver action localization (TDAL)

framework for classifying driver distraction actions, as

well as identifying the start and end time of a given driver

action. The TDAL framework consists of three stages:

preprocessing, which takes untrimmed video as input and

generates multiple clips; action classification, which

classifies the clips; and finally, the classifier output is sent

to the temporal action localization to generate the start and

end times of the distracted actions. The proposed

framework achieves an F1 score of 27.06% on Track 3 A2

dataset of NVIDIA AI City 2022 Challenge. The findings

show that the TDAL framework contributes to fine-grained

driver distraction recognition and paves the way for the

development of smart and safe transportation. Code will be

available soon.

1. Introduction

Statistics from the World Health Organization [1]

indicate that numerous accidents arise from driver

distraction. The increase in driver distractions requires an

understanding of driver actions, which can ensure traffic

safety and reduce the likelihood of road traffic accidents.

The problem of recognizing driver distraction has been

intensively studied in recent years with the advent of

Autonomous Vehicles (AV) and Advanced Driver

Assistant Systems (ADAS). An important reason for this is

the lack of total dependability on AVs. As cases have

indicated, human attention is required in certain cases, such

as in Tesla accident cases [2]. In addition, when a driver

becomes distracted, the ADAS must have the capability to

control the vehicle.

Many researchers have offered definitions of the phrase

“driver distraction.” Lee et al. [3] defined driver distraction

as “the diversion of attention away from activities for safe

driving toward a competing activity.” Driver distraction

can be categorized into manual and mental types. In the

case of manual distraction, the hand is occupied with

something else rather than the wheel. By contrast, for

mental distraction, the driver's mind is occupied with

something other than driving [4]. Manual distractions are

detectable using advances in the field of computer vision.

The common challenges of driver distraction recognition

from the visual perspective are lighting conditions (lighting

of out-of-road components, sunlight, and vehicle light),

face occlusions, hand movement and shadow illusion,

insufficient training data, and changes in the drivers’ head

pose and eye movements [5].

Most existing driver action recognition methods classify

driver actions based on images [2], [5]–[10]. These

methods fail to capture long-term actions due to the

absence of temporal information. Certain methods use pose

estimation to classify driver actions [11]–[15]. However,

only using pose information can lead to the loss of

important spatial data. Finally, to the best of our

knowledge, no prior research on driver action recognition

has studied the problem of temporal driver action

localization.

With the aim of accounting for the above-mentioned

research gaps and challenges in the domain, the NVIDIA

AI City 2022 Challenge established a new challenge track

(Track 3) to address the naturalistic driver data analytics

problem. The objective of Track 3 is to find the start time

and end time for 18 driver distraction actions in an

untrimmed video. This challenge motivates us to study

naturalistic driver data analytics problems from the action

recognition perspective.

In this paper, we reformulate the problem from temporal

driver action localization to the action classification

problem, through the development TDAL framework. The

proposed framework consists of three stages:

preprocessing, action classification, and temporal

localization. The preprocessing stage takes untrimmed

video and generates equal-length clips. These clips are fed

into the action classification model. Then, the outputs of

the classification model are sent to the last stage, which

performs temporal action localization. This generates the

start and end times of all the driver distracted actions in the

Temporal Driver Action Localization using Action Classification Methods

Munirah Alyahya, Shahad Alghannam*, Taghreed Alhussan*

Saudi Technology and Security Comprehensive Control Company, Riyadh, Saudi Arabia
{malyahya, salghanam, talhussan}@tahakom.com

* These authors contributed equally to this work.

3319

untrimmed video. The proposed method achieved an F1

score of 27.06% without using external data.

The rest of the paper is organized as follows. Section 2

provides a review of the related work. The proposed

method is present in Section 3. Section 4 Experiments.

Finally, Section 5 presents the conclusion of the paper.

