
Multi-Camera Vehicle Tracking Based on Occlusion-aware and Inter-vehicle
Information

Yuming Liu, Xiaochun Zhang, Bingzhen Zhang, Xiaoyong Zhang, Sen Wang, Jianrong Xu
Shenzhen Urban Transport Planning Center Co., Ltd., Shenzhen, China

{liuyuming, zxc, zhangbingzhen, zhangxy, wangsen, xujianrong}@sutpc.com

Abstract

With the demands of analyzing and predicting traffic flow
for applications in smart cities, Multi-Target Multi-Camera
vehicle Tracking(MTMCT) at the city scale has become a
fundamental problem. The MTMCT is challenging due to
the view variations, frequent occlusions, and similar ve-
hicle models in the same camera. This work proposes an
MTMCT framework based on occlusion-aware and inter-
vehicle information that can effectively match vehicle track-
lets. The occlusion-aware module segments the tracklets of
an occluded and occluding vehicle pair. It recalculates the
similarity of the complete tracklets, which can handle the
occlusions and suppress false detections. This work pro-
poses an inter-vehicle information module to improve the
matching accuracy. The module can enhance the ability
to distinguish similar vehicles under the same camera at
different times. The proposed whole framework consists
of four modules: (1) vehicle detection and feature extrac-
tion by re-identification models, (2) single-camera tracking
(SCT) to produce initial tracklets with an occlusion-aware
module, (3) tracklets similarity by inter-vehicle association,
(4) clustering in adjacent cameras for multi-camera track-
lets matching. The proposed method obtains IDF1 score of
0.8285 on the Track-1 multi-camera vehicle tracking task of
the 2022 AI City Challenge.

1. Introduction

Multi-Target Multi-Camera vehicle Tracking (MTMCT)
is an essential component in many tasks related to trans-
portation. It can provide rich information for traffic sig-
nal time planning, automatic traffic monitoring, traffic flow
prediction, and simulation. As shown in Figure 1, the
MTMCT task is to track multiple vehicle targets from the
cameras at different locations. Typically, the main com-
ponents of an MTMCT system include vehicle detection,
single-camera tracking (SCT), vehicle re-identification (Re-
ID), and multi-camera tracklets matching (MCTM). Unlike

Figure 1. Multi-target multi-camera tracking task is to track mul-
tiple vehicle targets from the cameras at different locations

classical single-camera multiple object tracking (MOT),
MTMCT needs to generate one complete global track-
lets for an identical vehicle on a long road by different
cameras without overlapping areas. For the SCT mod-
ule, many tracking-by-detection methods have been pro-
posed recently due to the improvement of object detec-
tion techniques [2, 26, 28]. This paradigm will generate a
set of detections for each video frame independently that
the detections link to tracks based on a similarity measure.
That similarity often considers visual features extracted by
a re-identification model for the MCTM module, Hsu et
al. [11] propose strategies of distinguishing tracklets with
several pre-defined zones for every camera and then ap-
ply the greedy algorithm to generate the final matching re-
sult. Chone Liu et al. [13] apply the hierarchical clustering
method to match adjacent camera tracklets. Different lev-

3257



els of clustering focus on the spatio-temporal relationship of
different tracklets, which will help identify vehicles whose
links suffer from significant appearance changes.

However, there are still several significant challenges for
the MTMCT task. The representational ability of the ex-
tracted features under occlusion since the re-ID model can
get confused by overlapping nearby targets limited by cam-
era resolution, distortion, deformation of lighting condi-
tions, and vehicle occlusion conditions. In real traffic sce-
narios, vehicles have similar appearances. So it is unreliable
to use the re-identification model alone to distinguish these
vehicles in the SCT stage. In addition, the identical vehicle
instance may have a significant appearance change under
different cameras because its position relative to the camera
has changed. It is also tricky for the re-identification model
to distinguish these tracklets directly. It leads to the fact
that the clustering algorithm cannot directly distinguish the
tracklets of similar vehicles under a single camera.

