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Abstract

Naturalistic driving action recognition plays an impor-
tant role in understanding drivers’ distracted behaviors in
the traffic environment. The main challenge of this task is
the accurate localization of the temporal boundary for each
distracted driving behavior in the video. Although many
temporal action localization methods can identify action
categories, it is difficult to predict accurate temporal bound-
aries for this task since the driving actions of the same cat-
egory usually present large intra-class variation. In this
paper, we introduce a Coarse-to-Fine Boundary Localiza-
tion method called CFBL, which obtains fine-grained tem-
poral boundaries progressively through three stages. Con-
cretely, in the first coarse boundary generation stage, we
adopt a modified anchor-free model Anchor-Free Saliency-
based Detector (AFSD) to make an interval estimation of
the temporal boundaries of distracted behaviors. In the sec-
ond boundary refinement stage, we use the Dense Boundary
Generation (DBG) model to adjust the estimated interval of
the temporal boundaries. In the final boundary decision
stage, we build a Localization Boundary Refinement Mod-
ule to determine the final boundaries of different actions.
Besides, we adopt a voting strategy to combine the results
of different camera views to enhance the model’s distracted
driving action classification ability. The experiments con-
ducted on the Track 3 validation set of the 2022 AI City
Challenge demonstrate competitive performance of the pro-
posed method.
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Time(sec)

Ground Truth: yawning89s 113s

AFSD: yawning96.9s 113s

DBG:

fusion: yawning88.7s 113s

Figure 1. An example of the distracted behavior in the data set.
We adapt the label predicted by AFSD and the boundary adjusted
by DBG output signals.

1. Introduction
Distracted driving, such as phone call, eating and reach-

ing behind is the main cause of fatal road traffic injuries.
Therefore, Naturalistic driving action recognition, which
aims at identifying the distracted behaviors of the driver in
the traffic environment, has attracted a lot of attention in
recent years.

Naturalistic driving action recognition can be regarded
as a fine-grained temporal action localization task, which
aims to classify action instances in each video and localize
the accurate temporal boundaries of them. Currently, Tem-
poral Action Localization (TAL) researches can be roughly
divided into anchor-based approaches and anchor-free ap-
proaches. The anchor-based approaches usually adopt a
two-stage strategy, which first generates candidate video
segments as action proposals and then classifies and re-
fines temporal boundaries. However, the anchor-based two-
stage approaches may produce a bunch of redundant pro-
posals, which severely influences the efficiency of com-
putation. Recently, popular anchor-free methods assemble
both boundary regression and classification in an end-to-
end model so as to significantly improve the inference effi-
ciency.

Compared to the general temporal action localization
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task, there are two major challenges in naturalistic driv-
ing action recognition of AI City 2022. First, the temporal
boundary localization is hard for the driving video, since
driving actions of the same category present large intra-
class variation. For example, within one video segment
which is labeled as eating, there are both eating and eat-
ing gap. This intra-class variation may puzzle the model to
divide one action segment into different parts especially for
the anchor-based approaches which produce a bunch of re-
dundant proposals. Second, driver action records from mul-
tiple camera views in the vehicle are provided in this task.
However, current TAL approaches are mainly based on sin-
gle camera. It is also challenging to effectively combine the
information of multiple camera views to improve the accu-
racy of action classification and boundary localization.

To address above challenges, we propose a Coarse-to-
Fine Boundary Localization method called CFBL to predict
the action segment boundary accurately. Specifically, we
first give a coarse estimation of the action segments which
cover the approximate time range of each action and then re-
fines the start time and end time of each segment to get more
accurate temporal boundaries. For the coarse boundary gen-
eration stage, we adopt a modified anchor-free model called
AFSD [8], which consists of an I3D [2] feature extraction
module, a boundary regression module and an action classi-
fication module. Note that the modified AFSD model does
not make a point estimation of the starting time and ending
time of an action in this stage, it makes an interval estima-
tion of the boundary instead. For the fine-grained boundary
refine stage, we use a Dense Boundary Generation model
called DBG [7] to adjust the time range of the temporal
boundary. For the last boundary decision stage, we build
a Localization Boundary Refinement module to determine
the exact boundaries of different action instances. Through
this three-stage coarse-to-fine boundary location strategy,
our model could find more accurate start time and end time
of each driving action. Moreover, to effectively combine
the information of multiple view cameras, we introduce a
Multi-View Filter Module to ensemble models with differ-
ent camera videos as input. To be specific, for one action
instance, we use three different camera views to predict the
temporal boundary and adopt a voting strategy to determine
the final boundary.

