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Abstract

Distracted driver actions can be dangerous and cause
severe accidents. Thus, it is important to detect and elimi-
nate distracted driving behaviors on the road to save lives.
To this end, we study driver action detection using videos
captured inside the vehicle. We propose Stargazer, an ef-
ficient, transformer-based system exploiting rich temporal
features about the human behavioral information, with a
simple yet effective action temporal localization framework.
The core of our system contains an improved version of the
multi-scale vision transformer network, which learns a hi-
erarchy of robust representations. We then use a sliding-
window classification strategy to facilitate temporal local-
ization of actions-of-interest. The proposed system wins the
second place in the Naturalistic Driving Action Recognition
of AI City Challenge 2022 (Track 3)1. The code and models
are released2.

1. Introduction

With the rapid growth of traffic flows on the road, traf-
fic accidents have claimed thousands of lives each year in
the US alone. Distracted driving is reported to be an im-
portant cause among those deaths. Identifying and elim-
inating these driver behaviors is important and can help
save lives on the road. With the advancement in deep
learning and computer vision, systems now are able to
analyze an unprecedented amount of rich visual informa-
tion from videos. An important analysis is action detec-
tion in untrimmed/extended videos, to enable applications
such as distracted behavior recognition and accident avoid-
ance. This problem has received increasing attention in the
computer vision community [4, 7, 8, 11, 20, 23]. It is re-

*Work done during a research internship at Tencent Youtu Lab.
1https://www.aicitychallenge.org/2022-data-and-

evaluation/
2https://github.com/JunweiLiang/aicity_action

Figure 1. The Stargazer system for naturalistic driving action de-
tection. Our system can take in multi-view or single-view video
stream and report detected actions’ start and end time.

garded as an essential building block in video understand-
ing for many applications like self-driving cars [22, 24, 25],
socially-aware robots, public safety monitoring [21,28,30],
etc.

Human vision can recognize video actions efficiently
despite the variations of scenes and domains. Convolu-
tional neural networks (CNNs) [5, 13, 33, 35, 36] fully uti-
lize the power of modern computational devices and employ
spatial-temporal filters to recognize actions, which outper-
forms traditional models such as oriented filtering in space
time (HOG3D) [18]. However, due to the high variations in
space-time, the state of the art of action recognition is still
far from being satisfactory, compared with the success of
2D CNNs in image recognition [15]. Recently, vision trans-
formers like ViT [10], MViT [11] that are based on the self-
attention [38] mechanism are proposed to tackle the prob-
lems of image and video recognition. Instead of modeling
pixels like CNNs, transformers apply attentions on top of
visual tokens. The inductive bias of translation invariant in
CNNs make it require less training data than pure-attention-
transformers in general. However, transformer has the ad-
vantage that it could better harness the parallel processing
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units of modern computing devices like GPUs and TPUs,
making it more computationally efficient than CNNs. We
have seen a rapid growth in image and video datasets [17]
in recent years, which would make up for the shortcom-
ings of data-hungry transformers. Meanwhile, transform-
ers combined with low-level convolutional operations have
been proposed [11] to further improve the original design.

The AI City Challenge has been a prominent annual
competitions [31, 32, 44] that addresses key intelligent city
problems. For the naturalistic driver action detection prob-
lem, we are given single-view or multi-view videos from
inside the vehicle. There are a few key challenges:

• Models need to recognize different actions from differ-
ent viewpoints.

• Different action’s start and end time could be hard to
pin-point.

• The system need to be efficient to be practical and de-
ployable within the vehicle’s on-board device.

To this end, we propose a transformer-based action de-
tection system, termed Stargazer, which includes an im-
proved version of the multi-scale vision transformers [11]
for sliding-window action classification. As action tempo-
ral localization is challenging, we introduce two new tech-
niques to address the issue. First, to address the problem
of pin-pointing actions within the videos, we design an ef-
ficient vision transformer model that takes in a short video
clip of 2 seconds and a sliding-window classification tech-
nique with a stride of about half a second to allow the sys-
tem to accurately localize the start and end of the actions.
Second, to facilitate the training of data-hungry transform-
ers, we utilize pre-training of our models on one or multiple
large-scale video action datasets and multi-crop data aug-
mentation on the target dataset.