Many occlusions and missed results are generated when
the vehicle waits for the traffic light in the SCT. We pro-
pose an occlusion re-ranking module to mark the occluded
vehicle instances. It segments the tracklets of an occluded
and occluding vehicle pair and recalculates the similarity of
the sub-tracklets to re-map the id. The sub-tracklets will
be stored for follow stage to improve the impermanence of
MCTM.

Aiming at the challenge that it is difficult to distinguish
similar vehicles in the MCTM, we propose an inter-vehicle
information module. We employ the adjacent tracklets fea-
tures to calculate the similarity and improve the matching
accuracy of tracklets between multiple cameras. The moti-
vation is a particular similarity between in-vehicle queues
between cross-cameras. The surrounding vehicles of the
target vehicle are also similar to other cameras. For the fol-
lowed clustering stage, we use inter-vehicle information to
calculate the similarity of the tracklets that can distinguish
vehicles with similar appearances at different times of the
same camera.

The main contributions of this paper are summarized as
follows:

• Propose an occlusion-aware module to segment the
tracklets of an occluded and occluding vehicle pair and
recalculate the similarity of the sub-tracklets, which
can reduce the occlusions and suppress false detections
in the SCT stage.

• A inter-vehicle information module is proposed to im-
prove the matching accuracy of tracklets between mul-
tiple cameras, which can significantly avoid feature
mismatching between cross-cameras.

2. Related Work
2.1. Vehicle Detection

Object detection is the most popular task in computer vi-
sion, which locates and classifies the objects by a bounding
box. Typically, this task can be organized into one-stage
methods and two-stage methods. SSD [14] and YOLO [23]
are representative one-stage methods that combine detec-
tion and recognition into one integrated model. The two-
stage approach, Faster-RCNN [6], and Mask R-CNN [7],
split it into region proposal network (RPN) and another
classification model to improve the prediction of bounding
boxes.

2.2. Single-Camera Vehicle Tracking

Single-Camera Tracking (SCT) could be divided into the
tracking-by-detection paradigm, while the other is jointing
object detection with Re-ID in a single network. Bew-
ley et al. introduce a Simple Online and Realtime Track-
ing (SORT) algorithm [2], which tracks bounding boxes by
using a Kalman filter and Hungarian algorithm correctly.
Nicolai et al. [26] propose that the appearance features ex-
tracted from a deep network enhance the association cost al-
gorithm on the base of SORT. The deep network provides a
normalized vector with 128 features and uses the cosine dis-
tance between those vectors to compute similarity scores.
On the other hand, some research joint the appearance em-
bedding model into a single-shot detector so that the model
can simultaneously output detections and the corresponding
feature [1, 22].

2.3. Vehicle Re-identification

The aim of vehicle re-identification (Re-ID) is to retrieve
vehicles that appear in different cameras. Thanks to the
popularization of smart cities and smart transportation, ve-
hicle ReID has received more attention and research. Chen
et al. [3] and Rikiya et al. [21] mine informative samples
in the vehicle Re-ID training phase. Shen et al. [19] apply
the spatial-temporal constraints to reduce the sample search
space. Zheng et al. [29] propose a joint learning frame-
work, which combines ReID learning and data generation
end-to-end. Zhou et al. [30] generate a multi-view feature
by transforming a single-view feature against the orienta-
tion variation. In recent years, with the rapid development
of transformer-based vision tasks, vehicle re-identification
has been greatly improved as in [10, 15].

