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Abstract

The drastic growth in the number of vehicles in the
last few decades has necessitated significantly better traf-
fic management and planning. To manage the traffic effi-
ciently, traffic volume is an essential parameter. Most meth-
ods solve the vehicle counting problem under the assump-
tion of state-of-the-art computation power. With the recent
growth in cost-effective Internet of Things (IoT) devices and
edge computing, several machine learning models are being
tailored for such devices. Solving the traffic count problem
on these devices will enable us to create a real-time dash-
board of network-wide live traffic analytics. This paper pro-
poses a Detect-Track-Count (DTC) framework to count ve-
hicles efficiently on edge devices. The proposed solution
aims at improving the performance of tiny vehicle detec-
tion models using an ensemble knowledge distillation tech-
nique. Experimental results on multiple datasets show that
the custom knowledge distillation setup helps generalize a
tiny object detector better.

1. Introduction

With the recent advancements in Artificial Intelligence
and Computer Vision, object detection techniques are gain-
ing traction, especially in Intelligent Transportation Sys-
tems. Object detection for Intelligent Transportation Sys-
tems uses traffic cameras or other vision-based sensors.
These techniques play a pivotal role in tackling challenging
problems such as traffic density estimation, tracking traf-
fic violations, lane changes, detecting speeds of individual
vehicles, vehicle classification, and counting. With the re-
cent developments in the field of machine learning for the
Internet of Things (IoT), we can receive live analytics and
predictions at a low cost using these devices [1, 19].

In this paper, we focus on the task of counting vehi-
cles autonomously in an edge device using computer vi-
sion and deep learning. Estimating classified counts using
cameras can be seen as the classic object counting task in
computer vision [15]. Typically, object counting is the re-
sult of object detection and tracking. Therefore, we em-
ploy the Detect-Track-Count framework, consisting of three
stages: vehicle detection, tracking, and counting. Since
the framework is intended to be deployed on edge devices,
the models deployed must be compact and computationally
efficient. Given that tracking and counting are dependent
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Figure 1. Proposed Architecture

on vehicle detection and have significantly lesser compu-
tations, we focus on making vehicle detection robust, fast,
and lightweight.

Traditional vehicle detection techniques include His-
togram of Oriented Gradients (HOG) [31], Scale Invariant
Feature Transform (SIFT) [8], followed by Support Vec-
tor Machines(SVM) classification. These models are in-
credibly lightweight and can easily be fit on edge devices.
However, these are not robust to several environmental fac-
tors (weather, time of the day), camera angle, and lighting.
There emerged a need for a robust model that can handle
any scenario in a real-time setup.

These defects migrated the interest of the research com-
munity towards deep learning models for object detection,
such as Faster RCNN [30] (Region-based Convolutional
Neural Networks), YOLO (You Only Look Once) [29], and
SSD (Single Shot Detector) [23] for detecting the objects.
These models are often very robust and handle dynamic in-
puts efficiently. However, these models are computationally
demanding and need state-of-the-art computing systems to
function.

The state-of-the-art vehicle detection for heterogeneous
road traffic uses Faster RCNN, trained on Pascal VOC, aug-
mented with a low-resolution dataset [26]. Faster RCNN is
a computationally intensive model, and it is significantly
slower than the frame rate of incoming video. As a re-
sult, deploying the model on an edge device with an av-
erage CPU and GPU is not possible. Faster RCNN can
be replaced with YOLO to increase performance; however,
even YOLO is computationally intensive on edge devices.
Switching to even more lightweight models decreases the

accuracy substantially.
To make these models lightweight, researchers have tried

pruning techniques [25]. However, the increase in speed is
not very significant, and if many layers are pruned, the per-
formance degrades even further. Another approach to solv-
ing the problem is by using Knowledge Distillation [34].
This is an effective technique, inspired by the human’s abil-
ity to quickly learn new complex concepts when given very
small training sets [4, 14]. In model compression for deep
learning, knowledge distillation has been widely used to
transfer information from one network to another, i.e., a
smaller student model is trained to mimic the performance
of a large pre-trained teacher model or an ensemble of
teacher models.

