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Abstract

This paper reports our approach for the 2022 AI City
Challenge - Naturalistic Driving Action Recognition (Track
3), where the objective is to detect when and what kinds of
actions that a driver performs in a long, untrimmed video.
Our solution is built upon the single stage ActionFormer
detector, in which temporal location and classification are
predicted simultaneously for efficiency. The input feature
for the detector is extracted offline using our proposed
backbone, which we named ”ConvNext-Video”. However,
due to the small size of the dataset, training the model
to avoid over-fitting becomes challenging. To address this
problem, we focus on training techniques that can improve
the generalization of underlying features. Specifically,
we utilize two methods: “learning without forgetting”
and semi-weak supervised learning on the unlabeled data
A2. Finally, we also add a second-stage classifier (SSC)
using our ConvNeXt-Video backbone. The SSC Classifer
is designed to combine information from multi-clips and
multi-view cameras to improve the prediction precision.
Our best result achieves 29.1 F1 score on the public test
set. Our source code is released at link.

1. Introduction
Temporal Action Detection (TAD) aims to detect the

start and end time of an action in an untrimmed video and
classify it. In the Track 3 [22] of 2022 AI City Challenge,
the objective is to detect inattentive actions of a driver in
videos recorded from different cameras. In particular, the
dataset includes the training set A1 and validation set A2,
each set has 5 drivers, and each driver has 2 videos collected
in about 9 minutes from 3 synchronized cameras placed at
Dashboard, Right Window and Rear views in the car, as
illustrated in Fig. 1. Only A1 has public ground truth labels,
while human labeling or semi-supervised labeling on A2
are not allowed. A prediction is true-positive if the start and

†equal contribution

end time are within 1 second of the ground truth and the
category is correctly recognized. It is false-positive if either
temporal boundary or category are mismatched (not true-
positive), and false-negative if a ground-truth activity that
was not correctly identified. The prediction performance is
evaluated using F1-score.

Figure 1. Sample frames from Dashboard, Rear View and Right
Window respectively.

While most of public datasets contain short activities,
typically happening in a period of 4-10 second, videos
in the Track 3 dataset have multiple and much longer
actions (more than 20 seconds). Hence, this imposes a
unique, practical challenge for TAD algorithms. In addition,
the small size of the dataset makes training deep-learning
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models prompt to be overfitted.
Therefore, in this work, we focus on extracting

discriminating and generalizing features for TAD
algorithms. Our contribution is summarized as follows:

• Develop an efficient backbone, that is built upon the
ConvNeXt [19] model, to extract feature for video
inputs.

• Combine Temporal Sensitive Pretraining [1] with
“Learning without Forgetting” [12] technique, and
semi-supervised learning to improve the feature
generalization.

2. Literature Review
2.1. Action Recognition

Action recognition is one of the most fundamental tasks
for video understanding, and there has been extensive
studies in this field. For deep-learning approaches,
the network architectures can be divided into two main
categories: CNN-based approach and Transformer-based
approach. CNN-based approaches are dominated by
3D-Convolutional Neural Networks. The early works
[6] extend the 2D convolution models into 3D-CNN by
inflating the its pretrained weight on ImageNet dataset. To
reduce the computation cost, later works [26, 27] factorize
the 3D kernel into (2+1)D by mixing spatial and temporal
dimensions. Furthermore, Neural Architecture Search [10,
11] are used to find the optimal networks.

Motivated by the success of the transformer in the 2D-
image domain, which divides an image into many patches
and then applies attention mechanisms on these patches
to extract features, recent works [3, 20, 23, 34] have been
developed with several self-attention variants and improve
performance progressively.

2.2. Temporal Action Detection (TAD)

The framework of TAD can be classified into two-stage
and single-stage detectors.

The two-stage approach uses an proposal network to
generate candidate video segment, and further classify
the proposal or refines their temporal boundary in the
later stages. Most works using this approach are focused
on action proposal generation, by either detecting action
boundary [15, 17, 35] or classifying anchor windows [5, 9].
Recent methods also take advantages of Transformer [28]
to increase the long-range temporal connection [24, 37], or
by using graph network [29, 31]. In general, the two-stage
approach can take the benefits of well-established methods
for video recognition in the second stage, achieving higher
precision detection but also requires double computation
and it is comparatively slower.

