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Abstract

Multi-Target Multi-Camera tracking is a fundamental
task for intelligent traffic systems. The track 1 of Al City
Challenge 2022 aims at the city-scale multi-camera vehicle
tracking task. In this paper we propose an accurate ve-
hicle tracking system composed of 4 parts, including: (1)
State-of-the-art detection and re-identification models for
vehicle detection and feature extraction. (2) Single cam-
era tracking, where we introduce augmented tracks predic-
tion and multi-level association method on top of tracking-
by-detection paradigm.(3) Zone-based singe-camera track-
let merging strategy. (4) Multi-camera spatial-temporal
matching and clustering strategy. The proposed system
achieves promising results and ranks the second place in
Track 1 of the Al City Challenge 2022 with a IDFI score of
0.8437.

1. Introduction

Multi-Target Multi-Camera (MTMC) [1,9,11,12,14,21,
27,29] tracking plays an important role in the extraction of
actionable insights from the fast-expanding sensors around
the world. Among its branches, city scale Multi-Camera
Vehicle Tracking (MCVT) is attracting an increasing num-
ber of researchers. Its primary goal is to calculate tra-
jectories of vehicles across multiple cameras, as shown in
Fig. 1. Following a general approach, MCVT can be broken
down to three sub-tasks, including Single-Camera Tracking
(SCT), vehicle re-identification (Re-ID), and Multi-Camera
Tracklets Matching (MCTM). As the initial condition, SCT
can have significant impact on the correctness of succes-
sive steps. A few broken tracklets or ID switches in SCT
are enough to cause massive chaos and chain reaction in
multi-camera tracklet matching, forming an invisible bot-
tleneck on recall and precision scores. We can observe the
challenges seen in traditional MCVT with some actual sce-
narios:

1. Most tracking-by-detection SCT algorithms face the

*Equal contribution.

Figure 1. Tasks faced by MCVT, showing the trajectory of vehicles
across multiple cameras.

uncertainty caused by detection noises such as false
positive or false negative results, which in turn affect
the matching process and ultimately result in unstable
or broken tracks.

2. Most tracking-by-detection SCT algorithms underesti-
mate broken tracklets caused by long traffic jam, which
is shown in Fig. 6. that afterwards

3. Most tracking-by-detection SCT algorithms extract
impure features when vehicle is occluded by another
object, such that the bounding box may contain many
pixels from adjacent object.

4. In multi-camera tracklet matching, many vehicles with
similar appearance cannot be distinguished, thus cre-
ating ID switches across camera.

Because of these problems, we design a system that la-
bels and handles three types of detection results using con-
fidence score and Intersection Over Union (IOU) ratios,
which are low-quality-occluded, low-quality-non-occluded,
and high-quality-non-occluded vehicles. Among these,
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high-quality-non-occluded vehicles have the highest prior-
ity when matching, and are used for track initialization.
Low-quality ones, on the other hand, have lower priori-
ties when matching. Moreover, the Re-ID features of low-
quality-occluded vehicles will be dropped out. By sorting
them out, vehicle tracks can be more accurately performed,
which enables a high recall rate, and filtered Re-ID features
can make the process easier for tracklet matching later on.

For the missing pieces of a vehicle, we introduce two
more SOT algorithms other than the Kalman Filter, so that
stable vehicle trajectory can be synthesised even if one is in
uncertainty. Then, the results will go through multi-level
matching and clustering, within and across cameras. As
for trajectory disruptions caused by heavy occlusion or ap-
pearance changes, we propose a zone-based tracklet merg-
ing strategy, piecing together most tracklet fragments within
cameras.

As for multi-camera matching, we propose a direction
based spatial-temporal strategy that significantly reduces
the searching space and an aggregation strategy that solves
edge cases like U-turns. The main contribution of this paper
are summarized as follows:

* We propose multi-level detection handler, augmented
tracks prediction method, and multi-level association
to cope with broken tracklets and ID switches.

* We propose zone-based singe-camera tracklet merging
strategy, which not only links tracklet fragments, but
also enrich vehicle features in order to increase the re-
call rate.