2. Related Work

Driver Action Recognition. Driver action recognition

has been extensively studied in recent years, but it is still

undergoing active and continuous exploration. Different

approaches have been used in several studies. The most

recent approaches are based on supervised learning

techniques. Following the success of 2D convolutional

neural networks (CNN) in extracting spatial information,

many researchers have used 2D CNNs to classify driver

actins [2], [5]–[10]. Recently, a hybrid deep learning-based

approach was proposed [5], which is a stack Bidirectional

Long Short-Term Memory (BiLSTM) network with the

pre-trained CNN Inception-V3, to capture both spectral

and spatial features. The weighted ensemble method in [7]

was based on evaluating a weighted sum of pre-trained

networks, Inception-V3 and AlexNet, on five image

sources: raw images, skin-segmented images, face images,

hands images, and “face+hands” images. In [8] and [9], the

authors used a foreground segmentation algorithm to

differentiate between the driver and the background, and

then the result was fed into CNNs. By contrast, the authors

in [2] modified VGG-16 by replacing the fully-connected

(FC) layers with convolutional layers. This contributed to

a reduction in the number of parameters. The RCNN object

detection algorithm was used in [10]. The authors adopted

Gaussian Mixture Model (GMM) for skin-like region

extractor as a region proposal, rather than using selective

search. The main limitation of these approaches is that they

are designed to learn how to classify driver actions from

the image level, in the absence of temporal information.

Diverse approaches have been applied using pose

estimations [11]–[14]. Existing techniques utilize 2D pose

features and incorporate them with other features to

recognize driver distractions. In [11], driver pose is fused

with other features (flow of pose (HoDF) and the

interactions of the driver with objects) to construct

handcrafted features, after which the following three

classifiers were used: Naive Bayes, Random Forest, and

Support Vector Machine. On the other hand, [12]–[14]

integrated pose features with CNN features to generate

informative and discriminative features. Other techniques

have used 3D pose with Graph Convolutional Networks

(GCNs) [15] or Recurrent Neural Networks (RNN)[16].

The shared limitation of each of these methods is that they

only use a limited list of actions.

Action Recognition. Action recognition focuses on

studying human behaviors. The emergence of large-scale

datasets, such as kinetics [17] and something to something

[18], has significantly improved research works in the

action classification area. These works often use a trimmed

video to classify a sampled clip from a video into specific

action classes. The network architectures that have been

extensively used in the literature, and that have achieved

considerable performance, can be classified into two types:

the first type takes RGB and optical flow frames as input

to capture spatial (i.e., appearance) and motion

information, respectively, such as I3D [19] and TSN [20].

The main disadvantage of this type is that in some works

the two streams are learned separately; also, using optical

flow will increase the system overhead. The second type

uses a 3D network that captures spatial-temporal

information using a stack of RGB frames as input, such as

C3D [21] and SlowFast [22].

3. Proposed Method

The TDAL framework consists of three stages, as

illustrated in Figure 1. The first stage is preprocessing,

which takes video as input and generates � clips. Each clip

is passed as input to the action classifier model. The

classifier output is then sent to the final stage to generate

the actions’ start and end times.

3.1. Problem Formulation

Suppose that � � ������	 , ���
�� is a raw dataset, where

the training dataset ������ � ���� , Ψ��
��1

������ , and ������ is

the total number of untrimmed videos. Each data instance

of ������ consists of an untrimmed video ��� and

corresponding ground truth Ψ� (multi-label video). The

untrimmed videos are infrared with 30 frames per second

(fps). Ψ� can be represented as tuples ���� , ��, y
�

��
��1

�
,

where �� , �� are the start time and end time, respectively,

y
�

 is the class number and � is the number of distracted

driver actions in the untrimmed video ���. The challenge

Figure 1: TDAL framework.

3320

is to develop a framework that can predict the distracted

driver actions class in each instance in �����, including the

start and end times, where the test set is ����� � �����
��1

�����

and ����� is the total number of untrimmed videos.

This paper aims to leverage the large-scale trimmed

videos dataset in the action classification field. Therefore,

we propose a method that learns from trimmed videos to

identify the distracting actions classes, start and end times

in the untrimmed videos, ����� . As such, we crop each

untrimmed video in ������ using the associated �� , �� for

each action class y
�

 in � . The new training set is �

��	 , y�	!"
#$, where each instance in consists of trimmed

video �� with a class label % , and �& is total number of

distracted actions trimmed videos.