2.4. Multi-Camera Vehicle Tracking

Most MTMCT researches design involves the following
steps, object detection, multi-target single-camera tracking,
appearance feature extraction for ReID, and cross-camera
tracklets matching. Methods [4, 5] establish a global graph
for multiple tracklets in different cameras and optimize for
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Figure 2. The proposed MTMCT framework is shown in Figure 2. The steps of MTMCT are as follows: (1) Vehicle detection and feature
extraction by re-identification models, (2) single-camera tracking to produce raw tracklets with occlusion-aware module, (3) tracklets
similarity by prior traffic knowledge and inter-vehicle information, (4) clustering in adjacent cameras for multi-camera tracklets matching.
The detailed process will be described below.

an MTMCT solution. In the cross-camera tracklets match-
ing stage, most methods regard matching as a tracklets clus-
tering problem that needs to calculate the similarity between
tracklets. Many researchers focus on reducing searching
space by the spatial-temporal constraints and traffic rules.
Chong Liu et al. [13] propose Direction Based Temporal
Mask, which helps reduce matching space for visual re-
identification. It also proposes sub-clustering in adjacent
cameras to merge adjacent tracklets and then uses these
matched local tracklets for query expansion. The method
helps link the vehicles suffering from great appearance
changes. Jin Ye et al. [27] also establishes the distance ma-
trix to associate all candidate trajectories between two con-
secutive cameras. It reduces the search space by constraints
of travel time, road structure, and traffic rules, where Re-ID
features compute all distance matrices.

3. Proposed Method
3.1. Overview

The proposed MTMCT framework is shown in Figure
2. The steps of MTMCT are as follows: (1) vehicle de-
tection and feature extraction by re-identification models,
(2) single-camera tracking to produce raw tracklets with
an occlusion-aware module, (3) tracklets similarity by prior
traffic knowledge and inter-vehicle information, (4) cluster-
ing in adjacent cameras for multi-camera tracklets match-
ing. The detailed process will be described below.

3.2. Vehicle Detection

Vehicle detection is the basis of the MTMCT task, and
the performance directly affects the effectiveness of the
whole framework. The AI City Challenge organization pro-
vides vehicle detection baselines from popular deep mod-

els, including YOLOv3, SSD [14], and Mask R-CNN [7].
Surprised by the performance and simplicity of the latest
version of YOLO, this paper applies the YOLOv5x model
to detect vehicles. The model pre-trained on the COCO
dataset provided by the YOLO organization has proved
its performance in cars detection. The official model pre-
trained on COCO datasets contains 80 categories, but only
cars, trucks, and buses are used in this task. Therefore, the
detection model in this paper combines these three types
of targets and uses non-maximum suppression to avoid the
same target being detected multiple times.

3.3. Vehicle Re-identification

Following existing vehicle re-identification works, we
apply FastReID Toolbox [9] to build a re-identification
model. We use the BOT-R50-IBN backbone, which has a
strong generalization ability to extract appearance features
for the presence of occlusions, different illumination condi-
tions, and viewpoint changes. The BOT-R50-IBN consists
of ResNet50 [8], an attention-like non-local module, and
an instance batch normalization (IBN) module [24] which
can learn more robust features. The model uses generalized
mean pooling (GeM) to aggregate feature maps generated
by the backbone into a global feature. The loss function
used is Cross-Entropy loss and Triplet loss like:

Lr = Lc + αLt (1)

while the Lc and Lt stands cross-entropy loss and triplet
loss respectively. The cross-entropy loss is formulated as
follows:

Lc =

i=1∑
C

yilog(ŷi) + (1− yi)log(1− ŷi) (2)
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Figure 3. The illustrations of Occlusion-aware Module. Split the raw tracklets into sub t1−1, sub t1−2, sub t2−1, sub t2−2 due to
Intersection-over-Union. Then calculate the similarity of re-id features between the sub-tracklets respectively, according to the similar-
ity, sub t1−1 and sub t2−2 are merged, and sub t1−2 and sub t2−1 are merged.

where C is the number of vehicle categories in the dataset,
ŷi is the i ground-truth label, and yi is the i predicted prob-
ability.