* We propose spatial-temporal matching and aggrega-
tion strategy that significantly reduces the searching
space and solves edge cases like U-turns.

2. Related Work
2.1. Vehicle Detection

Object detection is a traditional assignment of computer
vision and image processing which deals with detecting in-
stances of semantic objects of some certain classes, such as
human, bikes or cars, in digital images and videos.

Object detection algorithms typically leverage machine
learning and deep learning to output reasonable results.
Commonly, object detection algorithms are classified into
two categories, two-stage object detection and one-stage
object detection.

Faster R-CNN is a representative two-stage object de-
tection algorithm [5, 25]. Its architecture contains two net-
works, region proposal network (RPN) and object detection
network. RPN firstly generates a series of anchors on the in-
put feature map. Then, Region of interesting pooling (ROI)
takes the output of RPN as input and generate a series of

fixed-sized feature maps. Finally, softmax and bounding
box regression layer flatten the feature maps and output the
location of the object in the image.

Single Shot MultiBox Detector (SSD) [ 8]and You Only
Look Once (YOLO) [4, 2224, 30] are both famous one-
stage object detection algorithms. SSD [18] predicts the
object classes and locations with a series bounding boxes in
various aspect ratio and size. YOLO tries to accomplish the
real-time object detection task with anchors derived from
Faster R-CNN. It fiendishly turns a object detection task
into a classification task. Meanwhile, it balances prediction
accuracy and inference performance.

2.2. Multiple Object Tracking

2.2.1 Single-Target Single-Camera Tracking

single object tracking (SOT) is one of the foremost assign-
ments in computer vision that has numerous applications
such as intelligent video analysis, robotics, autonomous ve-
hicle tracking, and so on. It generally has three kinds of
methods to approach the solutions.

The algorithms related with first method are based on
correlation filter, such as Kernelized Correlation Filters
(KCF) [10], Continuous Convolution Operators for Vi-
sual Tracking(C-COT) [8] and Efficient convolution oper-
ators(ECO) [7], which were commonly used on signal pro-
cessing to describe the correlation or similarity of two sig-
nals. The general procedures to apply the correlation filter
on SOT have three steps. Firstly, obtain the initialized tar-
get position based on first frame of stream. Then, extract
the target position features as filter template like Histogram
of Oriented Gradients (HOG). Finally, obtain the predicted
target position of current frame by executing correlation op-
eration based on the previous filter template.

The second class of algorithms is based on optical flow,
such as MedianFlow [13]. This method extracts the tar-
get position features with Harris Corner or SIFT in the first
frame. Then, it predicts the corresponding positions of the
feature points for the following frames by optical flow algo-
rithms. It finally gives the predicted target position based
on the predicted feature-point positions. optical flow al-
gorithms mainly focus on local features predictions which
leads to robust results in occlusion challenge.

The last class of tracking algorithms is based on CNN
Siamese Network, which is a kind of offline object tracking,
such as siamFc [2], siamRPN [16], siamRPN++ [15], etc.
The main principle is like the second method but replac-
ing the Harris Corner or SIFT feature extractor with CNN.
These methods have all achieved satisfactory results in the
field of SOT.
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2.2.2 Multi-Target Single-Camera Tracking

Multiple Object Tracking (MOT) is a challenging task. It
not only involves the difficulties derived from SOT such as
occlusion, illumination variation, object deformation, etc.
but also concerns about the relative positions of each target
to reduce ID switching possibilities.

Tracking-by-detection is the main paradigm to achieve
the goal of MOT. Simple Online and Realtime Tracking
(SORT) [3] is a typical bare-bone implementation of MOT
framework. It predicts the object locations of the following
frames by Kalman Filter and then computes the overlaps
with the detection. In the end, it uses Hungarian algorithm
to assign detection to tracklets. However, it always causes
unsatisfied tracking results due to lacking feature extraction
especially in crowded and fast motion scenes. To solve the
previous problem, Simple online and realtime tracking with
a deep association metric (DeepSort) [31] was proposed in
2017 and integrate appearance information to improve the
performance of SORT. It effectively reduces the number of
ID switches with acceptable computational complexity in-
creasing.