3.2. Pre-processing

Driver Tracking. Since cars may contain drivers and

passengers, we adopted the You Only Look Once (Yolov5)

model [23] pre-trained on the COCO dataset [24] to detect

and track driver spatial location in the video. YOLO [25]

is a single-stage detector that has high performance in

processing frames in real-time compared to other state-of-

the-art methods (e.g., Faster-RCNN and SSD). YOLOv5 is

the last version from the YOLO family, which achieved

good results in terms of inference speed and accuracy [23].

The driver tracking algorithm designed in this research

consists of two steps. In the first step, we use the Yolov5

model to identify all the individuals' bounding boxes in the

��� frames. We set the confidence threshold to '. In the

second step, we compute the area of all predicted

individuals' bounding boxes, after which the video is

cropped using the individual bounding box with the largest

area. The purpose of considering the bounding box with the

largest area is to ensure that the whole of the driver is

included in the video. Cropping ��� frames reduces the

noise, which enables the next stage to focus only on the

information relevant to the driver.

Video Segmentation. We split each instance in �����

into � clips. Each clip should be sufficiently large to

capture temporal information relating to the relevant

action. We selected 64 frames as the clip size (��)*�+� ,

which is the typical temporal depth [22]. In this paper, we

investigated two different splitting settings, as shown in

Algorithm 1 and Algorithm 2. These two settings aid the

framework in accurately classifying the actions and

identifying its boundaries (i.e., start and end times). The

first setting (type 1) examines driver actions that occur in

two consecutive seconds. In this case, ��� is divided into

� clips and the value of N is equal to the video length in

seconds divided by two seconds.

By contrast, in the second setting (type 2), driver actions

are examined that occur only in one second. In the latter

case, ��� is divided into � clips, where � is equal to video

length in seconds. As mentioned above, the clip size should

Algorithm 1 Video Segmentation – type 1

Input: ,����-���, (��)*�+�, ��.�/-��0�ℎ, ��.�/2���3���

1: �����4�.�& ← 0

2: ��.4�.�& ← (��)*�+�

3: ���7��8,���)� ← ��.�/-��0�ℎ / �2 × ��.�/2���3����

4: (��) ← []

5: >?@ � � 1 A? ���7��8,���)� B?

6 >?@ C � �����4�.�& A? ��.4�.�& B?

7: (��). �������,����-���[C]�

8: EFB >?@

9: GHIE (��) HG IJBE?

10: (��) ← []

11: �����4�.�& ← ��.4�.�& − 4

12: ��.4�.�& ← �����4�.�& + (��)*�+�

13: EFB >?@

Algorithm 2 Video Segmentation – type 2

Input: ,����-���, (��)*�+�, ��.�/-��0�ℎ, ��.�/2���3���

1: �����4�.�& ← 0

2: ��.4�.�& ← (��)*�+�

3: ���7�����)� ← ��.�/-��0�ℎ / ��.�/2���3���

4: (�����4�.�& ← ��.�/2���3��� + ���.�/2���3��� / 2�

5: >?@ � � 2 A? ���7�����)� B?

6: �����4�.�& ← (�����4�.�& − �(��)*�+� / 2�

7: ��.4�.�& ← (�����4�.�& + �(��)*�+� / 2�

8: GHIE ,����-���[�����4�.�&] A?

,����-���[��.4�.�&] HG IJBE?

9: (�����4�.�& ← (�����4�.�& + (��)*�+�

10: EFB >?@

contain 64 frames, and so each clip in the type 2 setting

takes 17 frames from the previous and post seconds.

3.3. Action Classification Model

For the TDAL framework to succeed, the action

classifier plays a central role. Training the action

classification model requires huge data and computational

resources to reach a satisfactory result. Thus, this work

adopted SlowFast [22] as an action classifier with Resnet50

[26] as the backbone. This decision was made according to

a trade-off between training computational resources,

accuracy, and inference speed.