In this paper, anchoring on the computational capabili-
ties of an Edge device, NVIDIA Jetson Nano, we propose
a framework of vehicle counting that follows the detection-
tracking-counting (DTC) model. We then use the 2021 AI
City Challenge Track 1 [27] evaluation server to validate
our counting accuracy and the computational efficiency of
our model aligning with the goal of the AI City Challenge
2021’s Track 1 to develop class-wise, motion-specific vehi-
cle counting systems that can efficiently record vehicles in
two categories, i.e., cars and trucks, in different traffic paths
and scenes in real-time on a single-board computer.

Our contributions to the paper are the following:

• We improve the generalization of Tiny YOLO [29] by
using an ensemble Knowledge Distillation technique
[2] consisting of 3 different state-of-the-art object de-
tection networks, thereby improving its detection ac-
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curacy. Since Tiny YOLO is already lightweight, en-
hancing its detection accuracy will result in a better
speed-accuracy tradeoff.

• In traffic scenes, when the vehicle density is high,
motions usually accompany sudden changes in veloc-
ity and positions. We modify the tracker code and
use an improved Kalman Filter model to circumvent
these problems. We avoid using Deep Learning-based
Trackers since they are computationally expensive.

• Finally, we compare our method on popular object de-
tection datasets and use the AI City Challenge’s eval-
uation server to validate our counts. Our experiments
suggest that this implementation increases resource us-
age efficiency on an IoT device and effectively lever-
ages a reasonably accurate DTC approach to traffic
volume counting.

This is the first study, to the best of our knowledge,
that uses ensemble knowledge distillation for object detec-
tion. We empirically validate the performance improve-
ment produced when using this approach on the traffic do-
main by running extensive experiments on popular datasets
[9, 22, 26].

2. Related Works
2.1. Object Detection

Object Detection is a task of computer vision to localize
and classify objects. Object detection can be instrumental
in vehicle identification [30], anomaly detection [28], lane
identification [3], and pothole detection [10–12]. The re-
search community has shifted its attention to deep learning
to tackle the object detection problem in the past decade.
Research results have indisputably demonstrated the effec-
tiveness of deep neural networks (DNN) for accurately rec-
ognizing image objects [5]. However, the improvement in
accuracy has reduced computation speed even with high-
end machines [21]. Thus, we need model compression tech-
niques to scale these models on edge devices [6,20,32, 33].

2.2. Knowledge Distillation

Knowledge distillation refers to the process of transfer-
ring the knowledge from a large, unwieldy model or set of
models to a single smaller model that can be practically de-
ployed under real-world constraints [16]. Knowledge Dis-
tillation is a popular technique for image classification [7].

This method can also be used as a model compression
technique for object detection. However, in the case of
object detection, multiple models differ significantly. For
example, YOLO is a single-shot object detector, whereas
Faster RCNN is a two-stage network. Therefore, distilling
the layers of these networks together becomes an arduous

task. Researchers use similar teacher and student models
for the knowledge distillation process [13,24,37]. However,
restricting to similar models limits the scope of performance
improvement.

3. Proposed Vehicle Counting Framework
As shown in Fig. 1, the full pipeline can be divided into

two stages:

• Training Phase

• Inference Phase

3.1. Training the Student Network

We train the Tiny YOLO architecture (student network)
with an ensemble of multiple teachers, such as Faster
RCNN, SSD, and YOLO. The student network is first ini-
tialized with Imagenet weights. During the entire training
phase, the weights of the teacher networks are frozen. Then,
for each batch, the teachers’ predicted outputs are reshaped
to a feature map of size 26× 26, and the mean feature map
of all the teachers is computed. While training the student,
we use this mean feature map as the reference feature map
for the student network along with a non-local module [38],
which is an effective method to improve the performance of
neural networks by capturing the global relation informa-
tion [35]. Here, we apply the non-local module to capture
the relation between pixels in an image. The loss function
of the student network (Ls(z)) is given by the following
expression:

Ls = Lsc+Lso+Lscl+LsY OLO+L2(t, s)+L2(r
t, rs)

• Lsc is the coordinate loss of the Tiny YOLO network.
This loss checks if the object is covered entirely by the
bounding box.