Motivated by the success of Single-Stage in object
detection, recent works [4,16,21,30] try to adopt the simple
architecture of single-stage detector to the action detection.
Anchor-Free methods [13, 32], inspired from FCOS object
detector [25] are also proposed to further simplify the
pipeline. ActionFormer [33] and TadTR [18] are the two
concurrent works that adopts the Transformer [28] to the
encoder for single-stage detectors. Single-stage detector is
simpler since it can predict the action category and temporal
boundary concurrently. In addition, it can also serve as
the proposal network in any two-stage detectors if higher
precision is desired.

3. Method
3.1. Models

The model pipeline is illustrated in Fig. 2. We describe
its main components, including the backbone, detector and
second-stage classifier, as follows.

3.1.1 Backbone Model

We modify the ConvNeXt [19] backbone from image
classification for the task video recognition. The model
takes as input a clip X ∈ RL×H×W×3 consisting of L RGB
frames of size H ×W sampled from the original video.

The ConvNeXt backbone has 4 stages, and we forward
L frames to stage 1 and 2 of the network as a regular batch
of 2D images, and outputs L features of size (H/8×W/8×
C). Differently, before continuing to the deeper stages, we
rearrange the 3D feature of size (L×H/8×W/8× C) to
a 2D feature of size (hH/8×wW/8×C), where hw = L.
For example, for L = 9 frames, we set h = 3 and w = 3, as
illustrated in Fig. 3. Intuitively, this casts the problem from
video recognition into classifying a “collage image” [2].

To increase the temporal connection, we add a depth-
wise convolution of kernel size (h,w) and dilation (H,W )
without padding to the ConNeXt block in the deeper stages,
as shown in Fig. 4b and name it as ConvNeXt-Vid [2] block.

Concretely, in the ConvNeXt-Vid block, for an input
feature of size hH ×wW ×C, the depth-wise convolution
7 × 7 extracts the spatial features S ∈ hH × wW × C,
and the dilated convolution extracts the temporal feature
T ∈ H × W × C. The spatial-temporal fusion is then
obtained by adding T and S:

F = S + α ∗ [T ](×h,×w) (1)

where [·](×h,×w) denotes repeating the tensor h times
vertically and w horizontally, α ∈ RC is the learnable
vector to balance between temporal and spatial branch, and
∗ is the element-wise product. This design allows sharing
the temporal features T for all frames.
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Figure 3. Visualize the pipeline of ConvNeXt-Video backbone.
We use an input video with 9 sampled frames as an example.
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Figure 4. Modifying ConvNeXt block for Video Recognition

Finally, we use the architecture configuration of
ConvNeXt-tiny [19], which has C = (96, 192, 384, 768),
B = (3, 3, 9, 3) where C denotes the channel number of the
hidden layers in the first stage, and B is the number blocks
in each stage. We only replace ConvNeXt by the ConNeXt-
Vid blocks in stage 3 and 4 of the model. The final feature
is extracted by global average pooling operator.

3.1.2 Temporal Action Detector

We use the ActionFormer [33] as our baseline detector
thanks its simple and efficient architecture. ActionFormer
has two parts: encoder and decoder. The encoder takes
as input a feature X ∈ RT×C , where T is the temporal
dimension and C is the number feature. The encoder
consists several transformer blocks with down-sampling in
between to enrich the temporal feature, and output a feature
pyramid of different temporal resolution. The decoder
includes a classification and regression head, to predict the
action category and the temporal boundary. The decoder
takes the feature pyramid as input and output the class and
start-end time directly without using extra classifier.

3.1.3 Mutli-View Feature Learning

As mentioned in the introduction, the videos are recorded
from 3 cameras, thus combining the information from
different sources is important. Watching the video and
ground truth, we observe that several actions, such as Phone
Call or Singing, can be observed easier in the Dashboard
view than the others. Therefore, to better utilize the
information, we simply concatenate the feature extracted
from different views together, assuming that the camera are
synchronized. This will triple the input feature dimension
for the ActionFormer.