Triplet loss focuses on optimizing the distance between
the training samples, to ensure that the embedding g(xa)
of the anchor vehicle is closer to its positive g(xp) than the
negative vehicle, the triplet loss with N samples can be for-
mulated as:

Lt = max(D, 0) (3)

where the D is,

D =

N∑
i=1

[
∥g(xa

i )− g(xp
i )∥

2 − ∥g(xa
i )− g(xn

i )∥
2
+ β

]
(4)

3.4. Single-Camera Tracking

3.4.1 Basic Algorithm

In single-camera tracking, the goal of the task is to associate
detections in video frames with the corresponding tracklets.
Following the tracking-by-detection paradigm, we crop the
detected target from the detection and use the ReID model
to extract the appearance features of the target. Then we re-
fer to the JDE [25] to build a tracker management module,
which uses the extracted appearance features. It performs
Cascade Matching and Kalman filter correction with the po-
sition information of the vehicle in the image to generate
the tracklets. Finally, the tracklets of each vehicle under a
single camera are obtained. The tracklets will contain the
following vectors :

Trajid =
{
Trajidn , T rajidn+1...T raj

id
m

}
(5)

while Trajidt represents the feature of each track at time t.
It consists of appearance featureft and position feature bt.

Trajidt = ft, bt (6)

3.4.2 Occlusion-Aware Module

Single-camera multi-target detection algorithms usually en-
counter occlusions and missed detections. The literature
[20] introduces the concept of occlusion and occlusion
tracklets and determines whether it is an active or inac-
tive tracklets through non-maximum suppression. The min-
imum overlap criterion adds additional constraints such
as static tracklets to identify and remove false detections.
However, this constraint ignores the appearance features of
historical tracklets, so we propose an occlusion-aware mod-
ule and re-identify occlusion tracklets through tracklets seg-
mentation. Similarly, the IOU of the two tracklets is calcu-
lated and set at a threshold ζiou. An occluded and occluding
tracklets pair will be marked while the IOU is greater than
the ζiou threshold. We divide the original two tracklets into
sub-tracklets and calculate the similarity of appearance fea-
tures between the sub-tracklets, respectively. Finally, we
join the most similar sub-tracklets according to the time se-
quence and re-assign the id. As shown in Figure 3, the orig-
inal SCT module switches the id between black car and red
car due to occlusion. The proposed module will split the
raw tracklets into sub t1−1, sub t1−2, sub t2−1, sub t2−2.
Then calculate the similarity of re-id features mentioned
above between the sub-tracklets, respectively. According
to the similarity, sub t1−1 and sub t2−2 are merged, and
sub t1−2 and sub t2−1 are merged.

3.5. Multi-Camera Tracklets Matching

After the SCT stage, the next step is to match single-
camera tracklets. The multi-camera tracklets matching
mainly includes three parts. The road prior knowledge is
used to reduce the matching space. The inter-vehicle in-
formation is used to establish a matching similarity matrix.
The clustering algorithm completes the final matching of
the multi-camera tracklets.
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Figure 4. The illustrations of Inter-vehicle Information Module.
For the id529 vehicle in the C44 camera, the red vehicle id277 and
id138 are both similar to it. There is a id242 vehicle around id138
in C43 that is similar to id520 in C44, so the id138 vehicle in C43
should be considered a matching vehicle.

3.5.1 Prior Traffic Knowledge

In the MTMCT task, prior knowledge of the road is the es-
sential part that can greatly reduce the search space of the
tracklets. It also filters out the matching tracklets pairs un-
reasonably in real road scenes. Following previous work
[11, 13, 17, 27], The proposed method uses the road cam-
era distribution to filter out useless matching pairs, includ-
ing both spatial and temporal dimensions. We divide the
crossroads into four zones first. Each tracklet under a single
camera must contain the start-end zone and time so that it
will be marked as,

traj = {c, zs, ze, ts, te} (7)

Where the c represents camera id, zs, ze, ts, te stands for
the start zone, end zone, start time, and end time. If the
tracklet is only across one zone, the tracklets are consid-
ered noise. According to the road distribution information,
it can be determined that two adjacent camera zones are
connected. For example, the C44 camera zone 1 will be
connected to the C43 camera zone 2, which is marked as
C441 − C432 −Dis. Dis is the distance between the two
cameras. In the tracklets matching stage, any tracklets un-
der SCT will be considered whether they satisfy the con-
straint mentioned above and estimate time conflicts of the
tracklets according to Dis. In addition, the entire region
topology can be constructed as a binary tree structure, and
the connectivity of non-adjacent regions can be judged by
Depth-First-Search (DFS).

