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Abstract

This paper introduces our solution for Track 2 in AI
City Challenge 2022. The task is Tracked-Vehicle Re-
trieval by Natural Language Descriptions with a real-
world dataset of various scenarios and cameras. We
mainly focus on developing a robust natural language-
based vehicle retrieval system to address the domain
bias problem due to unseen scenarios and multi-view
multi-camera vehicle tracks. Specifically, we apply
CLIP [16] to effectively extract both visual and textual
representations for contrastive representation learning.
Furthermore, for new scenarios in the test set, we pro-
pose a novel Domain Adaptive Training method that
utilizes information from labeled data and transfers it
to the unseen domain by generating pseudo labels. By
using this simple and effective strategy, we not only
bridge the domain gap between the training set and
test set, but also require less computational cost and
data compared to previous top performance methods.
Finally, we employ a context-sensitive post-processing
method to address model’s uncertainty and eliminate
the wrong retrieved vehicle track. Taking one step fur-
ther, we also investigate the impact of different text
formats and the number of pseudo labels data for the
fine-tuning process. Our proposed method has achieved
3rd place in the AI City Challenge 2022, yielding a
competitive performance of 47.73% MRR accuracy on
the private test set, which verified the effectiveness of
the proposed solution.

1. Introduction

Vehicle retrieval is an important asset for the devel-
opment of intelligent traffic systems in smart cities. In
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particular, being able to query for vehicles of interest
from the pool of large databases is a powerful capabil-
ity, as it brings along a wide array of useful applica-
tions in urban planning, traffic engineering, and secu-
rity maintenance. While image-based vehicle retrieval
systems have been the more prevalent type of approach,
text-based vehicle retrieval systems have received no-
ticeably increased attention in research. Unlike image-
based retrieval systems which require at least an im-
age of the target of interest, text-based ones can lever-
age easily obtainable natural descriptions of that tar-
get. In comparison with image queries, while text
queries are arguably less effective in terms of describ-
ing fine-grained appearances, they are more intuitive,
user-friendly and can easily provide for more layers of
descriptions such as shape, color, position, and relativ-
ity to another target.

In the past, the use of natural text descriptions as
queries was challenging. However, thanks to the recent
development of effective language models, the Natural
Language-based Vehicle Retrieval problem has become
very promising to solve. Given a textual description
of a particular vehicle, state-of-the-art Deep-Learning-
based language models can be tokenized and extract
useful keywords or phrases pertaining to the appear-
ance, moving direction, scene of that vehicle and map
them to an embedding space as a feature vector. Hence,
the language-embedded feature vector can be used in a
similar manner to the image-embedded feature vector
in retrieval.

To accelerate research in the field, The 6th AI City
Challenge has especially organized a challenge track to
encourage active participation in developing text-to-
image retrieval systems. While there have been promis-
ing results, it can be observed that a number of tech-
nical difficulties are still present:

Firstly, natural textual data can be very diverse.
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Although text data is very intuitive to humans, for
machines it is very difficult to distinguish different de-
scriptions of the same vehicle (e.g. “A vehicle is mov-
ing straight” - “The vehicle is heading forward”). The
small amount of training data only seems to exacerbate
the issue in learned models.

Secondly, there is a significant limit of high-quality
training data. text-to-image vehicle retrieval is a rela-
tively new domain so unlike the millions of samples in
ImageNet [3], COCO [9] datasets for feature training,
manual annotations are limited. Effective models are
expected to leverage pretrained parameters as much as
possible, and use the few labels for fine-tuning.

Finally, although existing state-of-the-arts are use-
ful, their performances are still largely probabilistic in
the high-dimensional text-to-image domain. Thus, pre-
diction outputs may lack proper constraints to match
a query with its true video.

Therefore, the main contributions of our paper are
stated as follows:

• In order to utilize the training dataset and use it
in a more efficient way for the training step, we
introduce a pre-processing method for both text
and images to maximize the amount of informa-
tion the model can generalize and leverage for the
new domain adaptive training method.

• We propose a new semi-supervised domain adap-
tive training method to address the domain bias
between the training set and test set for the text-
image retrieval model. Thus, we enforce the model
to adapt new knowledge from the test set domain.

• Finally, to increase the overall performance of the
final result by tackling the problem that the re-
trieval model cannot resolve due to the appearance
of different scenarios and multiple camera types
and angles, we introduce the context-sensitive
post-processing method to address it.