2. Related work

2.1. Anchor-based Temporal Action Localization

Current TAL models of anchor-based methods mainly
get results through learning the adjustment of pre-defined
anchors. Existing anchor-based methods can be divided
into two categories: one-stage approaches and two-stage
approaches. SSAD [10] is a classic one-stage TAL net-
work, which is a temporal convolutional network on multi-

granularity feature sequences. SSAD network directly
predicts boundaries and confidence scores for multiple
action categories skipping the proposal generation step.
GTAN [13] novelly applies a temporal structure into a one-
stage action localization framework and exploits Gaussian
kernels to optimize temporal scale of each action proposal
dynamically. Meanwhile, with the help of the video visual
features and position embedding information, MGG [12]
performs the temporal action proposal from different gran-
ularities perspectives.

Compared to one-stage TAL approaches, a two-stage ap-
proach for TAL first generates candidate video segments
as proposals, and further classifies these proposals in or-
der to get the action categories and the corresponding and
refined temporal boundaries. R-C3D [18] improves the
Faster R-CNN [15] pipeline and get the temporal local-
ization based on 1-D sequence. In an end-to-end learning
manner, it uses a 3-D fully convolutional network to en-
code the video streams. After encoding the video streams,
R-C3D generates candidate temporal regions containing ac-
tions and finally classifies candidate regions into definite ac-
tions. TURN [4] predicts action proposals and generates
the temporal boundaries by temporal coordinate regression.
CBR [5] also uses temporal coordinate regression to gener-
ates the temporal boundaries of the sliding windows. Subse-
quently, TAL-Net [3] uses a multi-scale architecture to im-
prove receptive field alignment and better exploits the tem-
poral context of actions for both proposal generation and
action classification.

2.2. Anchor-free Temporal Action Localization

Although anchor-based TAL methods have achieved re-
markable results on benchmark data sets, such methods are
still limited to some points. For example, anchor-based
methods have to produce a bunch of redundant propos-
als, which severely influences the efficiency of computa-
tion. Furthermore, anchor-based methods are sensitive to
some hyper-parameters, such as the size of pre-defined an-
chors. Instead, an optional approach for TAL is to resort
to the anchor-free method, which assembles both boundary
regression and classification in one model, thus being more
efficient while having less parameters. A2Net [19] com-
bines the anchor-free module with a conventional anchor-
based module. To be more specific, in the anchor-free mod-
ule, an action instance can be represented as a point and
its distances to the starting boundary and ending bound-
ary. In this way, the pre-defined anchor restriction is al-
leviated in terms of action localization and duration. A
novel purely anchor-free TAL framework called AFSD is
proposed in [8]. Considering the impact of boundary fea-
tures, AFSD adopts a novel boundary pooling method to
generate fine-grained predictions. Recently, self-attention
based Transformer models have achieved promising results

3235



Anchor-Free Saliency-based DetectorVideo Input

D
e
n

se
flo

w

RBG Image

Vertical Flow

Horizontal Flow

DBG-based Signal Acquisition

Pyramid Feature

I3D-based
Feature Extraction

Boundary Regression & 
Action Classification

Offset Majority Voting

Multi-view based Filter

Coarse Boundary & 
Classification Confidence

Dashboard
Rearview

Right

Dashboard
Rearview

Right

√

Case 1 Keep Majority

Case 2 Abandon All

Time

Video Representation

I3D-based
Feature Extraction

RGB Feature

Flow Feature

Boundary Signal Score

Signal Intensity 
Acquisition

Localization Boundary Refinement

Start Signal Score

End Signal Score

Context Map Construction

DBG & Score Maps

BaseNet

PFG

TBC

Fine-grain Boundary Correction

Decision Tree Generation

Video & Statistics Analysis

From Coarse to Fine

Coarse

Fine

Figure 2. The pipeline of our proposed Coarse-to-Fine Boundary Localization model(CFBL). Given a video, our model first utilizes
DenseFlow [17] to extract optical flows, whose results, together with original RGB frames, are regarded as the inputs of the network. Then,
an Anchor-Free Saliency-based Detector (AFSD) [8] is applied to obtain the classification result and coarse boundary prediction. What’s
more, a DBG-based [7] Signal Acquisition Module is designed to model starting and ending signals. Finally, combining the two results
and using the Localization Boundary Refinement Module as an auxiliary, the fine boundary is obtained.

in image classification and object detection. Inspired by
these success, some algorithms based on Transformer mod-
els have emerged in the field of video understanding. Ac-
tionFormer [20] extracts multi-scale feature representations
through local self-attention modules and uses a lighter de-
coder to efficiently classify the moment and estimate the
corresponding action boundaries.