In support of SORT and DeepSort, there are more works
that joints the detection and tracking. For example, Fair-
MOT [33] accomplishes integrating object detection and
Re-ID in the same backbone to improve inference speed.

2.3. Multi-Camera Vehicle Tracking

Recently, MCVT [19] has become a fascinating research
area due to the demands of the city-scale traffic manage-
ment increasing. With the progression of multi-object track-
ing techniques, the vehicle Re-ID techniques and the inte-
grated framework, MCVT can be settled in better results.
Liu. Etal [17] proposes an integrated framework for MCVT
guided by crossroad zones, which achieves the top perfor-
mance in Al City Challenge 2021.

3. Method
3.1. Overview

The proposed MCVT system is shown in Fig. 2, which
includes vehicle detection, Re-ID feature, feature dropout
based multi-level detection handler, single-camera multi-
level tracks and merging strategy, and multi-camera spatial-
temporal matching and aggregation strategy.

3.2. Vehicle Detection

Vehicle detection is the first and essential step in MTMC
tracking. As most of the MTMC tracking methods, we
follow the tracking-by-detection paradigm, such as using
the state-of-the-art network YOLOVS [30] and more specif-
ically the YOLOv5x6 model, which is pre-trained on the
COCO dataset to detect vehicles. We tune our detection

classes to only cars, trucks, and buses by setting the classes
parameter. The agnostic parameter is used to perform non-
maximum suppression (NMS) for all detected vehicles in
the inference stage.

3.3. Vehicle Re-ID

Following existing Re-ID work [17], we use ResNet50-
IBN-a, ResNet101-IBN-a and ResNeXt101-IBN-a models
that are pre-trained on the CityFlow dataset to extract fea-
ture of vehicles, without introducing external data. Each
Re-ID model outputs a 2048-dimensional feature vector,
and the final feature of each detected car is the average out-
put of the three models.

3.4. Single-Camera Vehicle Tracking

For single-camera vehicle tracker, we follow the gen-
eral framework of Simple Online and Realtime Tracking
(SORT) [3]. To deal with the limitations of SORT, we pro-
pose further improvements to the tracking method. First,
relying on predictions from Kalman Filter often produces
ID switches when direction of movement changes. There-
fore, we utilize two more SOT, namely Efficient Convo-
lution Operators (ECO) [6] and MedianFlow, and propose
an augmented tracks prediction method. Next, inspired by
DeepSort, we include vehicle appearance features, which
then goes through a feature dropout filter and a multi-
level matching process. Finally, in order to make sure the
completeness of tracklets, we add another post-process for
tracklet merging within a single camera.

3.4.1 Vehicle Track Prediction

To enhance the the limitation of Kalman Filter, we first
include MedianFlow, which use the current location of a
vehicle to take sample pixels, and then predict the next
frame’s location based on optical flows. MedianFlow can
effectively locate vehicles that are occluded by another ve-
hicle moving in parallel, thus becomes more occlusion re-
silient. Secondly, when a vehicle moves extremely fast or
makes sharp turns, it usually undergoes dramatic appear-
ance changes. In this case, MedianFlow might not work
well, so we can adjust our prediction using ECO. There-
after, every vehicle detection box will have a much better
match in our multi-level association method, as shown in
Fig. 3.

3.4.2 Multi-Level Detection Handler

For our method, vehicle Re-ID features plays an important
role in both single and multiple camera vehicle tracking.
Therefore, it is imperative to extract accurate features from
Re-ID models, which act as the enabler for the rest of pro-
cesses down the pipeline. We propose multi-level detection
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Figure 2. Pipeline of our MCVT system. The system first uses the detector to obtain all bounding boxes of vehicles from video set; then
uses Re-ID models to extract features, with some Re-ID features being dropped out; then single-camera algorithms generate tracklets;
finally, tracklets across cameras are synchronized by matching and clustering strategies.