2. Related Work

2.1. Video Retrieval by Natural Language

The recent works in this field are based on mapping
the features of multiple different spaces to a common
semantic space. Typically, most existing works aim
to encode the given text queries using language fea-
ture extractor [20], and the vision-based information
by video, sparsely sample frames from the video, or
even both of them [23]. Besides, attention mechanisms
and convolution techniques are commonly used as an
encoder to learn the global and local contexts for video
retrieval frameworks [12]. From video-language under-
standing, metric learning plays a main role to learn a

function that minimizes the distance between these fea-
tures. For instance, Bai et al. [1] utilize the InfoNCE
loss to deal with the similarity of pairs of samples thus
increasing the performance.

2.2. Video-Language Understanding from Multi-
modal Features

Text Embeddings: There are many research
works that have long shown how to represent words
in vector space. For example, traditional text encoders
(Word2Vec [13], LSTM [6]) were used to encode the
natural language for language representations. How-
ever, in recent years, powerful transformer-family ar-
chitectures are often used for word representations be-
cause of their effectiveness. Specifically, Devlin et al.
[4] show the importance of bidirectional pre-training
for language representations which can outperform the
other methods on both sentence-level and token-level
tasks.

Visual Features Extraction: Convolutional neu-
ral networks are the core of the most image features
extractors which not only are used in many city-scale
vehicle tracking tasks such as vehicle classification [21],
vehicle detection [19] and vehicle re-identification [10]
but also can be used as a specific features extractor
for vehicle color [7] and vehicle type [18]. While the
above vehicle characteristics are important in single-
object retrieval, video global features like environment
attributes, scenes, and other related objects have an
important impact on ranking the accurate candidate
videos.

Mapping the aforementioned heterogeneous input
embeddings into the same semantic space is the prob-
lem that we face in this challenge. On account of the
limited text and image data, we propose both to stan-
dardize language descriptions for reducing textual em-
bedding variance in model learning, and to augment
vehicle track data to improve robustness.

2.3. Contrastive Representation Learning

Contrastive representation learning is a powerful
method that is used to teach the model to learn
whether the sample pairs are similar or not in an em-
bedding space. CLIP [16] is proposed as a multi-modal
network to train both image and text encoders to pre-
dict accurate sample pairs.

2.4. Domain Adaptation

Single-object retrieval by new unseen inputs is al-
ways a challenging problem of the supervised retrieval
pipeline. Due to this problem, in recent years, unsu-
pervised domain adaptation shows significant effective-
ness when applied in improving generalization by using
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available knowledge from training to apply it to unla-
beled data [22]. However, few teams apply this method
to address the problem in text-video retrieval.

Therefore, in this paper, we propose a domain adap-
tive method to bridge the domain gap between the
training set and the test set.

3. Methodology

3.1. Data Pre-processing and Augmentation

3.1.1 Natural Language Processing

There are numerous ways to describe anything in
natural language and characterize each query and a
wealth of information that can be provided. However,
most information in queries is redundant and may in-
terfere with other information in the retrieval model.
Therefore, NLP pre-processing is essential in order to
boost the generalization of the model during the learn-
ing stage.

Text Cleaning: With each text description, the
cleaning process comprises removing the article, re-
placing misspelling words, and converting all verbs into
their base form. After analyzing the dataset, we real-
ized that many words have different forms but express
the same semantic meaning. Therefore, we decide to
cluster these words into several clusters based on their
semantic similarity and replace them with their cluster
name. For example, words like brown, brownish, bay,
or beige will become brown while the other cases like
mini cooper, couple, or coup will become coupe. We
also simplify the vehicle movements into four types: go
straight, turn left, turn right and stop.

Figure 1. The example of the text standardization

Text Standardization: In order to reduce the
variance language embeddings for learning with few
data, we decide to standardize the text description into
a more consistent format:

Vehicle color + Vehicle type + Vehicle
movement + Relative description

Formally, for the ith query qi, we denote:

qi = [colori, typei,movementi, surroundingi]

where:

surroundingi = [color othersi, type othersi]

We use English PropBank Semantic Role Labeling
(SRL) [17] to transform all statements to the format
above, similar to Nguyen et al. [14]. However, there
are still numerous sentences in which SRL is unable to
extract information due to not finding any verb in the
sentence. Therefore, we define a database that stores
a dictionary about the valid color, vehicle type, and
movement. To convert the sentence to the standard
form, we find the first position vehicle type and then
separate a sentence into two parts from that position:

For the first part, we locate the vehicle’s attributes:

qi = [colori, typei,movementi, surroundingi]

For the second part, we find the related
information about other vehicle’s attributes:
[color othersi, type othersi]. An example of our
standardization is shown in Fig. 1.