Pre-processing. For each video in , we performed

driver tracking, but in a different way from Section 3.2. We

use Yolov5 model to identify all the individuals' bounding

boxes in the �	 frames with the confidence score equal to

or greater than '. We link the bounding boxes through

frames based on the intersection of union (IoU) threshold

N to construct a tube for each individual. Then, each tube’s

frames will be cropped based on the first bounding box and

stored as a video. After that, we clean the resulted videos

manually and remove any videos that may negatively affect

the training phase.

3321

The training set of this challenge is relatively small with

respect to the number of classes and public action

classification dataset. Additionally, some classes had a

high similarity, such as a driver singing and driver talking

to a passenger. If we had trained our model using only the

training set, either overfitting or underfitting problems

would have emerged. Therefore, to avoid these problems

in our research, we increased the number of samples in

each class using synthetic data in addition to the

set. Since all the videos are greyscale in terms of color, the

image colorization technique of Su et al. [27] was applied

to perform colorization on the entire training set .

Training Procedure. We used several techniques in the

training phase to address the problem of underfitting. We

initialized the model weights using pre-trained weights for

similar datasets, such as kinetics [17]. In turn, we trained

the model using only set and without using the synthetic

data until the model was overfitted. Following this, we

reduced overfitting by resuming training after adding the

synthetic data (colored data) to the training set. Also, we

increase the number of random augmentation samples in

each epoch during training. The last two steps were

undertaken to improve the model’s generalization

capability.

3.4. Temporal Localization

As indicated in Section 2, the performance of action

classification is promising. We sought to exploit this fact

by using the classifier output in this stage and storing the

action probability) for each clip in ���. Following this,

the probabilities O are passed through the temporal

localization algorithm presented in Algorithm 3.

The temporal localization procedure is undertaken in

three steps. In the first step, we take the most promising

temporal information for a certain action. As such, the top

P probabilities are returned that are associated with its clips

for a specific action �. The second step aims to construct

the proposed intervals for a certain action; the interval is

the period of time where the action is happening, which can

be specified by the start time and end time of the period.

However, the two consecutive clips will form an ��������

if the time that separates them is less than �((�)�*�(.

Otherwise, it will be considered a new proposed interval.

After that, the proposed intervals are filtered; if the interval

must be greater than ��C�(�*�(, then it is sorted based on

the max-average probability. In the third step, we ensure

that no two actions’ intervals overlap; otherwise, the action

with lower priority updates its interval by the next max-

average probability. The action priority is defined as

follows: the action with the higher priority is that for which

the action classification model has performed more

effectively. The above-mentioned steps are repeated for

each action class.

Algorithm 3 Temporal Localization

Input: O /* probabilities for each clip in video */

1: ��b4������� ← [] /∗ (/������ ��b���(� /, (��) ,/� � (������

 �(��/� ∗/

2: �������� ← [] /* contains all proposed intervals �start and

 end sec� for certain action */

3: ��������� ← [] /* contains intervals for all actions */

4: >?@ � JF �(��/���-�����

5: Step 1: getting the top k probabilities associated with

 clips

6: (��),)�/7 ← e��f/)g�O, ��

7: Step 2: generating temporal proposals

8: >?@ � JF (��)�

9: J> ��&� � <� � + �((�)�*�(B?

10: ��b4�������. �������s)

11: EiGE

12: �����f��� ← ��b4�������[0]. �/*�(� �

13: ��.f��� ← ��b4�������[−1]. �/*�(� �

14: ��������. ������������f���, ��.f����

15: ��b4������� ← []

16: EFB J>

17: EFB >?@

18: 2����� ��������� ���������, ��C�(�*�(�

19: */�� ��& ����0� ����������

20: ���������[�] ← ��������[0]

21: EFB >?@

22: Step 3: updating the overlapped action

23: jkJiE �������� ?IE@iHllEB ���������

24: ���������[�] ← e�� ��&�)�/)/��. ��������

25: EFB jkJiE

 mnAlnA ���������

4. Experiments

4.1. Data Analysis

Experiments were performed using the NVIDIA AI City

Challenge 2022 Track 3 dataset. This is a third-party

dataset [28] consisting of data captured from 10 drivers.