(a) vehicles moving in parallel (b) vehicle with shadow

Figure 3. Augmented tracks prediction method in different sce-
narios, where red represents ECO, green represents Kalman Filter,
and blue represents optical flow.

handler. We start our detection process with a relatively
low confidence level of 0.1 and a relatively high NMS-IOU
threshold of 0.45. After that we select from the result twice,
first with confidence values of 0.1 and NMS-IOU of 0.3,
then with confidence value of 0.3 and NMS-IOU of 0.3. At
this point, we can split the result into three levels, as shown
in Fig. 4.

It follows that the features from low-quality and blocked
vehicles should be discarded, leaving only the boxes them-
selves for the track matching process to get high recalls
[32], which is shown as the feature dropout filter in Fig. 5.
On the other hand, vehicles that are not blocked will not
only participate in tracker matching, but also add their fea-
tures to the corresponding tracks.

3.4.3 Multi-Target Multi-level Association

To make sure the tracks predicted match adequately with
detection results, our method includes four rounds of asso-
ciations, which can be seen in Fig. 5.

1. select high quality and non-occluded vehicles from
Fig. 4 and associate with tracks of age 1, generating

Low quality, not blocked

Figure 4. Multi-level detection results, where red has confidence
of 0.1 and NMS-IOU of 0.45, green has confidence of 0.1 and
NMS-IOU of 0.3, and blue has confidence of 0.3 and NMS-IOU
of 0.3.

the following matrix:
MIOll*A-l-ﬂl*B-‘r’yl*C (1)

where M represents the resulting cost matrix,
a1, 51,71 represent corresponding weights, A repre-
sents feature cosine cost matrix, B represents cost ma-
trix of IOU distance between MedianFlow boxes and
detection boxes, and C represents cost matrix of IOU
distance between ECO boxes and detection boxes.

2. pair the unmatched tracks and detection, resulting in
the following matrix:

W=0as*x P+ P3xB+yxC 2)

where W is the new cost matrix, s, 32,72 are cor-
responding weights, P is cost matrix of IOU distance
between Kalman Filter boxes and detection boxes.
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Figure 5. Multi-Target Multi-level Association.

3. associate the detection still unmatched with tracks with
age greater than 1, yielding:

F=A 3)

where A represents feature cosine cost matrix. This
step is inspired by DeepSort, assuming that tracks with
lower age should have higher priority when matching.

4. match the remaining low quality vehicles (occluded or
not) with tracks of age 1, with similar matrix calcula-
tion to step 2. This step aims to save the boxes pre-
dicted by tracks from the low quality detection, in or-
der to ensure the completeness of our tracklets.

3.4.4 Tracks Life-cycle

After four rounds of associations, if there are still some un-
matched high quality detection boxes, then they are thought
to be new, and new tracks will be initialized, including
Kalman Filter model, ECO tracks, and sampling pixels for
optical flow. For matched detection and tracks, the tracks
will be updated accordingly. First the type of detection
box is determined, and if the vehicle is occluded, then only
the Kalman Filter is updated, else if the IOU distance be-
tween ECO prediction and matched detection is lower than
a threshold, the track is reinitialized with the matched de-
tection box rather than being updated, and optical flow sam-
pling points as well as feature are updated accordingly. For
tracks not matched with detection boxes, we try to salvage
them by using predictions from MedianFlow or ECO, while
updating the Kalman Filter model with those predictions to
compensate for the missing parts.

3.4.5 Zone-Based Tracklet Merging

Although we make many attempts to capture fragments of
every tracklet to make sure of its completeness, in real-

world scenario, there are still split pieces made by unex-
pected objects such as the traffic light, which can be seen in
Fig. 6. Due to these cases, we propose a zone-based tracklet
merging method.

Tracklet Selection We divide crossroad images into 9 ef-
fective zones and 1 traffic zone, which can be determined
by specific cases, as shown in Fig. 7. These 9 zones can be
sort into starting zones (1, 3, 5), middle zone (10), and end-
ing zones(2, 4, 6). Before merging, we pick some tracklets
under the criteria:

* tracklet that starts normally and end in either the same
zone or middle zone.

e tracklet that starts in either middle zone or traffic zone.

These tracklets are thought to be abnormal and will become
candidates for merging. Then, they will go through a filter
to remove noises such as negligibly short ones (less or equal
to 4 frames), stationary ones, and small pixel count ones.
From there, these candidate will go to tracklet merging in
the next step.