3.1.2 Data Augmentation

The training set contains only 2155 vehicle tracks,
a very small amount of data compared to most video-
text retrieval datasets. Thus, to overcome the lack of
real-world data, we utilize Yolov5x [8] to detect all the
vehicles in the video of each unseen scenario, then, use
the tracker from Ha et al. [5] as a tracker to create vehi-
cle track for each detected vehicle. These new annota-
tions will be used for the Domain Adaptation Training
and Post-Processing.

3.2. Domain-Adaptive Baseline Model

The baseline model has a big impact on the over-
all result, therefore selecting pre-trained models with
robust visual and text representations is crucial. Fol-
lowing the proposed framework for Contrastive Repre-
sentation Learning by [2], our baseline model consists
of 3 main components: backbone, head, and objective
losses. We propose a SSDA training scheme for CLIP
to enforce domain adaptation, overall in 2 stages.

3.2.1 Stage 1: Baseline Training

Backbone We use CLIP as our main backbone to
leverage its powerful knowledge in creating robust
representation for feature extraction tasks with pre-
trained model Transformer ViT-B/32 as the visual en-
coder and Text Transformer as the text encoder.

As also illustrated in Fig. 3, inputs to our backbone
are both visual information and textual information:
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Figure 2. The proposed Framework. The proposed method mainly contains two components: Retrieval model and
post-processing. Besides, pruning is used in the post-processing.

Figure 3. The baseline model. Where C is symmetric cross entropy loss and I is Instance Loss.

Regarding visual inputs We consider adopting
the dual-stream input from Bai et al. [1] for the vi-
sual encoder in order to enhance the robustness of the
model and capture more information in each vehicle
track. Each vehicle track is represented as a single
frame extracted randomly. As the dual-stream inputs,
each vehicle track consists of a global image and a local
image representing the visual global and local features
respectively. We denote the global image as the original
frame, while the local image is defined by performing
cropping on each global image with the ground truth
bounding box of the main vehicle. Both streams are
then encoded by a share-weights image encoder to get
two encoded feature vectors.

Regarding textual inputs We then use the text
that is pre-processed in section 3.1.1 as the text in-
put. Due to the inconsistency between provided texts
in each vehicle track, encoding all of them jointly will
hurt the robustness of the model, therefore we decide
to randomly pick one of them and encode it with CLIP
text encoder to get the text representation.

The output of each encoder is a feature vector with
dimension [Batch Size, 512] (CLIP’s encoder dimen-
sion) that represents the encoded features of each do-
main input.

Head Each representation for text and dual-stream
image is then fed into independent projection heads

with the intention to map each domain space into the
space of contrastive representation learning where con-
trastive losses are applied. Each projection head is a
small Multi-Layer Perceptron (MLP) with one hidden
layer using a non-linear activation function ReLU and
a Normalization Layer with Batch Normalization for
visual representation and Layer Normalization for text
representation, the visual and textual output’s dimen-
sions are 512 and 1024 respectively. In addition, the
two streams’ outputs are concatenated as the final vi-
sual representation. All the vectors are then normal-
ized to be unit vectors.

Additionally, the classification head with the same
structure as the projection head but the output dimen-
sion is the number of training tracks is introduced to
classify the predicted probability of each track.

Contrastive Loss Given a batch B of (frame repre-
sents the vehicle track fi, text ti) pairs, there are B×B
possible sample pairs. our objective is to maximize the
cosine similarity between vehicle track fi and text ti:

s (fi, ti) =
f⊤
i ti

∥fi∥ ∥ti∥
(1)

Thus, we adopt the symmetric Cross-Entropy Loss
[24] due to its ability to alleviate the model to learn
multi-modal embedding space by jointly training visual
and text embedding to maximize the similarity between
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B positive pairs and minimize B × (B − 1) negative
pairs simultaneously. The loss consists of two parts:
Image-to-Text and Text-to-Image.

