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Abstract

Human risky behavior in driving is an important visual
recognition problem. In this paper, we propose a multi-view
temporal action localization system based on the grayscale
video to achieve action recognition in naturalistic driving.
Specifically, we adopted SwinTransformer as feature extrac-
tor, and a single framework to detect boundary and class
at the same time. Also, we improve multiple loss function
for explicit constraints of embedded feature distributions.
Our proposed framework achieves the overall F1-score of
0.3154 on A2 dataset.

1. Introduction

With the development of automation, computer vision
technologies has achieved great progresses on several tasks
related to the general vehicle structures, including ve-
hicle classification [7, 15, 48], detection [16, 24], track-
ing [29, 39], trajectory prediction [3, 38] and fine-grained
re-identification [25,26]. However, driver distracted behav-
ior detection, which takes place inside vehicles and plays an
essential role in human-vehicle communication, dynamic
driving adaptation and safety, is still understudied.

Driver behavior recognition is closely linked to the
broader field of action recognition, where the performance
numbers have rapidly increased due to the rise of deep
learning. Such models are data-hungry and are often evalu-
ated on large, color-based datasets with a carefully selected
set of highly discriminate actions, usually originated from
Youtube such as ActivityNet-1.3 [2] and HACS [50]. To lo-
cate the spatial positions and temporal boundaries of each
action in untrimmed videos is a challenging task. And there
is still a lot of room for the research on driver activity under-
standing. In the Driver Action Recognition field, different
from traditional action recognition tasks, it involves timely
safety issues which make it very sensitive to action bound-
ary, so the track 3 [32] requires the recognition error to be

*These authors contributed equally to this work

within 1s. What’s more, it is difficult to recognize all ac-
tions in a single camera view due to occlusion. To enhance
recognition, some datasets [28] for autonomous driving ac-
tion recognition propose multi-view recognition to increase
action diversity.

In this paper, we constructed a MV-TAL (multi-view
temporal action localization) system based on the gray-
scale videos inside the car. The framework of our MV-TAL
system is shown in Figure 1. We construct it with feature se-
quences extracted from raw video by SwinTransformer [27]
classifiers in different views and clip lengths. Then a tem-
poral action localization algorithm is applied to detect the
action boundaries and classes at the same time. Multiple
metric learning loss functions are introduced to explicitly
optimize the embedded feature distributions. Last, we en-
semble the results of different views and temporal action
detection models which complement each other.

To sum up, our contribution are as follows:

1. To improve feature representation, we construct 12 di-
verse features which can complement each other.

2. In order to maximize the value of features from differ-
ent views, we propose to improve the loss function for
explicit constraints of embedded feature distributions.

3. We take full advantage of features with different views
in a single network, which simplifies computation cost
and achieves great performance.

4. We employ different clip duration features as auxiliary
features, which enable the model well complemented
in localization and classification performance.

2. Related Work
2.1. Action Recognition

Traditional video-based action recognition consists of
action classification [6,9,22,31,35,40,41,43], 3D-skeleton
action classification [20, 47], temporal action localiza-
tion [13,14,36,45,49], and spatio-temporal action localiza-
tion [8, 17–19, 21, 33, 44]. For driver temporal action detec-
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Figure 1. Framework of MV-TAL, we adopt a single framework to generate temporal proposal and semantic labels in a unified network.
we employ three view videos as inputs to model fusing multi-view information. MV-TAL contains four Modules: Base Module to encode
video feature sequences and generate shared features, Proposal Generation Mechanism to generate coarse proposals, Proposal Classification
Module to classify semantic labels, Proposal Refinement Module to refine coarse proposals.

tion, it aims to detect the driver’s danger actions. Some al-
gorithms are built on the top of visual perception tasks. [46]
recognizes the behavior with the segmentation results, and
[12] refers to the detection results from Fast RCNN [11].

More works recognize the behavior from the original image
flow. [4] fuse spatial and temporal visual information for
classification. [10] propose FlowNet, containing a 3D con-
volution network and LSTM, for driver behavior identifica-
tion, [28] propose to based on body pose and 3D features in
multi-modality and multi camera view.

3. Method

3.1. Feature Engineering

In order to construct diverse features, we used classifica-
tion models to learn different action characteristics. In this
section, considering that different views and clip lengths
may have different representations. First, according to our
own observations, we mask some actions from a specific
view. For example, The “Text” which is indistinguishable
from the dashboard view will be masked. The mask infor-
mation are shown in table 2, and the actions which are not
masked in each view are not shown in it. Then, we observe
that start, end, and middle representations of some labeled
actions like “Eat” are quite different. As a result, we de-
signed view-wise classification with 3 views, 2 clip lengths

(3 and 6 seconds) and 2 label definitions, leading to 12 di-
verse feature extractors, and sample unlabeled segments to
be negative clips. The first label definition refers to the ori-
gin label. In second label definition, we split an action into
start, middle and end segments so that features can help to
localize action boundaries. We set different strides for pos-
itive and negative to overcome the shortness of data imbal-
ance. The data acquisition details are shown in table 1.