2. Related Work
CNNs and Vision Transformers. CNNs work as the stan-
dard backbones throughout computer vison tasks for image
and video. Various effective convolutional neural architec-
tures have been raised to improve the precision and effi-
ciency (e.g. VGG [34], ResNet [15] and DenseNet [16]).
Although CNNs are still the primary models for computer
vision, the Vision Transformers gradually show their enor-
mous protential. Vision Transformer (ViT [10]) directly ap-
plies the architecture of Transformer on image classification
and get encouraging performance. ViT and its variants (e.g.,
MViT [11]) achieve outstanding results in recent years.
Action Recognition/Classification. The research of ac-
tion recognition has advanced with both new datasets and
new models. The modern benchmarks for action recogni-
tion is the Kinetics dataset [17]. The Kinetics dataset pro-
poses a bigger benchmark with more categories and more

videos (e.g., 400 categories 160,000 clips in [17]) as a
harder benchmark. However, Kinetics datasets do not ex-
haust all the possible actions in all possible scales, for ex-
ample, surveillance actions are missing in the two datasets.
Many new approaches [12, 26, 37, 40, 43] have been car-
ried on these datasets, of which the SlowFast network [12]
and MViT [11] obtain good performance. We can see the
trend of action recognition in the last two decades is to col-
lect bigger datasets (e.g. Kinetics) as well as build bigger
models (e.g., I3D [5] and SlowFast).

Temporal Action Localization. Temporal Action Local-
ization (TAL) is a kind of task to locate the action instances
and identify their categories. The architectures of TAL in-
clude two-stage and single-stage models. The two-stage ap-
proaches [1, 3, 6, 14] for TAL first split the video to many
candidate segments as action proposals, and then classify
these proposals into the corresponding action categories.
Single-stage TAL [2, 27, 29, 41] methods aim to localize
actions and get category in one stage without action pro-
posals. Most of these work is to adopt the sliding anchor
windows, which is called anchor-based.

3. Approach

3.1. System Architecture

Fig. 2 shows the overall network architecture of our
Stargazer system. Our design is simple yet effective.
Stargazer has the following key components:

Action Proposal module extracts a constant number of
frames as inputs to the action recognition module. To ensure
more precise action temporal localization results, we extract
cube proposals with temporally overlapping frames. For the
naturalistic driver action detection task, as the videos con-
tain mostly the drivers, we directly take the whole frame as
the spatial dimensions of the proposals. One can include
object detection and tracking in this module to apply the
system in a more complex situation where the action-of-
interest region is small compare to the whole frame.

Action Recognition module takes the proposal frames (i.e.,
video clips) and classify the video clips into one of the
distracted or normal actions. The action recognition mod-
ule is based on the improved multi-scale vision transform-
ers [11, 19].

Post Processing module aggregates the overlapping video
clip scores and produces the final action outputs with start
and end timestamps. As each action in this challenge is ac-
companied with multiple videos from different viewpoints,
a simple heuristic logic (the cross-view action instance se-
lection method in Fig. 2) is utilized to select the best action
instance for each class as the final outputs.
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Figure 2. The inference pipeline of our Stargazer system for the AI City Challenge. Given a sequence of frames, our action proposal
module produces cube proposals that are input to the action recognition module to get classification scores. The post processing module
aggregates the scores from multiple-view videos and produces the final submission results.

3.2. Action Proposal Module

Given an extended or untrimmed videos, we first extract
action proposals where the actions might appear. We utilize
the spatial-temporal cube as the action proposal, which is
defined as:
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i
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i
0, t

i
1) (1)

This six-tuple design has been proven to be effective com-
pared to tube proposals in spatial-temporal action detection
task [28]. Since in this challenge the drivers take up the
main content of the frame, we set the spatial region of the
proposals to be the size of the frame. In other more complex
data where cameras are away from the action-of-interest, a
object detection and tracking module can be added to pro-
duce more precise spatial regions.