Image-to-Text Loss:

Lf−→t = − 1

B

B∑
i

log
exp (s (fi, ti))∑B
j=1 exp (s (fi, tj)

(2)

Text-to-Image Loss:

Lt−→f = − 1

B

B∑
i

log
exp (s (fi, ti))∑B
j=1 exp (s (fj , ti)

(3)

Symmetric Cross Entropy Loss:

L = Lf−→t + Lt−→f (4)

Instance Loss To capture the global discrepancy in
the bi-directional domains in the text-video retrieval
task, we adopt instance loss [25] as a common optimiza-
tion goal. Every vehicle track and its accompanying de-
scriptions are treated as a single category. The purpose
of the optimization is to combine visual and textual
data into a single categorization space. Thus, we use
one single classification head with weight Wclassification

for both visual and textual embedding to promote the
model to learn the mapping function between two do-
mains.

Image-to-Classification Loss:

Lf
i = − log (Wclassificationfi) (5)

Text-to-Classification Loss:

Lt
i = − log (Wclassificationti) (6)

Instance Loss:

Liinstance = Lf
i + Lt

i (7)

3.2.2 Stage 2: Semi-supervised Domain Adap-
tation (SSDA) Training

To tackle the unseen scenarios that appear in the
test set, which lead to domain bias between the train-
ing and test sets, we propose a semi-supervised domain-
adaptive method and training strategy to address the
problem. The method consists of two main parts: gen-
erate pseudo labels and fine-tune the baseline model.

For the pseudo label part, due to the difference be-
tween the two domain features, we cannot use regular

feature clustering methods like typical Unsupervised
Domain Adaptation ReID tasks. Thus, we develop a
new method to generate pseudo labels using the cur-
rent knowledge of the baseline model and training set.
For text, due to the diversity of the content, we can-
not re-create any pseudo label near that content level.
Hence we decided to re-format the description text of
each vehicle track into a much clearer form using the
technique in section 3.1.1:

Vehicle color + Vehicle type
+ Vehicle movement

Figure 4. The process for generating pseudo labels.

In addition, we also convert the test queries into the
new format in order to maximize the effectiveness of
Domain Adaptation Training during the inference pro-
cess.

With this new format, we can easily generate pseudo
labels for any vehicle track using three main modules:
color, type, and movement classification.

For color and type classification, we observe that the
baseline model can retrieve the vehicle track that has
the color and type that match closely to the text de-
scription. Thus, we utilize the knowledge of the model
trained in Stage 1 (only the local image stream is con-
sidered in this model). In addition, the classification
head is replaced with a new one that has the output
dimension equal to the number of type/color classes.
We also re-use type and color clusters in section 3.1.1
as the label for classification models.

The trajectory analysis method in section 3.1.2 is
applied for vehicle movement classification. However,
to avoid the variety in the description of the vehi-
cle’s trajectory, we split trajectory descriptions into six
movements: ”turn left and go straight”, ”turn right
and go straight”, ”stop and go straight”, ”turn left”,
”turn right” and ”go straight”.

Then, by using the generated pseudo labels, we
fine-tune the baseline model trained in Stage 1 for
4 epochs.

3.3. Context-sensitive Post-processing

To tackle the problem that occurs due to different
camera types and angles, we propose several heuristic-
driven algorithms in order to analyze the right vehicle
movement.

3304



Figure 5. The example of the motion analysis method

3.3.1 Motion Analysis

There are many recent works analyzing the vehi-
cle trajectory to re-rank the retrieval result. Park et
al. [15] use GPS to get the velocity vector, then com-
pute the angle by using the cross-product of the two
vectors. Nguyen et al. [14] determine vehicle direction
by calculating the area of the vehicle’s trajectory. Be-
cause each of the solutions above has its own problems,
we come up with an improved solution.

Firstly, our method needs to handle the stop case,
thus, we count the number of frames where the bound-
ing box location of the vehicle is unchanged. When
the counter reaches the threshold, we consider that the
car stops. We also remove all the points that consider
stopped points. To handle the turning case, we will use
three heuristics to consider going straight or turning:

• In the first heuristic, we compute the vectors at
the start and end point of motion. With the start
point is A(x1, y1), end point is B(x|P |, y|P |) and
|P | is total number of points on the trajectory. We
define M(xM , yM ) as the point at one fifth of |P |
from the starting trajectory and N(xN , yN ) as the
point at one fifth of |P | from the ending trajectory.

Then we calculate the angle θ = cos(A⃗M, N⃗B). If
the θ is in the range from θ1 to θ2, itemwe will
consider the vehicle is turning. (Fig. 5a).