2.3. Actionness-guided Temporal Action Localiza-
tion

Unlike above two categories of TAL algorithms,
actionness-guided localization methods mainly focus on
evaluating frame-level actionness which indicates the score
of a potential action. CDC [16] places CDC filters on
top of 3D ConvNets. The CDC filter predicts actions
at the frame-level granularity by performing temporal up-
sampling and spatial down-sampling operations simultane-
ously. BSN [11] uses a temporal evaluation module to
evaluate actionness score, starting probability and ending
probability. From local to global, BSN locates temporal
boundaries and evaluates the confidence score of whether
a proposal contains an action. BSN is further extended by
BMN [9]. In BMN, the boundaries matching confidence
map are densely predicted and the confidence map is used
to select action proposals. A mechanism called Boundary-
Matching(BM) mechanism is introduced in BMN which is
used to evaluate confidence scores of densely distributed
proposals. Based on BM mechanism, BMN can gener-
ate proposals with precise temporal boundaries and more
reliable confidence scores simultaneously. Inspired by

boundary-sensitive methods, DBG [7] implements bound-
ary classification and action completeness regression for
densely distributed proposals. Specifically, DBG consists
of two modules, named Temporal boundary classification
(TBC) and Action-aware completeness regression (ACR),
which aim to provide two temporary boundary confidence
maps and generate an action completeness score map. To
sum up, these actionness-guided methods adopt a bottom-
up pipeline and usually localize action instances via multi-
ple separate procedures.

3. Methodology
Denote our video data set as D = {DTrain, DTest}.

For any video instance in DTrain, it can be depicted as
V = {X,ΦX}, where X = {xt}Tt=1 represents that this
video contains T RGB frames or optical flows, and ΦX =
{ϕm}MX

m=1 is the corresponding annotations. To be specific,
MX is the number of action instances in this video and
ϕm = (µm, ξm, am) means the starting time, ending time
and action category of the m-th action instance. In this
task, am ∈ {η1, ..., η17} is one of the 17 behaviors (such
as phone call, drinking, and reaching behind) that could po-
tentially distract people from driving.Our goal is to train a
robust model, which can give accurate boundary prediction
and action classification for any video instance in DTest.
Overview. As shown in Fig. 2, we propose a Coarse-to-
Fine Boundary Localization model dubbed CFBL, which
can adjust boundaries from coarse to fine. Concretely,
given a video X , we first utilize an Anchor-Free Saliency-
based Detector (AFSD) [8] to obtain classification confi-
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Figure 3. The process of searching for signals to refine our boundary prediction. It shows that the real boundary lies in the neighbor of the
previous predicted proposal and achieves a high score.

dence and coarse boundary prediction(Sec. 3.1). These
preliminary results are afterward made a close combina-
tion with DBG-based starting and ending signals(Sec. 3.2).
Finally, by virtue of a Localization Boundary Refinement
Module(Sec. 3.3), fine boundary prediction is obtained. In
the following sections, we introduce each module in the se-
quence of processing.

3.1. Anchor-Free Saliency-based Detector

To obtain coarse boundaries for further processing, we
adopt a modified anchor-free temporal localization method
called Anchor-Free Saliency-based Detector(AFSD) [8].
Compared with anchor-based temporal action localization
models and actionness-guided temporal action localization
models, this modified model could not only avoid being
bothered with a large number of outputs and heavy tuning of
localizations and sizes corresponding to different anchors,
which is of great significance in naturalistic driving action
recognition, but also achieve competitive results. As shown
in Fig. 2, it contains three modules, including I3D-based

Feature Extraction, Boundary Regression & Action Classi-
fication, and Multi-view based Filter. We are going to give
a brief introduction to each module below.

I3D-based Feature Extraction. In the same way as [8]
does, we first make use of a Kinetics pre-trained I3D model
[2] to extract both spatial and temporal features. Secondly,
by virtue of global convolution and flattening operation,
we obtain a 1-D feature sequence. Finally, a feature pyra-
mid network is utilized to further merge spatial and tempo-
ral information, which contains several temporal convolu-
tions and can model actions on different time scales. How-
ever, different from the original network, in order to meet
the needs of high-resolution, we modify it appropriately by
changing the kernel size and fusion process. On the whole,
assuming that the input video is X , I3D will first offer us
a 4-D feature F ∈ RT×C×H×W , where T,C,H,W de-
notes the time step, channel, height, and width. After the
last two steps, six pyramid features fl ∈ RTl×C , where
l ∈ {1, 2, ..., 6},will be acquired, based on which coarse
boundary regression and action classification will be done
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subsequently.
Boundary Regression & Action Classification. Consider-
ing the limited receptive field of temporal convolutions, we
utilize both the basic prediction module and the saliency-
based refinement module of Anchor-Free Saliency-based
Detector (AFSD) [8] to gain coarse boundaries. For in-
stance, for the l-th pyramid feature, we first process it
with shallow convolutions to get coarse starting and ending
boundary distances (d̂si , d̂