Tracklet Merging Considering the fact that a tracklet
might have multiple fragments within one camera, this pa-
per cope with abnormal tracklet fragments using hierarchi-
cal clustering. Assuming there are n fragmented tracklets,
first the mean feature for each tracklet are calculated, then
we have:

cos(Ty,Ty) cos(Ty,Ty,)

ann = (4)

cos(T,, Ty) cos(Ty, Ty)

Where T represents the tracklets fragments to be merged,
and H, «, represents the cost matrix of the tracklets. Be-
cause of one tracklet cannot merge with itself, we set the
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(a) Vehicles stop for traffic light, and then moving under occlusion. After the
reappearance of the vehicle, because of the part of feature occluded differ
from that afterwards, the two features cannot be reliably matched.

After occlusion
(b) The track is deleted due to long time occlusion, when the vehicle finally
shows up, a new ID will be assigned.

Figure 6. Example of unmatched tracks.
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No.7 frame matching frames

Walmart Supercenter

Figure 7. 9 Zones for a single camera. Figure 8. Spatial-temporal matching strategy.

diagonal values with 2, and then do the clustering to get

(d) if the latter’s ending location is within the ending
tracklets under the same cluster:

zones, if not, recursively look for one with ending
1. sort tracklets by their starting frame in ascending order zone until none matched.

2. check if two tracklets agree with space and time: Using the above techniques, tracklets fragment can be se-

(a) if the latter’s starting frame is within a range re- lected and merged under the same cluster, yielding more
garding the former’s ending frame. accurate tracklet results for single camera tracking.

(b) if the distance between former’s and latter’s start-
ing location is greater than the distance between

3.5. Multi-Camera Tracklets Matching

former’s starting location and ending location. In multi-camera matching, our approach consists of a se-
(c) if the latter’ starting direction is the direction lection step, shown in Fig. 8, an aggregation step, and a
pointed by the former. clustering step.
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3.5.1 Tracklet Matching

The cosine similarity matrix used in multi-camera matching
is similar to the one used in Sec. 3.4.5, except that now it is
comparing tracklets across cameras. For n tracklets across
two adjacent cameras, each tracklet with 2048-dimensional
averaged features from all frames are compared with each
other to form a n by n matrix S, filled by cosine similar-
ity. The similarity matrix enables merging multiple track-
lets across different cameras. However, as the number of
tracklets increases, the search space within the matrix often
become too large that results in many mismatches, which
can become a bottleneck that limits the quality of clustering
later on. In this case, filtering by edge cases does not seem
to be enough. Therefore, lowering the search space within
the matrix is a crucial step to improve the matching results.

3.5.2 Tracklet Selection

In order to simplify the process for multi-camera match-
ing, we utilize both directional and temporal information
to clamp the scope of the matching process. Based on
the GPS location of each camera, we can rotate zones in
Sec. 3.4.5 for each cameras to connect the track inlets and
outlets. Inspired by [17], our zones can be simplified for
multi-camera matching, where (Zone 1, Zone 2) correspond
to West, (Zone 3, Zone 4) correspond to North, (Zone 5,
Zone 6) correspond to East, and (Zone7, Zone 8) corre-
spond to South. Furthermore, we can calculate the possible
time range between each connection using the maximum
and minimum speed limit as well as traffic light signals of
a given scene. This gives us a complete picture of whether
a vehicle can appear in specific zone of a specific camera in
the given range of time, which forms a trajectory clamping
mask that limits the search scope in space and time down
to certain ranges. For example, for a tracklet 7; that end
in West at time t., a matching tracklet in the next cam-
era down the road T; must start in East within time range
[te+t(%, J)mins te+t(iy §)maz], Where (i, §)min, t(%, J)mazx
are the minimum and maximum time interval for crossing
the cameras. Compared to the filtering mask used in [17],
applying selecting mask to the similarity matrix narrows
down the search space almost by half, which greatly in-
creases IDP while maintaining IDR.