3.5.2 Inter-Vehicle Information Module

The similarity calculation first considers the appearance fea-
tures of the ReID model. However, it is not easy to distin-
guish similar vehicles with the same camera. Under differ-
ent cameras, the vehicles around the same target are similar.
For example, as shown in Figure 4, for the id529 vehicle in
the C44 camera, the red vehicle id277 and id138 are both
similar to it. The time lag between the two vehicles being
tracked is only about 1 second. Thus, it is not easy to distin-
guish only by the vehicle’s appearance. But there is a id242
vehicle around id138 in C43 that is similar to id520 in C44,
so the id138 vehicle in C43 should be considered a match-
ing vehicle. Inspired by this information, we propose an
inter-vehicle information module to enhance the capability
of distinguishing. For each SCT tracklets, the k neatest ve-
hicles for the target during the tracking time will be counted
and sorted. The features of the top n neatest surrounding ve-
hicles will be taken as the inter-vehicle features. Therefore
each SCT tracklets will be represented by the following:

Trajid = f, b, f̂ (8)

f̂ present the inter-vehicle features. For a pair of tracklets,
the proposed method identifies valid inter-vehicle by Hun-
garian matching, which also uses the appearance feature of
inter-vehicle from the same ReID model. The final similar-
ity calculation is formulated as,

S(Traji, T rajj) = λS(fi, fj) + µ

∑≤n
e=1 MS(f̂ie, f̂je)

n
(9)

S refers to cosine similarity, while the MS refers to co-
sine similarity of matched inter-vehicle. λ, µ stands for the
scale coefficient. It can seem that if there are more inter-
vehicle matching pairs between the two tracklets, the simi-
larity score will be higher.

3.5.3 Hierarchical Clustering

Since the works [11–13] show promising competitiveness
in the MTMCT task by using hierarchical clustering meth-
ods, we apply similar clustering methods to match tracklets.
Based on the constraints motioned above and the proposed
inter-vehicle information, hierarchical classification algo-
rithms are employed to complete the final tracklets match-
ing. Encouraged, we only consider tracklets from adjacent
regions to ensure high-confidence clustering at the first clus-
tering. The remaining trajectories are clustered again to
explore matching pairs of tracklets spanning multiple cam-
eras. Finally, we can merge matched tracklets successfully
to form completed tracklets.
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Method IDF1 IDP IDR Precision Recall

baseline 79.58 82.62 76.76 86.25 80.13
+occ 81.15 85.95 76.86 89.49 80.03
+occ+inter 82.85 86.54 79.46 88.81 81.54

Table 1. The performance of each module proposed.

4. Experiments
4.1. Dataset

The CityFlowV2 [16] consisted of 3.58 hours (215.03
minutes) of video captured by 46 cameras spanning 16 in-
tersections in a mid-sized U.S. city. The dataset is divided
into six simultaneous scenarios. Three are used for training,
two for validation, and the other for testing. The dataset
contains 313931 bounding boxes for 880 distinct annotated
vehicle identities. The vehicles that passed through more
than one camera are labeled. Each video’s time offset and
geographic location are provided in each scenario to uti-
lize Spatio-temporal knowledge. The resolution of each
video is about 960p, and the videos have a frame rate of 10
FPS. CityFlowV2 covers various road traffic types, includ-
ing intersections, road extensions, and highways. The sub-
set for vehicle ReID, namely CityFlowV2-ReID, is split into
a training set with 52 717 images from 440 identities and a
test set including 31238 images from another 440 identities.
An additional 1103 images are sampled as queries.