• In the second heuristic, we find the distance d so
that d = maxi→|P | (Dis (pi, AB)) where Dis is the
minimum distance between the pi and the segment
AB. If d is in the range from d1 to d2, this trajec-
tory will consider as turn. (Fig. 5b)

• In the final heuristic, we find the difference be-
tween the max and min ratio change of the vehicle

bounding box r =
maxi→|P |(

wi
hi

)

mini→|P |(
wi
hi

)
. If r is larger

than the threshold, the vehicle is considered to be
turning. (Fig. 5c and Fig. 5d)

Figure 6. The result of our pipeline after pruning.

To determine if the vehicle turn left or turn right, our
team determine based on the sign of the counterclock-
wise CCW (A,M,B). If the sign of CCW is positive,
the vehicle turn left; otherwise turn right.

3.3.2 Pruning

Pruning based on surrounding vehicles In the
query, several sentences state the relationship between
the target vehicle and the vehicle around, which is our
baseline model’s limitation.

Hence, our team’s approach to taking into account
surrounding vehicles is based on the relationship be-
tween the query and the contextual information of the
candidate vehicle in the scene. With each text query
qi, we will get the vehicle’s information around it, like
color othersi, type othersi.

After that, with the result vehicle tracks sorted by
the distance in the previous step, we will choose the
top first K candidate vehicles to prune. For each can-
didate’s vehicle, we denote this vehicle is:

candidate vehiclek, where 0 ≤ k ≤ K

If the candidate vehiclek has at least one vehicle
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near it with the color othersi and type othersi, we will
append it to the keeplist; otherwise, append it to the
skiplist. The output in this module is the result of con-
catenating keeplist, skiplist, and the remainder result
vehicle tracks.

Pruning based on main vehicle direction Our
model is trained with a randomly chosen frame to best
learn its appearance and pose via color, type, and direc-
tion description, but it is tough for the model to learn
the vehicle’s direction due to this randomness. Hence,
similarly to how neighbor vehicles are used to constrain
context information, we further propose to prune ve-
hicles by their trajectories directly. For this effort, we
only consider the vehicles’ direction movementi.

Specifically, we select the first K cars candidates for
each query. We utilize the vehicle direction method
described previously in section 3.3.1 to determine the
direction of each vehicle’s trajectory. Following that,
we may use the same pruning idea in section 3.3.2.

4. Experiments

4.1. Dataset

The data used in this work is built upon the
CityFlow Benchmark, which contains 3.25 hours
(215.03 minutes) of footage from 40 cameras span-
ning 10 junctions in a mid-sized US metropolis with
a distance of 2.5 kilometers between the two furthest
existing benchmarks. Each of the dataset’s five sce-
narios represents a different type of location but only
two scenarios are utilized for training in this challenge.
The dataset contains 2155 tracks of vehicles with three
unique natural language descriptions each. Specifically,
there are 2155 vehicle tracks in the dataset, each with
three distinct natural language descriptors. For this
challenge, 184 unique vehicle tracks were curated, along
with 184 query sets, each with three descriptions.

4.2. Validation Data

Since the evaluation server only has 20 submissions,
we have to evaluate our method offline by re-creating
a validation set that is close to the evaluation server.
Therefore, we use a portion of the training dataset from
the Track 5 AI City Challenge 2021 since the scenarios
appearing on the training dataset are the same as the
2022 test set. The data contains 161 tracks with 91
tracks of scene 1 and 70 tracks of scene 4.

4.3. Implementation Details

Baseline Models in Stage 1 All the training im-
ages are resized to 224 × 224 and normalized. In both
training stages, we use AdamW [11] as the optimizer

with the initial learning rate set to 1e−2. We train the
model with 5 epochs with a batch size of 64. We totally
train 2 baseline models on the training dataset with the
difference in the text format, with Type 1 (original
format) and Type 2 (new format) respectively to
evaluate the performance of the new format.

SSDA Training on Stage 2 All the training set-
tings are the same as the baseline model, then we fine-
tune each baseline model for 4 epochs with the dataset
that is augmented from section 3.1.2. However, to ex-
amine the performance of each unseen scenario, we split
unseen scenarios into two datasets where dataset 1 con-
tains scene 1, dataset 2 contains scenes 3 and 4 and
fine-tuned them separately. All models are trained on
GPU Tesla P100

Inference text format During the inference stage,
we use the text format similar to the format in which
the model is trained/fine-tuned to maximize the re-
trieval performance.