• Lso is the objectness loss of the Tiny YOLO network.
This loss accounts for the box-object Intersection of
Union (IoU) prediction.

• Lscl is the classification loss of the Tiny YOLO net-
work. This is ‘1’ for the correct classes and ‘0’ for all
the other classes for the object in a box.

• LsY OLO is the special YOLO loss, which captures the
deviation of the anchor box generated from its original
anchor shape and location.

• L2(t, s) is the L2 norm of the mean feature map of the
teachers and the feature map of the student network.

• L2(r
t, rs) is the L2 norm of the obtained relational in-

formation of the teacher (mean relational information
of all the teachers) and student network.

After the student model is fully trained, it is further
optimized using the Tensor RT module [17] to make
the model more lightweight.
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3.2. Estimating the Vehicle Counts

The trained student model is loaded into the edge de-
vice. We then use the standard Simple Online Real-time
Tracker (SORT) [36] to estimate the vehicle’s trajectories.
The Kalman filter is a crucial component in SORT. Our state
contains 8 variables; (u, v, a, h, u′, v′, a′, h′) where (u, v)
are centres of the bounding boxes, a is the aspect ratio and
h, the height of the image. The other variables are the re-
spective velocities of the variables.

We create a “Track” for each detection with all the nec-
essary state information. We also have a parameter to track
and delete tracks that had their last successful detection long
back, as those objects would have left the scene. Also, there
is a minimum number of detections threshold for the first
few frames to eliminate duplicate tracks. Then, we use
the Hungarian Algorithm [18] to assign IDs for the various
tracks. These IDs are used to update the classified count of
the vehicles.

4. Implementation Details
We ran our experiments on 3 standard object detection

datasets, namely: Pascal VOC, IITM-Hetra, and COCO.
No data augmentation was performed for Pascal VOC and
COCO datasets. IITM-Hetra was augmented with Pascal
VOC 2007 to improve the performance as the number of
samples in IITM-Hetra was insufficient, even for the teacher
networks. The vehicle detection training was performed in a
GPU Cluster, having several GPU Machines like NVIDIA
Titan X, NVIDIA 1080Ti, and NVIDIA DGX with GPU
RAM sizes 12Gi, 11Gi, and 32Gi, respectively. We used the
pre-trained teacher models (YOLOv3, Faster RCNN, and
SSD) with the input size fixed to 416 × 416 and initialized
the student network with Imagenet weights. The student
model was trained for 100 epochs, with a batch size of 32.
Adam was applied as the optimizer, and we decayed the ini-
tial learning rate from 3.5e−4 to 7.7e−7 using a cosine an-
nealing scheduler and the decay parameter was set to e−1.
The inference was run on an edge device, NVIDIA Jetson
Nano, which is a 128-core Maxwell, Quad-core ARM A57
@ 1.43 GHz processor with a 4Gi RAM.

5. Experiments and Results
For all the experiments, we use the Mean Average Preci-

sion (MAP) score and the average recall (AR) score as the
metrics to compare.

5.1. Vehicle Detection

We experimented with multiple knowledge distillation
setups to train the student network and compared the re-
sults with the vanilla Tiny YOLO architecture with no dis-
tillation. The baseline model was initialized with Imagenet
weights and is trained on the various datasets.

1. Using YOLOv3 as the teacher network and applying
distillation on feature map layers.

2. Using two teacher networks - YOLOv3 and YOLOv2,
for the multiple layer setup. We chose the best-
performing teacher for a batch.

3. Using 3 teachers (Faster RCNN, YOLOv3, and SSD),
averaging the feature maps of the teachers and using
them to train the student network.

The teacher models are very accurate in all the datasets and
their mean mAP score is 0.74, while the mean AR score is
0.87.