3.1.4 Second-Stage Classifier (SSC)

To further improve the precision of ActionFormer, we also
train an extra classifier as the second-stage and use the
prediction of transformer as proposals. Since the duration of
actions in the dataset is about 20s, we split a segment into 5
mini-clips, each last about 4 seconds, and use the backbone
ConvNeXt-Video to extract the feature for each clip.

To better fuse the features extracted from 3 different
views and 5 mini-clips from a proposal segment, we
rearrange it into a 2D tensor C × 3 × 5, where C is the
number of feature of a single view-single clip. We then
pass the feature to sub-network (neck), which include a 2
Convolution of kernel (1,5) and (3,1) to fuse the feature in
temporal and views respectively.
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Figure 5. Temporal Sensitive Pretrained without forgetting.

3.1.5 Score Fusion

Since the ActionFormer also returns the class prediction,
we test several ways to ensemble the results between the
two stages, such as element product or average. However,
we found that using only the SSC Classifier yields higher
scores in our experiments.

3.2. Training Techniques

3.2.1 Learning without Forgetting

Although training end-to-end both backbone and detector
promisingly yields better performance, there are two
constraints. First, the dataset must be large enough
otherwise the model will be overfitted easily. Second,
training with large image size is infeasible due to the
huge compute memory required to process the entire video.
Therefore, normally the image must be down sampled to
small size [14], otherwise the backbone is first pretrained
and then features are extracted offline [1]. Hence, we follow
the later idea [1] due to the small size of dataset.

To further improve the generalization of the model, we
employ the “learning without forgetting” technique [12].
The main idea is illustrated in Fig. 5. Here, the teacher
model is pretrained on Kinetics 400 (K400) dataset [6] and
frozen during training. The student model is initialized
from the teacher, but is augmented new heads for the new
task Temporal Sensitive Pretraining (TSP) [1]. The task
TSP is trained as normal, such that the model not only
learns to classify an action in Classification head, but also
detects whether an input clip contains background or action
in “Actionness” head. In addition, we use Kullback–Leibler
(KL) Loss to distill the output of teacher to the student
through its original head, i.e. the one that was trained
on K400. Note that we don’t need the K400 dataset for
distillation learning. Since the teacher is frozen, the student
learns to mimic what the teacher observes in the new data.
Therefore, by using dual supervision where the total loss is:

Loss = LossKL + wLossTSP (2)

we force the backbone learn to extract feature for the
new tasks, but refrain it forgetting useful features already

learn from the pretrained K400 dataset. This improves the
generalization for the transfer learning. In (2), w is the
weight to balance the forgetting and new task. We select
the default values w = 50 but found that w ∈ [50 : 200]
also works.

Furthermore, we add a Neck network to compress the
feature in order to decrease the model capacity. The Neck
is a single Dilated Convolution with kernel size (h,w) and
dilation (H,W ) without padding. For an input feature
extracted from the Backbone, the Neck reduces its spatial
dimension from (hH × wW ) to (H,W ) and compresses
the channel from C = 768 to C/4 = 192.

3.2.2 Semi-Weak Supervised Learning

To enrich the dataset, we use the model trained on A1 to
generate pseudo labels on the Validation set A2. We select
the top-score samples from A2 for training in the second
round. However, there are two issues need to consider when
using pseudo-labels.

First, since there are possibly false-negative detection,
i.e. foreground segments that are detected as background.
If we use them as background samples to train the network,
it will harm the recall ratio. Therefore, we first filter the
samples with scores less than 0.05 as negative, greater
than 0.3 as positive, and ignored otherwise. For negative
samples, we subtract their score from 1 to obtain their
background score, and use Soft-NMS to filter the overlaped
segments. Finally, we select top-10 segments with highest
background score as the negative samples for training, in
addition to the foreground samples.

Second, under the restriction that start time and end
time must be within 1 second of the ground truth, which
is very sensitive and bias to human labeling, the temporal
boundary of pseudo labels are not reliable enough to train
the network. Therefore, we only use pseudo data to
train the classification head of ActionFormer. In practical
implementation, we set the regression loss of ActionFormer
to 0 if the samples are from pseudo labeled A2.