The temporal length of the proposal is decided by the in-
put length of the action recognition model. In this challenge
we have tried both 16x4 and 32x3 settings (number of frame
x frame stride). The 16x4 setting means the total proposal
length is of 64 frames, which corresponds to about 2 sec-
onds of videos of 30 FPS. In order to get a finer temporal
resolution of the prediction scores, we use a overlapping-
sliding window technique to generate the proposals, with
a stride of 16 frames, for example, which corresponds to a
temporal resolution of about 0.5 seconds. In terms of imple-
mentation, we utilize PyTorch’s multi-process Dataloader3

and the Decord package4 for efficient video frame decoding
with CPUs (in parallel with the action recognition module,
which mostly using GPUs).

3.3. Action Recognition Module

Our key component is the action recognition module,
which takes the action proposal frames as input and pro-
duces per-proposal action classification scores. Our model
is based on the improved multi-scale vision transformers
(MViT v2) [11, 19], which learn a hierarchy from dense (in

3https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader
4https://github.com/dmlc/decord

space) and simple (in channels) to coarse and complex fea-
tures. Fig. 3 shows the detailed architecture of the model
(using 16x4 and 224x224 spatial-temporal proposal input
as an example). MViT v2 first utilizes 3D convolution as
the Patch Embedding to produce visual tokens, and then
they are added with separate spatial and temporal positional
embedding before input to the self-attention block compu-
tation. Each self-attention block consists of a multi-head
pooling attention layer (MHPA) and a multi-layer percep-
tron (MLP), and the residual connections are built in each
layer. The feature of each self-attention block is computed
by:

X1 = MHPA(LN(X)) +X

Block(X) = MLP(LN(X1)) +X1

(2)

where X is the input to each block. Multiple self-attention
blocks are group into stages. The channel dimensions are
expanded before the multi-head attention computation as
in [19] at the start of each resolution stage, while the spatial
dimensions are reduced through 3D convolutions and max
pooling, as shown in Fig. 3. As the features go through each
stage of the model, the spatial and temporal dimensions of
the features are reduced while the channel dimension is in-
creased. Finally, the spatial and temporal features are aver-
aged before inputting to the classification layer. For more
details of the backbone architecture, please refer to the re-
leased code and original papers [11, 19].

3.4. Post Processing Module

As shown in Fig. 2, the action recognition module pro-
duces a classification score for each action proposal, which
is temporally overlapped with each other. We aggregate
the scores by averaging all the scores of each frame po-
sition. The finest temporal resolution of the frame-level
scores are decided by the stride of the action proposals. In
most of our experiments, we use 64-frame proposals with a
16-frame stride, which means the frame-level scores would
be changed about every 0.5 seconds. In the multi-view ac-
tion detection scenario, multiple videos are provided for
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Figure 3. Improved multi-scale vision transformers.

the same testing instances, i.e., we have multiple lists of
frame-level scores to produce the final action instance out-
put. We adopt the following cross-view action instance se-
lection strategy: For each action class, given the frame-
level scores from multiple videos of different views, we first
extract continuous frames as action candidates with scores
larger than a threshold within each video. For each video,
the action candidate with the highest averaged scores is se-
lected. For cross-view selection, we select the action can-
didate with most number of frames for each action class.
Finally, the selected action candidate is output by the sys-
tem after a rounding operation on the start and end times.

3.5. Multi-crop Data Augmentation Training

As mentioned in the action recognition module, our input
to the model is a fixed-length video clip while our action tar-
gets are of variable length. To better facilitate training, we
first convert the original variable length annotations of the
training set into a list of video segments with action class
IDs. The empty segments (the video clip without any an-

Figure 4. Multi-crop data augmentation training.

notations) are considered as the class 0 (normal driving).
During training, for each action sample, a random 16x4 (or
32x3) clip is sampled temporally within the positive seg-
ments, as well as randomly spatially cropped, to combine
into a mini-batch. Note that we do not use random flipping
and Rand Aug [9] as in the original MViT [11] paper since
this challenge distinguishes actions of left and right. The
process is shown in Fig. 4. Through this training process,
although the original annotations are of variable length and
our backbone model takes in fixed-length video clips, the
model can be trained with all possible clips within the train-
ing set.