3.5.3 Tracklet Clustering

Inspired by [17], our method contains two rounds of multi-
camera tracklet clustering. The first round is directional
based. For instance, tracklets going from camera 41 to 42
and the other way could be clustered together, but with re-
liable single-camera tracking result, we can compare only
those tracklets going in the same direction, reducing the
clustering space. After the first round of clustering, tracklets

=N (45,20)
-k

(45,160). S~

c046 c045

Figure 9. Example of U-turns, where one vehicle enters c045, goes
to c046, turns around to c045, and finally appears in c044.

of the same vehicle from adjacent cameras need to be aggre-
gated together, and the order of aggregation matters because
the same vehicle can have different IDs across cameras. We
propose a iterative searching strategy that effectively solves
edge cases like U-turns, as shown in Fig. 9.

That same vehicle that from 45 to 46, and then from
46 to 44, can be express as (camera ID, track ID) pairs
like (45,20)(46,54)(45,160)(44,218). One aggregation or-
der can simply be [41,42][42,43][43,44][44,45][45,46],
[42,41][43,42][44,43][45,44][46,45], searching for track ID
intersections between each camera. If there is intersec-
tion, the two sets of different camera can be merged, and
if not, new sets are created, and so on. However, U-turns
in this case cannot be properly aggregated. For exam-
ple, in Fig. 9, begin with (45,20),(46,54), when we reach
(44,218),(45,160), that same vehicle will not be recognized
since the turning point has not been reached, and the in-
tersection is empty. Going forward, we get results like
(45,20),(46,54),(45,160), (44,218),(45,160),(46,54). Ap-
parently, there is an intersection between these two sets, yet
they are split into two tracklets. Therefore, we propose a ag-
gregation strategy that searches though tracklets sets in each
camera, until there are no intersection left between any sets,
which effectively solves the U-turn issue.

4. Experiment

4.1. Datasets and Evaluation Metrics

The AIC22 benchmark (CityFlowV2) [20, 28] is cap-
tured by 46 cameras in real-world traffic surveillance en-
vironment. A total of 880 vehicles are annotated in 6 dif-
ferent scenarios. 3 of the scenarios are used for training.
2 scenarios are for validation. And the last scenario is for
testing. There are 215.03 minutes of videos in total. The
length of the training videos is 58.43 minutes, that of vali-
dation videos is 136.60 minutes, and that of testing videos is
20.00 minutes. For MTMC tracking, we use the IDF1 [26]
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Method IDF1 IDP IDR

Baseline 0.7522  0.8173  0.6967
+Feature Dropout Filter 0.8192 0.8871 0.7610
+Multi-level matching ~ 0.8312  0.8799 0.7877
+Tracklet Merging 0.8362 0.8732 0.8022
+Tracklet Selection 0.8437 0.8900 0.8020

Table 1. IDF1 score changes after several optimizations.

Team ID IDF1 score
28 0.8486
59 0.8437
37 0.8371
50 0.8348
70 0.8251

Table 2. Comparison of our method with other teams.

score as evaluation indicators. IDF1 measures the ratio of
correctly identified detection over the average number of
ground-truth and computed detection. The evaluation sys-
tem of the AI City Challenge will display IDF1,IDP, IDR,
Precision (detection) and Recall (detection).

4.2. Results

We use the evaluation opportunity provided by the eval-
uation system to verify the effect of our algorithm, and op-
timize our algorithm according to the IDF1,IDP, IDR, Pre-
cision and Recall results. We record the changes of IDF1
after several optimizations which are shown in Tab. 1.

In the final ranking of track 1 of AI City Challenge 2022,
we rank the second place among all participating teams.
The comparison of our method with other teams’ on the
evaluation system is shown in Tab. 2. Our code will be re-
leased later.

5. Conclusion

In this paper, we propose an accurate multi-camera vehi-
cle tracking system. For single-camera tracking, we incor-
porate three reinforcing methods for augmented tracks pre-
diction, and multi-level association and zone-based singe-
camera tracklet merging strategy. For multi-camera track-
ing, we develop a spatial-temporal strategy that reduces
search space when matching, and improve on hierarchical
clustering that captures U-turn tracklets. Our results show
that these methods improve both IDR and IDP, with a final
IDF1 score of 0.8437.
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