4. Experiments

4.1. Setup

Datasets: The Track3 - AI City 2022 [22] provides the
training set A1 and validation set A2. Each set records
driving activity of 5 drivers, and each driver has two videos.
Each video lasts about 9 minutes and is recorded at fps 30
from 3 cameras placed at Dashboard, Window and Rear
views. For convenience when evaluating the model, we
label the dataset A2 and denote it as Local-A2. Our Local-
A2 achieves F1 score 46.24, Precision 47.9 and Recall
44.69 on the public evaluation system. This suggests that
there are more than 50% mismatches when different people
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Training
Round

Training Dataset
Pretrained
Top-1 Acc.

Detector
mAP

Detector
F1 score

With SSC
F1 score

1 A1 62.5 27.57 22.56 28.84
2 A1 + Pseudo-A2-v1 67.5 31.55 33.03 32.62
3 A1 + Pseudo-A2-v2 75 23.8 - -

Table 1. Training Progress Summary reported on Local-A2 dataset. With-SSC means combine the Action Former with the Second-Stage
Classifier.

label the same dataset. In addition, we also observe that for
drivers with ID 65818, 56306, 79336, there are around 1s
delay between the Dashboard camera and the other views,
indicating that the cameras are not perfectly synchronized.
Nevertheless, we use the start-end time in the Dashboard
as the synchronized labels for simplicity. We report the
accuracy Top-1 and Top-5 on Local A2 set for pretraining
the backbone, and the mAP when training ActionFormer
during ablation study.

Implementation Details: Our code is implemented
using MMAction2 [7] framework when training backbone,
and ActionFormer [33] for Temporal Action Detector.

For pretraining the backbone, we use AdamW optimizer
[26] with a batch size of 32. We use a cosine decay learning
rate scheduler and linear warm-up in the first epoch. The
initial learning rate is 1e-3, and decays to the minimal
value 5e-6. To regularize the model, we use the stochastic
depth with drop path rate 0.5. Because the TSP head is
initialized randomly, we multiply the learning rate of the
backbone by 0.25 and the Unforgetting head by 0.05 to
improve the stability. Since the relative position of camera
and drivers is fixed, we crop the right-haft of image in
the pre-processing step. For data-augmentation, we don’t
use image-flipping as common but apply RandAugment [8]
and Random Erasing [36]. Unless otherwise mentioned,
we sample a clip of 9 frames from each full length video
using a random temporal interval in range of 13 to 18, and
spatial size of 224 × 224 during training. When running
inference, we fix the temporal interval as 15 frames, thus for
the FPS=30, the feature is extracted from a corresponding 4
seconds segment.

For training and testing the detector, we first use the
pretrained backbone to extract features. We set the temporal
stride sT = 8 frames. For example, for 60 seconds
video, we will extract T = (60 − 4)/(8/30) = 210
segments, where each segment has 4 second length as
aforementioned. We train ActionFormer using AdamW
optimizer with weight decay 0.05, cosine decay learning
rate schedule and linear warm-up in the first 5 epochs. The
initial learning rate is 1e-3. To regularize the model, we set
drop-path rate to 0.1, drop-out 0.1, and label smoothing 0.1.
We train the model for 50 epochs using batch size equal 1.
Other hyper-parameters, including the architecture, are set
to the default values.

For the SSC classifier, we use the same training setting
as in backbone pretraining. Differently, we train the SSC
classifier using multiple segments and multi-view cameras
as mentioned in Sec. 3.1.4. Concretely, from each camera
view, we randomly sample 5 segments using the ground-
truth temporal, thus forming total 3 × 5 mini-clip input
for each action. Due to the memory constraint when
training with multi-views input, we can’t apply “Learning
without Forgetting” in this experiment, but believe the
results can be further improved. When inference, we use
the proposals from ActionFormer to crop the corresponding
video section, and split it to 5 segments for each view. The
temporal interval is adaptively selected to cover the whole
segment, but not greater than 18 frames.