e
i )

coarse and classification confi-
dence ŷi

coarse for each location i. Secondly, we decode
it to gain the predicted temporal region (µ̂i, ξ̂i). Thirdly,
by virtue of Boundary Pooling proposed by [8], we care-
fully construct small neighbors, select the largest activated
cell,i.e.,the most salient moment,and concatenate it with the
original feature. Finally, taking advantage of concatenated
feature, we get offsets’ prediction after a new convolution,
combined with which our refined preliminary results are ob-
tained.
Multi-view based Filter. The particularity and complex-
ity of naturalistic driving action recognition require that our
model must act as an effective reminder, in which case it
cannot frequently output invalid results, nor can it miss any
distractions. In order to solve the above problems, we in-
troduce a novel Multi-view based Filter Module. Specif-
ically, the Multi-view based Filter Module determines the
final output by combining the voting results from the three
views. For each view, the voting result Vi

m is calculated as
follows:

Vi
m =

∑
j∈{Da,Re,Ri}

i ̸=j

1((|µ̂i
m− µ̂j

m| ≤ δ)∧(|ξ̂im− ξ̂jm| ≤ δ))

(1)
where the superscript i and j represent different views, µ̂m

and ξ̂m represent the predicted starting time and ending time
of the m-th action instance, δ is a small threshold and 1 is
an indicator function.

The number of votes received for each action instance is
calculated as follows:

V̂m =
∑

i∈{Da,Re,Ri}

Vi
m (2)

Since there are three views for each action instance, the
module will select the instance if the votes are greater than
or equal to 2/3 of the maximum number of votes empiri-
cally.

3.2. DBG-based Signal Acquisition

In practice, drivers’ distracted behaviors may cause se-
rious traffic accidents and massive property damage. So it
is a pressing and vital issue to introduce a module that can
help effectively limit both starting and ending boundary er-
rors into a smaller range. Due to the parallel optimization of
the action classification task and boundary regression task,

the boundary proposals we got from the previous model are
trade-off products that can still be optimized. As for the
classification task, a slight error will not cause a signifi-
cant impact on the inference result. Its results have already
satisfied our needs and will be selected to help determine
the final category to which each video fragment belongs.
Now, the target of optimization becomes to reduce the gap
of the temporal boundaries between predictions and ground
truths. To better adjust the time range of starting and end-
ing points, we adapt the dense boundary generator model
dubbed DBG [7] which focuses on the video context infor-
mation and dense boundary generation.
Context Map Construction. Taking the RGB and flow fea-
tures extracted by I3D as input, DBG re-conduct frame in-
formation into matrix form after mapping and integration.
In order to make better use of the time series information,
DBG proposed a module called PFG to concatenate frame
information, including frames near starting points, frames
near ending points, and frames near the middle points. Then
the network can learn knowledge with the help of sharing
context and generate three score maps standing for the con-
fidence of start, end, and tIoU, respectively.
Signal Intensity Acquisition. According to the analysis
of the training data sets, we find that not each behavior
maintains the state of being distracted. Some cyclical be-
haviors, such as yawning, can be divided into several small
parts, separated by normal driving behaviors, which cause a
profound distortion to boundary loss. Besides, the duration
of a distracted behavior may last for a long time, resulting
in useless information sampling, which will also lead to a
bad result. So we try to re-consider the starting and ending
signals that can still keep satisfactory performance under
the circumstances mentioned above. The start confidence
map and end confidence map can capture most of the use-
ful information and time series information. It is easier and
more efficient to utilize these significant signals that contain
enough information to help determine the final result.

3.3. Localization Boundary Refinement

With the help of DBG-based Signal Acquisition module,
we can easily acquire the starting and ending signals, which
are helpful for further boundary refinement. Specifically, as
shown in Fig. 3, after obtaining the coarse boundary predic-
tion, we search the pre-defined neighbors in order to get the
strongest signal that indicates the starting or ending point.
The strongest signals can be calculated as follows:

µ̂fine
m = argmax

i∈B(µ̂coarse
m )

S(i) (3)

ξ̂finem = argmax
i∈B(ξ̂coarse

m )

S(i) (4)

where B denotes the pre-defined neighbor and S is the
meaningful criteria to select the signal.
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Figure 4. Problems of refining boundaries only depending on the
strongest signal. The starting and ending salient action features
arise many times, which disturb our model’s performance on lo-
calization task.