The drivers performed 18 different tasks in random order

under two conditions: once in the absence of an appearance

blocker (e.g., hat or sunglasses) and another in presence of

an appearance blocker.

The Track 3 dataset provides three different angles

recorded simultaneously by infrared cameras, resulting in

60 videos in total. The average length of a video is 9.3

minutes with the frame rate of 30 fps. Additionally, the

dataset is partitioned into two subsets A1, and A2, each

containing 5 different drivers. The aim of the A1 and A2

datasets is to develop the algorithm. In which A1 for

training and A2 for evaluation. The main objective of this

challenge is to classify driver actions into predefined

classes and find the start and end times without using any

3322

external data or A2 set in the training phase.

A1 dataset. A1 is a set of labeled untrimmed videos. We

trimmed only the rear angle view based on the actions’

ground-truth. After that, we analyzed the trimmed videos

and cleaned them by omitting any driver who engaged in a

complex action (e.g., singing with music while texting or

talking to the passenger in the backseat while texting). The

remaining A1 dataset was divided into a training set 75%

and a test set 25%. Table 1 shows the A1 dataset. For more

information about the dataset split, it will be available on

the GitHub repository soon.

4.2. Implementation Details

Driver tracking. We used Yolov5, the small model

(Yolov5s) version [23] pre-trained on COCO dataset [24]

to detect and track each person in a video. The input frames

size is fixed as the benchmark video size (1920 & 1080).

Experimentally, we conducted the finest confidence

threshold ' � 0.5.

Action classification model. For the preprocessing, we

set N to 0.30 and ' to 0.5. We used SlowFast-R50 as

action classifier model, which is pretrained on the Kinetics-

400 dataset [17] and fine-tuned on sets. First, we train it

using the default hyperparameters with some modification

on each. We set max epoch to 440, batch size to 12, number

of samples for data augmentation is set to 1, and the base

learning rate is set to 1e-5. After that, we increased our

dataset through applying image colorization [27] using

their default hyperparameters. Then, we resume the

training from the last checkpoint in first step till epoch 730,

with batch size set to 4, number of samples for data

augmentation is set to 3, base leaning rate is set to 1e-4,

and train jitter scales [256, 256].

Temporal localization. By experimentation, we

��� P � 12, �((�)�*�(� 10 and ��C�(�*�(� 4.

4.3. Evaluation Metrics

In order to evaluate stage 2, we consider top1- accuracy

and top-5 accuracy measured by the equation (1). Top-1

accuracy is prevalent accuracy; it checks if the highest

probability matches the class label. Whereas top-5

accuracy, checks if the one of the highest top-5

probabilities matches the class label to consider it as a

correctly classified action.

r((���(% �
f

�
�1�

where f is the number of correctly classified actions,

and � is the total number of actions.

 A1 Train A1 Test

Class

Number
Action Name videos

Total

Seconds

Average

(secs/video)
videos

Total

Seconds

Average

(secs/video)

0 Normal Forward Driving 6 109 18 2 34 17

1 Drinking 6 110 18 2 31 16

2 Phone Call (right) 8 131 16 2 30 15

3 Phone Call (left) 6 110 18 2 38 19

4 Eating 6 110 18 2 41 20

5 Text (Right) 7 108 15 2 32 16

6 Text (Left) 6 118 20 2 36 18

7 Hair / makeup 6 145 24 2 29 14

8 Reaching behind 6 115 19 2 48 24

9 Adjust control panel 6 125 21 2 45 22

10 Pick up from Driver floor 6 126 21 2 31 16

11 Pick up from Passenger floor 7 97 14 2 32 16

12 Talk to passenger at the right 6 123 20 2 44 22

13 Talk to passenger at backseat 6 116 19 2 29 14

14 yawning 7 109 16 3 23 8

15 Hand on head 7 121 17 2 36 18

16 Singing with music 6 117 20 2 48 24

17 shaking or dancing with music 6 140 23 2 29 14

Table 1: A1training and testing dataset splits.