4. Experiments

We evaluate the proposed Stargazer system on the Nat-
uralistic Driver Action Recognition of AI City Challenge
dataset [32]. We demonstrate that our model performs fa-
vorably against other systems on this challenging task.
Dataset. The whole dataset contains 90 video clips cap-
tured from 15 drivers. The length of each video is about 10
minutes, and it is about 14 hours in total. These drivers per-
form every one of the 18 different distracted actions once in
random order in each video. There are three synchronous
cameras recording from different angles mounted in the car.
Each driver is recorded twice because of performing two
kinds of tasks: one is performing without appearance block,
and another is performing with some appearance blocks
(e.g., sunglasses, hat). Therefore, record each driver twice
to collect 6 videos, 3 videos in sync without appearance
block and 3 videos in sync with some appearance block.
Evaluation metrics. The evaluation metrics are measured
by the F1-score. An activity is correctly identified when
its starting time and ending time both are within one sec-
ond of the ground truth. In order to compute the F1-score,
an identified activity is true-positive (TP) when it is cor-
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Figure 5. Example of the single video prediction scores and
threshold selection.

rectly identified. And correspondingly, an identified activ-
ity is false-positive (FP) when it is not a TP activity. When
a ground-truth activity is not correctly identified, it is con-
sidered a false-negative (FN).

Implementation Details. We initialize our backbone MViT
v2 model with pre-trained model weights from Kinetics-
700 dataset [17]. The pre-trained MViT v2 models has a
Top-1/5 accuracy of 71.91/90.52 and 74.08/91.87, respec-
tively for 16x4 and 32x3 models, both with a 224x224 spa-
tial crop inputs. We first down-sample all the videos to 540p
resolution for faster training and testing. In terms of an-
notation conversion as mentioned in Section 3.5, we have
experimented with or without the empty video segments as
the normal driving class (see also Fig. 4), and found that
training without the empty video segments is slightly better,
but the grid-searched thresholds with models trained using
the empty video segments are better across all other models
(even used for models that are not trained in this way). We
train all our models on the AI City training set using a learn-
ing rate of 0.0001 for 200 epochs, with a warm-up period of
30 epochs and a cosine decay. We utilize the adamw opti-
mizer with a batch size of 128 or 32 (for 32x3 models). For
the initialization of the larger 448x448 spatial crop mod-
els, we convert the positional embedding of the pre-trained
model weights to the proper resolution, as done in previous
works [11]. For the proposal generation, we use a stride of
16 frames for the 64-frame long model. To select the final
post-processing threshold for each action class, we either
use the grid-searched weights from split 1 or manually se-
lect them by looking at the prediction visualization with the
videos on the validation set, as shown in Fig. 5.

Rank Team ID F1 Score
1 VTCC - UTVM 0.3492
2 Ours 0.3295
3 CybercoreAI 0.3248
4 OPPilot 0.3154
5 SIS Lab 0.2921

Table 1. Comparison to other submissions methods on the A2 val-
idation set. Results are from the official leaderboard of the com-
petition. Numbers denote F1 scores thus higher are better. Our
system has won the runner-up place.

4.1. Main Results

Table 1 lists the top-5 leaderboard results of our system
and other submissions. Our system has won the second
place. The leaderboard numbers are from the validation
set (A2 videos). Our best submission uses the 16x4 MViT
v2 model with a spatial crop of 448x448. The annotations
are converted without the empty segments and the models
are trained for 200 epochs, which takes 2-3 hours with 2x8
A100 GPUs. In terms of data augmentation, as mentioned
in Section 3.5, only random spatial and temporal jittering
are used. The final action thresholds are selected empiri-
cally through looking the videos and the prediction scores
as described in Section 3.4.

4.2. Ablation Studies

Training / Val Data Top-1 Err Top-5 Err
Split - 1 67.86 35.71
Split - 2 45.83 16.67
Split - 3 63.39 29.46
Split - 4 76.79 41.07
Split - 5 54.17 17.50

Table 2. Comparison of different data splits. See text for details.