Dataset Model mAP AR
COCO Tiny YOLO (Baseline) (No Distillation) 0.237 0.35
COCO Tiny YOLO (Distilling multiple layers) 0.241 0.35

Pascal VOC 2012 Tiny YOLO (Baseline) (No Distillation) 0.31 0.42
Pascal VOC 2012 Tiny YOLO (Distilling multiple layers) 0.33 0.44

IITM-Hetra Tiny YOLO (Baseline) (No Distillation) 0.32 0.41
IITM-Hetra Tiny YOLO (Distilling multiple layers) 0.32 0.412

Table 1. Distilling multiple layers of a single teacher

Dataset Model mAP AR
COCO Tiny YOLO (Baseline) (No Distillation) 0.237 0.35
COCO Tiny YOLO (2 Teachers, multiple layers) 0.254 0.356

Pascal VOC 2012 Tiny YOLO (Baseline) (No Distillation) 0.31 0.42
Pascal VOC 2012 Tiny YOLO (2 Teachers, multiple layers) 0.35 0.45

IITM-Hetra Tiny YOLO (Baseline) (No Distillation) 0.32 0.41
IITM-Hetra Tiny YOLO (2 Teachers, multiple layers) 0.31 0.42

Table 2. Distilling multiple layers of 2 Teachers

Dataset Model mAP AR
COCO Tiny YOLO (Baseline) (No Distillation) 0.237 0.35
COCO Tiny YOLO (Multiple teachers) 0.28 0.41

Pascal VOC 2012 Tiny YOLO (Baseline) (No Distillation) 0.31 0.42
Pascal VOC 2012 Tiny YOLO (Multiple teachers) 0.41 0.53

IITM-Hetra Tiny YOLO (Baseline) (No Distillation) 0.32 0.41
IITM-Hetra Tiny YOLO (Multiple teachers) 0.39 0.58

Table 3. Distilling multiple Teachers

In Tables 1 and 2, we notice a slight improvement in the
mAP scores and AR scores of the distilled models. These
improvements, however, are not very significant. In Table
3, the increase in performance is evident. This could be be-
cause of incorporating multiple different teacher networks
for knowledge distillation.

5.1.1 Visualizing the detection of the student network

We have visualized the predictions of the student model on
various datasets and compared them with the baselines.
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(a) Tiny YOLO Baseline (No
distillation)

(b) Our model (Distilled from
multiple teachers)

(c) Tiny YOLO Baseline (No
distillation)

(d) Our model (Distilled from
multiple teachers)

(e) Tiny YOLO Baseline (No
distillation)

(f) Our model (Distilled from
multiple teachers)

Figure 2. Vehicle Detection on Pascal VOC Dataset

(a) Tiny YOLO Baseline (No
distillation)

(b) Our model (Distilled from
multiple teachers)

(c) Tiny YOLO Baseline (No
distillation)

(d) Our model (Distilled from
multiple teachers)

(e) Tiny YOLO Baseline (No
distillation)

(f) Our model (Distilled from
multiple teachers)

Figure 3. Vehicle Detection on COCO Dataset

(a) Tiny YOLO Baseline (No
distillation)

(b) Our model (Distilled from
multiple teachers)

(c) Tiny YOLO Baseline (No
distillation)

(d) Our model (Distilled from
multiple teachers)

(e) Tiny YOLO Baseline (No
distillation)

(f) Our model (Distilled from
multiple teachers)

Figure 4. Vehicle Detection on IITM-Hetra Dataset

Our proposed approach performs better than the vanilla
Tiny YOLO network in many instances. The baseline Tiny
YOLO model fails to detect efficiently in the complex ex-
amples like Figure 2e, where the baseline predicted a truck
and car. As seen in Figure 2b, our proposed model is able to
identify a lot more objects in the frame. However, there are
overlapping detections, and these could be post-processed.
There are instances where the vanilla Tiny YOLO architec-
ture failed to return a single prediction (Ex: Figure 4c) in
the IITM-Hetra dataset.

5.2. Vehicle Counting

The student model trained on IITM-Hetra and the
YOLOv3 model trained on COCO are evaluated on the AI
City Challenge 2021’s Track 1 server to get the count accu-
racy. [27]

The metric used is the S1 score, which is defined as
S1 = 0.3 ∗ S1Efficiency + 0.7 ∗ S1Effectiveness, where
SEfficiency is calculated based on the execution time and
is adjusted by the Base Factor which is dependent on the
running system’s CPU and GPU computation.