However, as shown in Fig. 4, some points that do not
represent starting or ending points are highly similar to ac-
tual starting or ending points in cyclical behaviors’ signals.
Due to this complexity, additional judgment conditions, ex-
cept for the strongest signal, are introduced as appropriate.
Specifically, for cyclical behaviors, when we search for sig-
nals in the neighbor, we not only consider the intensity of
signals, but also make judgments in combination with the
number of times the signal appears. In this way, a hierarchi-
cal decision tree supporting our judgments is constructed
and our boundary prediction is finally refined.

Table 1. Our results on Track 3 validation set

F1-Score Precision Recall
0.2902 0.4868 0.2067

4. Experiments

4.1. Track 3 data set

The Track 3 data set [14] in 2022 AI City Challenge has
90 videos lasting about 14 hours in total, captured from
15 drivers through three different camera views. The dif-
ference between videos performed by the same driver is
whether they wear appearance blocks or not. In each video,
the driver does the 17 different distracted behaviors once
without order. Each video has an approximate length of 10
minutes, a frame rate of 30 fps and a resolution of 1920
× 1080. This data set is equally partitioned into A1, A2,
and B1 parts, each containing five drivers. A1 and A2 parts
are provided for participants to train and evaluate, while
B1 part is reserved for later testing, based on which the fi-
nal rank will be determined. The main target of the chal-
lenge is to identify and localize distracted behaviors in test
videos, which requires us to return the action category, start-
ing time, and ending time of the distracted behavior.

4.2. Implementation details

For the modified AFSD module, we slide the window
on raw videos with stride = 30 and length = 256 after
downsampling its size to 224×224. We use optical flows
extracted by DenseFlow [17] with its settings the same as
AFSD [8] does. When training, we use Adam [6] for op-
timization. The batch size is set to 1. The learning rate is
set to 10−5 for 50 epochs. During testing, on the basis of
using Soft-NMS [1] to pick out the top-5000 proposals, we
reserve the action instances with the highest score in each
category.

For the DBG-based Signal Acquisition Module, to pro-
vide high quality input to it, we utilize a two-stream I3D
model pre-trained on Kinetics [2] to extract video features.
To be specific, we first feed 16 consecutive frames as the
input to I3D, using a sliding window with stride 8 and ex-
tract a 1024-D feature before the last fully connected layer.
Then a concatenation operation is further executed to get a
2048-D feature, which acts as the role of DBG’s input.

For the Track 3 data set, after obtaining the feature ex-
tracted by the two-stream I3D model mentioned before, we
slide the window on video features with stride = 30 and
length = 160. When training, we use Adam [6] for opti-
mization. The batch size is set to 32. We train 100 epochs
in total. The learning rate is set to 10−3 for the first 40
epochs, and we decay it to 10−4 for the rest epochs.
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Figure 5. The visualization results of naturalistic driving action recognition. With DBG-based Signal Acquisition module, predicted
boundaries become closer to the ground truth.

4.3. Evaluation metrics and experimental results

For Track 3, the evaluation index for algorithm perfor-
mance is F1− Score, representing the identification accu-
racy. Specifically, the Track 3 score will be computed as:

F1 =
2TP

2TP + FP + FN
(5)

where F1 determines the harmonic mean of precision and
recall. A true-positive(TP) action identification will be con-
sidered when the action was correctly identified as starting
time within one second and ending time within one second
of the action. It is noticed that each action will only be ana-
lyzed once.

As shown in Table 1, we evaluate our methodology on
the Track 3 validation data and obtain F1-Score at 0.2902,
with a precision of 0.4868 and recall of 0.2067. From the
examples presented in Fig. 5, we can see that our model
can accurately localize the action boundary due to the intro-
duced of DBG-based Signal Acquisition module.

5. Conclusion
In this paper, we introduce a Coarse-to-Fine Boundary

Localization (CFBL) method for naturalistic driving ac-

tion recognition. Our method obtains fine-grained tempo-
ral boundaries progressively. Specially, it first provides a
coarse estimation of the approximate interval of each dis-
tracted action and makes the classification result. Then it
refines the temporal boundary of each segment to get a more
accurate interval that contains distracted actions. Further-
more, we adopt a voting strategy to combine the results of
different camera views to enhance the model’s classification
ability. The experiments conducted on the Track 3 valida-
tion set of the 2022 AI City Challenge demonstrate compet-
itive performance of the proposed method.
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