3323

The evaluation of NVIDIA AI CITY CHALLENGE

2022 for track 3 will be based on the action identification

performance model, measured by the F1 score presented in

equation (2). F1 score is a harmonic mean of recall and

precision. Specifically, a true-positive (TP) activity

identification will be considered when the action was

correctly identified as starting within one second of the

ground-truth start time and ending within one second of the

ground-truth end time of the activity. Whereas a false-

positive (FP) is the activity in the proposed approach that

fails to be correctly identified within the slot. Lastly, a

false-negative (FN) activity is a ground-truth activity that

was not correctly identified.

F1 �(/�� �
2fO

2fO + 2� + 2O
�2�

4.4. Experiment Results and Discission

Action Classification Model Evaluation. The first

experiment investigated the following question: “Is the

model capable of identifying actions correctly?” The

proposed action classification model achieved 64% for the

top-1 accuracy and 97.3% for the top-5 accuracy on the A1

test set. However, the model failed entirely to identify

certain actions, as shown in Figure 2. These actions include

normal driving, texting (left), talking to a passenger on the

right, talking to a backseat passenger, and singing to music.

One possible reason is the similarity between the actions,

such as talking to a passenger on the right and talking to a

passenger in the backseat, where the two actions require

gesturing to the right. In addition, the camera angle (rear

view) influenced the result in the text (left) action, which

is due to the fact that the phone and hand movements were

hidden by the vehicle wheel. This result indicates that the

model needs more information to distinguish between the

top-5 actions. This can be achieved either by increasing the

size of the training dataset or using more than one camera

angle to uniquely represent each action.

This paper also sought to investigate the learned

features. Therefore, features were extracted from the last

global pooling layer, and we used UMAP [29] to project it

to lower dimensions. Figure 3 presents the feature

visualization for the A1 test set. As the Figure 3 shows, the

action classification model was capable of finding a level

of similarity between the features of each action.

Evaluation on TDAL framework. The proposed

TDAL framework was tested on the A2 set provided by the

NVIDIA AI City 2022 Challenge team. We tested the two

video segmentation settings in Section 3.2. Table 2 shows

the F1 score for the two algorithms. From the results in

Table 2, Algorithm 1 outperformed Algorithm 2 by a

margin of 14.1%.

Finally, the proposed framework achieved an F1 score

of 27.06%. It is reasonable to conclude from Figures 2 and

3 that the action classification model demonstrates

superiority and robustness. The reduction in the F1 score is

a consequence of the poor performance of the temporal

localization algorithm.

 A B

F1-score 0.2706 0.1316

5. Conclusion

This paper reformulated the temporal driver action

localization problem to the action classification problem.

The proposed framework consists of three stages:

preprocessing, action classification and temporal

localization. We showed that using an action classification

Figure 2: Confusion matrix for top-1 accuracy using A1 test set.

Table 2: The performance of our method using diffirent video

segmentation seetings on A2 set. A is the results of using

Algorithme 1 and B is the results of using Algorithme 2.

Figure 3: Features visualization for the A1 test set.

3324

algorithm can enable the identification of a given action’s

start and end time. In Track 3 of the NVIDIA AI City

Challenge 2022, the proposed framework achieved an F1

score of 27.06%. In the future, we intend to enhance the

temporal localization algorithm.

Acknowledgments

The authors would like to thank Saudi Technology and

Security Comprehensive Control Company (Tahakom) for

funding and supporting this research. Also, the authors

would like to thank the General Manager of the Systems

Engineering department at Tahakom Professor

Abdulrahman Alarifi for his valuable discussions,

insightful comments, and ongoing support throughout this

research.

References

[1] “Home.” https://www.who.int (accessed Apr. 14, 2022).

[2] B. Baheti, S. Gajre, and S. Talbar, “Detection of Distracted

Driver Using Convolutional Neural Network,” in 2018

IEEE/CVF Conference on Computer Vision and Pattern

Recognition Workshops (CVPRW), Salt Lake City, UT,

USA, Jun. 2018, pp. 1145–11456. doi:

10.1109/CVPRW.2018.00150.