4.2. Main Results

Our experiment results are summarized in Tab. 1. We
conduct three rounds of training with Pseudo labels on A2
dataset, as described belows.

4.2.1 Round 1: Training using A1 dataset

We first train the baseline models on A1 dataset. In this
first iteration, we train the TSP model, and achieve 62.5%
top-1 and 79% top-2 accuracy on the Local-A2. We use
this backbone to extract feature to train the ActionFormer
detector. The results are 27.57mAP at Temporal IoU
(0.8:0.85:0.9), and F1 score is 22.56. We also train
the second-stage classifier (SSC) and achieve 78% top-1
accuracy on the Local-A2. The SSC classifier achieves
higher accuracy because we run inference with 5 mini-clips
and 3 views, as described in Sec. 3.1.4 while for the TSP we
only report the results using single view. When fusing the
result of ActionFormer and the SSC classifier, we improve
the F1 score to 28.84 on the Local-A2.

4.2.2 Round 2: Training using A1 and Pseudo-A2-v1

We use the pseudo-labels generated in the Round 1, denoted
as Pseudo-A2-v1, to retrain the backbone with TSP . After
that, we use the feature extracted on A1 to train the
detector, but keep the SSC classifier unchanged to avoid
bias to dataset A2. In this second iteration, the TSP
model achieves 67.5% top-1 and 78.7% top-2 accuracy
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and the ActionFormer achieves 31.55 mAP at Temporal
IoU (0.8:0.85:0.9) and F1 score 33.03. After fusing the
ActionFormer and the SSC classifier, we achieve the F1
score 32.62 on the Local-A2. We continue using the
predicted labels as the pseudo labels for the Round 3,
denoted as Pseudo-A2-v2.

4.2.3 Round 3: Training using A1 and Pseudo-A2-v2

Repeating the process in Round 2 with the pseudo label
Pseudo-A2-v2, we further improve the TSP top-1 to 75%.
However, training again the detector yields lower mAP
score. We suspect the model is overfitted to the pseudo-
A2-v1. Thus, we stop training from here.

4.3. Result Analysis

4.3.1 Proposal Visualization

We visually inspect the quality of temporal proposals, as
illustrated Fig. 6. The on-score and off-score at the start-end
time are computed by accumulating the confidence score
of the proposals that have corresponding start-end time. In
general, we observe that the predicted temporal boundary
are within 1-3 seconds of the ground truth on the Local-A2
validation set.

4.3.2 Classification error

In this section, we would like to investigate the error due to
the classifier, assuming that the temporal proposal is perfect.
Figure 7 shows the confusion matrix for the SSC classifier
on our Local A2 dataset. We see that class 16 (“Singing
with Music”) and 17 (“Shaking or Dancing with Music”)
are the most confused classes. Concretely, along the column
16th in the matrix, in total 22 samples predicted as class
16, only 8 predictions are true-positive, while 6 samples
are mismatch with class 17, and 4 samples are mismatched
with class 6. In reverse, in the row 17th, only 3 over 10
samples of class 17 are recognized correctly, and 6 of them
are wrongly identified as class 16. Another pair of actions
are highly confused is class 12 (“Talk to passenger at the
Right”) and 13 (“Talk to passenger at backseat”), as seen
in rows 12th and 13th in the confusion matrix. The results
make sense since these classes are also difficult to distinct
even for human if using visual cue only. The small size
of dataset also hinder the generalized prediction for these
classes.

5. Conclusion
In this paper, we propose a solution for Temporal Action

Detection, particularly applied for the small-size dataset in
the 2022 AI City Challenge - Naturalistic Driving Action
Recognition (Track 3). Our method is built upon the

newly proposed ConvNeXt-Video backbone for feature
extraction, trained with Temporal Sensitive Awareness.
To improve the generalization for the model, we adopt
the techniques “learning without forgetting” and semi-
weak supervised learning. Combined with off-the-shell
ActionFormer Detector, we achieve the highest score 31.55
mAP at IoU (0.8:0.85:0.9) and F1 score 32.61 on our Local-
A2. On the leader board test set A2, our best F1 score is
29.1.
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