It assesses the solution’s ability to execute online within
its computing environment and resources. On the other
hand, SEffectiveness is computed for vehicle counts as a
weighted average of normalized weighted root mean square
error scores (nwRMSE) across all videos, movements, and

3196



vehicle classes of the test sets.

Model S1Effectiveness S1Efficiency S1
YOLOv3 (Teacher) 0.9425 0.9911 0.9571

Tiny YOLO (Distilled) (Student) 0.5840 0.9995 0.7085

Table 4. Counting Accuracy

6. Conclusion
In this paper, we have presented a low-compute frame-

work to estimate the traffic counts. Our solution con-
sists of a fast object detector (Tiny YOLO) trained using
Knowledge Distillation from 3 teacher networks (Faster
RCNN, YOLOv3, and SSD), Tensor-RT Optimization of
the learned model, and estimating the count of the traffic us-
ing the SORT Algorithm in real-time on edge devices. Both
the Effectiveness and Efficiency of our solution are experi-
mentally illustrated using multiple data sources. Based on
the results, there is a significant potential for generalizing
tiny models and improving performance.

References
[1] Rasheed Ahmad and Izzat Alsmadi. Machine learning ap-

proaches to iot security: A systematic literature review. In-
ternet of Things, 14:100365, 2021. 1

[2] Zeyuan Allen-Zhu and Yuanzhi Li. Towards understanding
ensemble, knowledge distillation and self-distillation in deep
learning, 2020. 2

[3] Abdulhakam AM Assidiq, Othman O Khalifa, Md Rafiqul
Islam, and Sheroz Khan. Real time lane detection for au-
tonomous vehicles. In 2008 International Conference on
Computer and Communication Engineering, pages 82–88.
IEEE, 2008. 3

[4] Cristian Buciluundefined, Rich Caruana, and Alexandru
Niculescu-Mizil. Model compression. In Proceedings of the
12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’06, page 535–541, New
York, NY, USA, 2006. Association for Computing Machin-
ery. 2

[5] Karanbir Singh Chahal and Kuntal Dey. A survey of mod-
ern object detection literature using deep learning. CoRR,
abs/1808.07256, 2018. 3

[6] Ping Chao, Chao-Yang Kao, Yu-Shan Ruan, Chien-Hsiang
Huang, and Youn-Long Lin. Hardnet: A low memory traf-
fic network. In Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV), October 2019. 3

[7] Wei-Chun Chen, Chia-Che Chang, Chien-Yu Lu, and Che-
Rung Lee. Knowledge distillation with feature maps for im-
age classification, 2018. 3

[8] Jae-Young Choi, Kyung-Sang Sung, and Young-Kyu Yang.
Multiple vehicles detection and tracking based on scale-
invariant feature transform. In 2007 IEEE Intelligent Trans-
portation Systems Conference, pages 528–533, 2007. 2

[9] Mark Everingham, Luc Gool, Christopher K. Williams,
John Winn, and Andrew Zisserman. The pascal visual

object classes (voc) challenge. Int. J. Comput. Vision,
88(2):303–338, jun 2010. 3

[10] Rui Fan, Xiao Ai, and Naim Dahnoun. Road surface 3d re-
construction based on dense subpixel disparity map estima-
tion. IEEE Transactions on Image Processing, 27(6):3025–
3035, 2018. 3

[11] Rui Fan and Ming Liu. Road damage detection based on
unsupervised disparity map segmentation. IEEE Transac-
tions on Intelligent Transportation Systems, 21(11):4906–
4911, 2020. 3

[12] Rui Fan, Umar Ozgunalp, Brett Hosking, Ming Liu, and
Ioannis Pitas. Pothole detection based on disparity trans-
formation and road surface modeling. IEEE Transactions on
Image Processing, 29:897–908, 2020. 3

[13] Heitor Felix, Walber M. Rodrigues, David Macêdo, Fran-
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