[3] Michael A. Regan, John D. Lee, Kristie Young, Ed.,

Driver Distraction Theory, Effects, and Mitigation, 1st ed.,

vol. 13. 2008. [Online]. Available:

https://www.taylorfrancis.com/books/mono/10.1201/978

1420007497/driver-distraction-michael-regan-john-lee-

kristie-young

[4] N. Moslemi, M. Soryani, and R. Azmi, “Computer vision‐

based recognition of driver distraction: A review,”

Concurrency Computat Pract Exper, vol. 33, no. 24, Dec.

2021, doi: 10.1002/cpe.6475.

[5] J. Mafeni Mase, P. Chapman, G. P. Figueredo, and M.

Torres Torres, “A Hybrid Deep Learning Approach for

Driver Distraction Detection,” in 2020 International

Conference on Information and Communication

Technology Convergence (ICTC), Jeju, Korea (South),

Oct. 2020, pp. 1–6. doi:

10.1109/ICTC49870.2020.9289588.

[6] A. Jamsheed V., B. Janet, and U. S. Reddy, “Real Time

Detection of driver distraction using CNN,” in 2020 Third

International Conference on Smart Systems and Inventive

Technology (ICSSIT), Tirunelveli, India, Aug. 2020, pp.

185–191. doi: 10.1109/ICSSIT48917.2020.9214233.

[7] H. M. Eraqi, Y. Abouelnaga, M. H. Saad, and M. N.

Moustafa, “Driver Distraction Identification with an

Ensemble of Convolutional Neural Networks,” Journal of

Advanced Transportation, vol. 2019, pp. 1–12, Feb. 2019,

doi: 10.1155/2019/4125865.

[8] M. Leekha, M. Goswami, R. R. Shah, Y. Yin, and R.

Zimmermann, “Are You Paying Attention? Detecting

Distracted Driving in Real-Time,” in 2019 IEEE Fifth

International Conference on Multimedia Big Data

(BigMM), Singapore, Singapore, Sep. 2019, pp. 171–180.

doi: 10.1109/BigMM.2019.00-28.

[9] Y. Xing et al., “End-to-End Driving Activities and

Secondary Tasks Recognition Using Deep Convolutional

Neural Network and Transfer Learning,” in 2018 IEEE

Intelligent Vehicles Symposium (IV), Changshu, Jun. 2018,

pp. 1626–1631. doi: 10.1109/IVS.2018.8500548.

[10] S. Yan, Y. Teng, J. S. Smith, and B. Zhang, “Driver

behavior recognition based on deep convolutional neural

networks,” in 2016 12th International Conference on

Natural Computation, Fuzzy Systems and Knowledge

Discovery (ICNC-FSKD), Changsha, China, Aug. 2016,

pp. 636–641. doi: 10.1109/FSKD.2016.7603248.

[11] H. Naveed, F. Jafri, K. Javed, and H. A. Babri, “Driver

activity recognition by learning spatiotemporal features of

pose and human object interaction,” Journal of Visual

Communication and Image Representation, vol. 77, p.

103135, May 2021, doi: 10.1016/j.jvcir.2021.103135.

[12] M. Wu, X. Zhang, L. Shen, and H. Yu, “Pose-aware Multi-

feature Fusion Network for Driver Distraction

Recognition,” in 2020 25th International Conference on

Pattern Recognition (ICPR), Milan, Italy, Jan. 2021, pp.

1228–1235. doi: 10.1109/ICPR48806.2021.9413337.

[13] A. Behera, Z. Wharton, A. Keidel, and B. Debnath, “Deep

CNN, Body Pose, and Body-Object Interaction Features

for Drivers’ Activity Monitoring,” IEEE Trans. Intell.

Transport. Syst., vol. 23, no. 3, pp. 2874–2881, Mar. 2022,

doi: 10.1109/TITS.2020.3027240.

[14] A. Behera and A. H. Keidel, “Latent Body-Pose guided

DenseNet for Recognizing Driver’s Fine-grained

Secondary Activities,” in 2018 15th IEEE International

Conference on Advanced Video and Signal Based

Surveillance (AVSS), Auckland, New Zealand, Nov. 2018,

pp. 1–6. doi: 10.1109/AVSS.2018.8639158.