Classification Models All the training settings are
the same as the baseline model, except the batch size is
changed to 128. Each classification model is trained for
5 epochs and used to automatically generate type and
color for vehicle tracks by inference through all frames
of each track and then choose the class with the highest
occurrence.

4.4. Ablation Study

4.4.1 Two-Stage Training

To evaluate the effectiveness of the SSDA Train-
ing method, we first conduct experiments on the new
text format on the baseline model. From the table
1, the result of the new text format on the baseline
model has smaller results compared to the original for-
mat. However, after SSDA Training, we can observe
that the performance difference between the two for-
mat types is significant. We believe that the difference
in performance after fine-tuning is due to the inconsis-
tency between the new and original format. Therefore,
fine-tuning with data that is similar to baseline model
knowledge is crucial in improving the performance of
SSDA Training.
4.4.2 Dataset for SSDA Training

To investigate the effectiveness between augmented
data from section 3.1.2 and the test set, we use two
datasets for SSDA Training and train them separately,
one is augmented data on Scene 1 and one is from the
test set. The result is shown in table 2 that our aug-
mented data yields better performance. The reason
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Methods MRR Recall@5 Recall@10

Baseline (Type1) 0.3242 0.4658 0.6522
+SSDA Training 0.3635 0.5342 0.7019

Baseline (Type2) 0.2384 0.3043 0.5155
+SSDA Training 0.3965 0.5342 0.7329

Table 1. The ablation study of two-stage training using
CLIP as backbone. Where type 1 is the original text
format and type 2 is the new text format

is due to the number of fine-tuning data, where aug-
mented data has 398 vehicle tracks on Scene 1 while the
test set only has 184 vehicle tracks on three scenes and
the distribution between three scenes is imbalanced.

Methods MRR Recall@5 Recall@10

SSDA Training (S1) 0.4531 0.7640 0.5776
SSDA Training (Testset) 0.3965 0.5342 0.7329

Table 2. The ablation study of datasets for SSDA Training

4.4.3 Post-processing

From the table 3, we can see that each pruning
method can help increase the overall performance of
the result. Using post-processing, the increase in per-
formance depends on the retrieval model. We believe
the cause is due to the domain bias between the test
set and training set, thus the baseline model will re-
trieve the vehicle track that is closer to seen scenarios
than unseen scenarios. Hence, it leads to certain re-
trieved vehicle tracks having the wrong direction and
surrounding vehicles.

Methods MRR Recall@5 Recall@10

Baseline 0.3242 0.4658 0.6522
+Pruning 0.3879 0.5528 0.7143

SSDA Training (S1) 0.4531 0.7640 0.5776
+Pruning 0.4829 0.5839 0.7640

Table 3. The ablation study of post-processing

4.4.4 Ensemble

To test the robustness between two models and
boost the final performance, we ensemble two fine-
tuning models on two datasets mentioned in section
4.4.2. From the ensemble result on table 4, we can
see that the MRR Score increased drastically to 0.5029
even when the score of the model trained on scene 1
and test set is only 0.4531 and 0.3965 respectively.
Thus, proving that each scene contributes indepen-
dently to the knowledge of the model and enriches the
contrastive representation space separately.

Methods MRR Recall@5 Recall@10

SSDA Training (S1) 0.4531 0.7640 0.5776
SSDA Training (Testset) 0.3965 0.5342 0.7329

Ensemble 0.5029 0.6522 0.8261
+Pruning 0.5175 0.6646 0.8261

Table 4. The ablation study of ensemble

4.5. Challenge Results

As shown in table 5, the final score of our team
(Team ID 4) final mean reciprocal rank for the test set
is 0.4773. We achieved the rank #3 among 15 teams
on Track 2 Natural Language-Based Vehicle Retrieval
of AI City Challenge 2022.

Rank Team Name MRR
1 Must Win 0.6606
2 Thursday 0.5251
3 HCMIU-CVIP (Ours) 0.4773
4 MegVideo 0.4392
5 HCMUS 0.3611

Table 5. The overall ranking on MRR score of AI City Chal-
lenge 2022 - Track 2: The Natural language based retrieval

5. Conclusions

In this paper, we proposed a robust natural
language-based vehicle retrieval system with a new do-
main adaptive training method which can enhance the
model’s knowledge and tackle the domain bias prob-
lem. In addition, the proposed framework requires less
computation capability and data compared to previous
top performance methods but still yields a competitive
result in AI City Challenge 2022 at Top-3 on the pri-
vate test set.
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