We conduct most of our ablation experiments locally
with the official training set. As we mention before, the of-
ficial training set consists of performances from 5 different
drivers. Hence, we split the official training set into train-
ing and validation based on the identity of the drivers. We
answer the following questions:
Which local splits are better? We train and validate our
baseline model on the 5 splits of the official training set as
shown in Table 2. We train on 4 drivers’ video data and test
on the other one. The reported numbers are top-1/top-5 er-
ror rates on the validation set. For validation, a single center
clip of each annotated segment is used for fast evaluation.
This baseline model is the 16x4 model with 224x224 crop
trained with adamw optimizer and a learning rate of 0.001.
As we see, the results vary a lot across different splits as the
data within a split is too small. By comparing to the results
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on the leaderboard, we conclude that split 1 is better corre-
lated with the A2 dataset hence for the rest experiments we
only use split 1 data.

Run Name Top-1 Err Top-5 Err
Baseline (lr = 0.001; 224) 67.86 35.71
+ MixUp 66.96 38.39
+ lr = 0.0001 61.61 32.14
+ lr = 0.005 81.25 58.04
+ 100 epochs 67.86 37.50
+ 448 crop 52.68 23.21
+ 32x3 Model 53.57 32.14
+ 32x3 Model, 448 crop 47.66 17.97

Table 3. Comparison of different hyper-parameters. See text for
details.

Does stronger data augmentation method help? In Ta-
ble 3, we utilize Mix Up [42] and find that it does not sig-
nificantly improve the results.
Does larger model help? We experiment with models with
larger spatial crop (from 224 to 448) and longer video clip
input (32x3), and the results show that larger models im-
prove the accuracy significantly.
Other hyper-parameters. We also compare the baseline
model with using other hyper-parameters. We find that
shorter training schedule (100 epochs vs. 200 epochs) hurts
performance and a learning rate of 0.0001 is optimal.

4.3. Post Processing Experiments

Run Name F1 Score Precision Recall
Ours - Leaderboard 0.3295 0.3184 0.3413
+ A2 grid search 0.3333 0.3240 0.3432
+ A1 val threshold 0.2767 0.2682 0.2857
+ 32x3 Model 0.2407 0.2626 0.2814
- rounding function 0.2139 0.2087 0.2216
DanTAD [39] 0.0446 0.0447 0.0444

Table 4. Comparison of different post-processing strategies on the
leaderboard. We also compare our method with a strong method
in temporal action localization. See text for details.

In this section, we present our experience with the post-
processing techniques and compare them on the leader-
board, as shown in Table 4. If the round function on the
start and end time is removed (mentioned in Section 3.4),
the performance drop significantly. We utilize the thresh-
olds from a different model trained on split 1 of the official
training set. The action score thresholds for each class are
grid-searched on the split 1 validation set and applied on
the full-dataset trained model. We obtain a 0.2767 F1 for
this run. Under the same setting, we also submit a larger
model with 32x3 and 448 crop inputs. It is surprising that

the performance does not reflect what we observe in the ab-
lation experiments (Table 3). Finally, given a sub-set of the
A2 videos, we manually label the videos, and apply grid-
search on the annotations to get the best action score thresh-
olds and submit to the general leaderboard, which returns
better results than our official scores. The large variance
of performance given the same model with different post-
processing techniques may suggest that the evaluation met-
ric of the temporal localization part is too strict. A tempo-
ral Intersection-over-Union method might be more suitable.
We also compare our method with a recent strong model
in temporal action localization, namely DaoTAD [39], on
this dataset. DaoTAD performs well on THUMOS’14. As
shown in Table. 4, DaoTAD performs much worse than our
method, which suggests that more research is needed to
make those models work well on this dataset.

5. Conclusion
In this paper, we have presented a new transformer-based

system for action detection. We refer to the resulting sys-
tem as Stargazer. We showed the efficacy of our model on
the Naturalistic Driver Action Recognition of AI City Chal-
lenge 2022.
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