Considering the effectiveness and diversity, the distin-
guishing view classification model with 3-second and 6-
second video clips are adopted to extract features with stride
32. It is noticed that we just use the model of the corre-
sponding view to extract the features in distinguishing view
classification, so that each user id with occlusion status will
have 12 features consisting of 3 views and 4 kind of clips.

3.2. Temporal Action Detection

3.2.1 Temporal Proposal Generation

Inspired by [5], we adopt a similar framework to gener-
ate temporal proposals and semantic labels in a unified net-
work.

As shown in 1, we propose a MV-TAL (multi-view tem-
poral action localization) model to detect actions inside
the car. Following Faster-TAD [5], we adopt Confidence-
Matching mechanism [23] to generate proposals. Proposal
Generation Mechanism contains two branches, Temporal
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Table 1. The stride and class number information of six methods.

method view split start end split clips stride class number
pos-start pos-mid pos-end neg dash rear right

1 × × 3-second 0.5 0.5 18
2 × × 6-second 0.5 0.5 18
3 ✓ × 3-second 0.5 0.5 12 17 17
4 ✓ × 6-second 0.5 0.5 12 17 17
5 ✓ ✓ 3-second 0.4 0.25 0.4 0.25 36 51 51
6 ✓ ✓ 6-second 0.2 0.5 0.2 0.5 36 51 51

Figure 2. Different view mask in action “Adjust control panel” (top) and “text (left hand)” (bottom). The figure with red bbox means the
action in this view are difficult to recognize, while the green bbox has the opposite meaning.

Table 2. The mask information of each view, × means mask and
✓means no-mask.

Index Name Dash. Rear view Right win.
0 Normal Forward Driving × ✓ ✓
5 Text (Right) × ✓ ✓
6 Text (Left) × ✓ ✓
9 Adjust control panel × × ✓
10 Pick up from floor (D.) × ✓ ✓
11 Pick up from floor (P.) × ✓ ✓
16 Singing with music ✓ ✓ ×

Evaluation Module(TEM) and Proposal Evaluation Mod-
ule(PEM). Temporal Evaluation Module aims to evaluate
the starting and ending probabilities for all temporal loca-
tions in untrimmed video. In Proposal Evaluation Mod-
ule, we adopt SGAlign [30] Block to generate Boundary-
Matching (BM) confidence map, which aims to evaluate the

probability of proposal globally. We use boundary proba-
bility sequences and BM confidence map to generate pro-
posals during post processing. For proposal Classification,
We adopt Context-Adaptive Proposal Module [5] to encoder
proposal features. It should be noted that since there is lit-
tle related information related to the background proposal
adjacent to the positive proposals in this task, we did not
utilize Proximity-Category Proposals Block. For Proposal
Regression Refinement, we adopt Local-Global Temporal
Encoder [30] to model video feature sequence locally and
globally. Then, we further employ Temporal Boundary Re-
gressor Block [30] to refine coarse proposals.

In order to detect actions inside the car with multi-views
videos, we bring three improvements. First, we utilize three
view videos as inputs to generate proposals and semantic
labels. In this way, model can fuse multi-view informa-
tion and learn better results. Secondly, we adopt three Base
Module and three Local-Global Temporal Encoder to sep-
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arately encode different view features. This mechanism al-
low model firstly learn the differences of features from dif-
ferent views inputs, and then learn fusing features to get
better results. Last but not least, we employ 3s features as
auxiliary features. By fusing features of different clip du-
ration, the model is well complemented in localization and
classification performance.

3.2.2 Proposal Classification

Classification is also an essential part in the temporal action
detection process. Different from common temporal ac-
tion detection datasets, where each action category contains
sufficient samples, Track 3 only provides 30 ground truths
for each category. Besides, due to the influence of camera
poses, samples of different categories under the same view
share more similar appearances, compared with those of the
same category under different views. The above factors pre-
vent the classification model from getting clear classifica-
tion boundaries. To address these problems, we propose
to involve metric learning loss functions for explicit con-
straints of embedded feature distributions.