[15] P. Li, M. Lu, Z. Zhang, D. Shan, and Y. Yang, “A Novel

Spatial-Temporal Graph for Skeleton-based Driver Action

Recognition,” in 2019 IEEE Intelligent Transportation

Systems Conference (ITSC), Auckland, New Zealand, Oct.

2019, pp. 3243–3248. doi: 10.1109/ITSC.2019.8916929.

[16] M. Martin, J. Popp, M. Anneken, M. Voit, and R.

Stiefelhagen, “Body Pose and Context Information for

Driver Secondary Task Detection,” in 2018 IEEE

Intelligent Vehicles Symposium (IV), Changshu, China,

Jun. 2018, pp. 2015–2021. doi:

10.1109/IVS.2018.8500523.

[17] W. Kay et al., “The Kinetics Human Action Video

Dataset,” arXiv:1705.06950 [cs], May 2017, Accessed:

Apr. 14, 2022. [Online]. Available:

http://arxiv.org/abs/1705.06950

[18] R. Goyal et al., “The ‘something something’ video

database for learning and evaluating visual common

sense,” arXiv:1706.04261 [cs], Jun. 2017, Accessed: Apr.

14, 2022. [Online]. Available:

http://arxiv.org/abs/1706.04261

[19] J. Carreira and A. Zisserman, “Quo Vadis, Action

Recognition? A New Model and the Kinetics Dataset,”

arXiv:1705.07750 [cs], Feb. 2018, Accessed: Apr. 14,

2022. [Online]. Available:

http://arxiv.org/abs/1705.07750

[20] L. Wang et al., “Temporal Segment Networks for Action

Recognition in Videos,” arXiv:1705.02953 [cs], May

2017, Accessed: Apr. 14, 2022. [Online]. Available:

http://arxiv.org/abs/1705.02953

3325

[21] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M.

Paluri, “Learning Spatiotemporal Features with 3D

Convolutional Networks,” arXiv:1412.0767 [cs], Oct.

2015, Accessed: Apr. 14, 2022. [Online]. Available:

http://arxiv.org/abs/1412.0767

[22] C. Feichtenhofer, H. Fan, J. Malik, and K. He, “SlowFast

Networks for Video Recognition,” in 2019 IEEE/CVF

International Conference on Computer Vision (ICCV),

Seoul, Korea (South), Oct. 2019, pp. 6201–6210. doi:

10.1109/ICCV.2019.00630.

[23] “GitHub - ultralytics/yolov5: YOLOv5 � in PyTorch >

ONNX > CoreML > TFLite.”

https://github.com/ultralytics/yolov5 (accessed Apr. 14,

2022).

[24] T.-Y. Lin et al., “Microsoft COCO: Common Objects in

Context,” arXiv:1405.0312 [cs], Feb. 2015, Accessed:

Apr. 14, 2022. [Online]. Available:

http://arxiv.org/abs/1405.0312

[25] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You

Only Look Once: Unified, Real-Time Object Detection,”

arXiv:1506.02640 [cs], May 2016, Accessed: Apr. 21,

2022. [Online]. Available:

http://arxiv.org/abs/1506.02640

[26] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual

Learning for Image Recognition,” arXiv:1512.03385 [cs],

Dec. 2015, Accessed: Apr. 14, 2022. [Online]. Available:

http://arxiv.org/abs/1512.03385

[27] J.-W. Su, H.-K. Chu, and J.-B. Huang, “Instance-Aware

Image Colorization,” p. 10.

[28] Mohammed Shaiqur Rahman, “Synthetic Distracted

Driving (SynDD1) Dataset.” MURI/AUSMURI Project:

Rationalization of Interphase Instabilities during Thermo-

Mechanical Gyrations Typical, Apr. 19, 2022. doi:

10.17632/PTCP7RP3WB.2.

[29] L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform

Manifold Approximation and Projection for Dimension

Reduction,” arXiv:1802.03426 [cs, stat], Sep. 2020,

Accessed: Apr. 14, 2022. [Online]. Available:

http://arxiv.org/abs/1802.03426

3326