4.2. Evaluation Metrics

For the MTMCT task, the IDF1 score [18] is used to
rank the performance on the leaderboard. IDF1 calculates
the ratio of the number of correctly identified detections to
the ground truth and the average number of calculated de-
tections. Denote IDTP as the count of true positive IDs,
IDTN as the count of true negative IDs, IDFP as the
count of false-positive IDs, and IDFN as the count of
false-negative IDs. The IDF1 scores could be calculated
as:

IDF1 =
2IDTP

2IDTP + IDFP + IDFN
(10)

4.3. Implementation Details

The proposed method is implemented in PyTorch 1.7.1
and is performed on two NVIDIA V100 GPUs. In the
detection stage, we use the YOLOv5x model pre-trained
on COCO to perform vehicle detection with a confidence
threshold of 0.1. We use FastReID Toolbox to train our
model in the vehicle Re-ID training process. The BOT-
R50-IBN is the backbone for training and inference. The
model is trained using Adam with the initial learning rate of
0.00035, batch size of 4, and the weight decay of 0.0005.
In the SCT stage, we use a modified JDETracker to perform

Team ID Name IDF1

28 matcher 0.8486
59 BOE 0.8437
37 TAG 0.8371
50 FraunhoferIOSB 0.8348
70 appolo 0.8251
36 Li-Chen-Yi 0.8218
10 Terminus-AI 0.8171
118 FourBeauties 0.8166
110 Orange Peel 0.8140
94 SKKU Automation Lab 0.8129
107 SUTPC(Ours) 0.8285

Table 2. Comparison of other team.

single-camera vehicle tracking with a confidence threshold
of 0.1 and an area threshold of 750 pixels. In the occlusion-
aware module, the IOU threshold is 0.75. To build an inter-
vehicle module, we set the k to 3 while the n is set to 3.

4.4. Experiments Results

Table 1 shows the effect of using each module sepa-
rately on the results that verified the effects of the proposed
module. The occlusion-aware module effectively improves
IDF1 scores from 79.58% to 81.15%. Furthermore, the
inter-vehicle information module made significant progress
both in the IDF1, IDP , and IDR scores. Finally, the
whole proposed method achieves 82.85% IDF1 scores. Ta-
ble 2 shows the comparison of other teams, which indicates
that the proposed method has good competitiveness with
other teams.

4.5. Visualization

Figure 5 shows the final matching results of the proposed
method on CityFlowV2. From left to right are the C41,
C42, and C43 cameras. Furthermore, the identical vehicles
are marked with the same ID across the different cameras.
In the first row, it can seem that a black truck marked as
id56 and green box has been tracked correctly from C41 to
C43 as same as the id18 green car in the second row and
the id71 blue car in the third row. The proposed method
generates correct matching pairs in different cameras even
if the tracklets have different angles or occlusion.

5. Conclusion
This paper proposes an effective framework for the

MTMCT task guide by occlusion-aware and inter-vehicle
information. Unlike other general MTMCT frameworks,
we propose an occlusion-aware module to segment the
tracklets of an occluded and occluding vehicle pair. The
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Figure 5. The final matching results of the proposed method on CityFlowV2. From left to right are the C41, C42, and C43 cameras.
Furthermore, the same vehicles are marked as the same ID across the different cameras. In the first row, it can seem that a black truck
marked as id56 and green box has been tracked correctly from C41 to C43 as same as the id18 green car in the second row and the id71
blue car in the third row.

proposed method recalculates the similarity of the complete
tracklets, which can improve the occlusions and lose chal-
lenge in the SCT stage. In the tracklets matching stage,
the proposed method employs an inter-vehicle information
module to improve the matching accuracy of tracklets be-
tween multiple cameras. It can significantly avoid feature
mismatching between cross-cameras and distinguish vehi-
cles with similar appearances at different times of the same
camera. The result shows the effectiveness of the system,
which achieves 0.8285 IDF1 scores on the Track-1 of the
2022 AI City Challenge.
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