In addition to the commonly utilized cross entropy loss,
we adopt 3 metric learning loss functions in total: triplet
loss [34], cosface loss [42] and circle loss [37]. In order
to explicitly constrain the similarity relationships between
positive and negative sample pairs, during the training pro-
cess, a mini-batch is grouped with P unique categories,
each with K samples. As a sample may contain more than
1 category, only the first is taken into consideration at the
batch sampling stage. Metric learning losses aim to form
compact clusters for each category. For an anchor sam-
ple in the mini-batch as xi, whose similarity to positive and
negative samples as sip and sin, the triplet loss [34] can be
formulated with:

Ltr =
[
sin − sip +m

]
+
, (1)

where m represents the margin between clusters, and []+
stands for max(·, 0). Triplet loss directly pulls close sam-
ples of the same category and pushes away those of different
categories. However, as the calculation only involves sam-
ples inside the mini-batch, the optimization is easily stuck
at local-optima. Cosface loss [42] improves the problem by
introducing the margin into the cross entropy loss calcula-
tion to optimize the model globally:

Lcf = log

1 + L∑
j=1

M∑
i=1

e(γcf (m+sjn−sip))

 , (2)

where γcf is a scale factor. Circle loss [37] further intro-
duces weighting factors α and respective margins △ for

Table 3. The results of six methods.

method view top1 acc top5 acc mean acc
3s & origin label & cat view - 22.93 49.42 8.52

3s & origin label & split view
rearview 44.11 73.63 44.06
window 52.19 88.92 40.12

dashboard 64.74 88.12 48.15

6s & origin label & split view
rearview 52.03 79.98 51.83
window 50.22 85.09 48.80

dashboard 69.33 92.45 55.25

3s & split label & split view
rearview 29.67 53.41 8.77
window 23.01 47.38 5.24

dashboard 60.04 76.38 15.55

6s & split label & split view
rearview 30.87 55.27 9.53
window 19.09 42.14 9.89

dashboard 57.28 73.33 20.04

positive and negative sample pairs:

Lcr = log

1 + L∑
j=1

M∑
i=1

e(γ(α
j
n(s

j
n−△n)−αi

p(s
i
p−△p)))

 .

(3)
In the actual calculation process, the weighting factors are
assigned as αi

p = [1 + m − sip]+ and αj
n = [sjn + m]+.

The margins are set as △p = 1 − m and △n = m. The
above loss functions are grouped in multiple ways to pro-
duce different TAD models. We employ model ensemble to
aggregate the advantages of one another.

3.3. Ensemble

In the Feature Engineering mentioned in Chapter 3.1, we
can not only generate discriminative features for temporal
action detection, but also get the classification results cor-
responding to each feature. In this section, for the different
method mentioned in Table 1, we synthesize the proposal
classification results in Chapter 3.2.2 and the classification
results in the classifier to form the final classification results,
and apply soft-NMS [1] to the proposal localization results
with different thresholds for different category. Besides, to
increase model diversity and maximize the value of features
from different views, we also ensemble the proposal local-
ization results and classification results of 4 methods.

4. Experiment

4.1. Classifier

In this section, we present the results of 12 classifier
mentioned in 3.1, as shown in Table 3. It shows that
the model with different view can get better performance.
Specifically, we use the user id 35133 as test dataset and
others as train dataset from A1 dataset, and we set the inter-
val=8 in 3-second clips training and interval=4 in 6-second
clips training, We run all experiments on a machine with 8
NVIDIA GTX1080Ti GPU.
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Table 4. The results of ensemble, “cat” means we cat features from different view as training features, and & means using the two stream
input of two kind of features. “-se” means use the split label with start and end and others means not.

Features Recall Precision F1-score3s-se 6s 3s&6s cat 3s cat 6s cat 3s & 6s
✓ ✓ ✓ ✓ ✓ × 0.2346 0.4375 0.3055
✓ ✓ ✓*2 ✓ ✓ × 0.2346 0.4330 0.3043
✓ ✓ ✓ ✓ ✓ ✓ 0.2291 0.5062 0.3154

4.2. Ensemble

In this section, we present the best ensemble result of dif-
ferent temporal action detection models trained with differ-
ent features, which shows the multiple model using differ-
ent features can complement each other, as shown in Table
4.

5. Conclusion
In this paper, we present our approach for the CVPR2022

Workshop AICity Challenge Track 3. A driver temporal
action detection system is proposed for naturalistic driving
action recognition. We propose MV-TAL network to detect
temporal actions with multi-views. Different clip duration
features are employed as auxiliary features, which enable
the model well complemented in localization and classifica-
tion performance. What’s more, we propose to involve met-
ric learning loss functions for explicit constraints of embed-
ded feature distributions. Also, we construct multi features
to improve diversity of feature representation. Our network
can aggregate features with different information and fur-
ther improve the performance. Our strategies have shown
great performance in classification and localization.
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