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Abstract

Multi-camera tracking of vehicles on a city-wide level
is a core component of modern traffic monitoring systems.
For this task, single-camera tracking failures are the most
common causes of errors concerning automatic multi-target
multi-camera tracking systems. To address these problems,
we propose several modules that aim at improving single-
camera tracklets, e.g., appearance-based tracklet splitting,
single-camera clustering, and track completion. After these
track refinement steps, hierarchical clustering is used to as-
sociate the enhanced single-camera tracklets. During this
stage, we leverage vehicle re-identification features as well
as prior knowledge about the scene’s topology. Last, the
proposed track completion strategy is adopted for the cross-
camera association task to obtain the final multi-camera
tracks. Our method proves itself competitive: With it, we
achieved 4th place in track 1 of the 2022 AI City Challenge.

1. Introduction

Multi-Target Multi-Camera Tracking (MTMCT) sys-
tems aim at tracking multiple targets, in our case vehicles,
as they move through a scene captured by numerous cam-
eras. This means localizing and tracking targets in each
camera feed and identifying the other instances of the same
target in the other camera feeds. Applications include traffic
flow analysis and traffic signal time planning.

An MTMCT system consists of two core components:
First, a single-camera tracking pipeline that localizes all rel-
evant objects in each video frame and connects these detec-
tions across time into tracklets. Second, an inter-camera as-
sociation module matches tracks belonging to the exact ve-
hicle across different cameras. In a complex real-world traf-
fic scene, the distance and orientation of the objects w.r.t. to
the camera vary enormously between cameras. Also, differ-
ent cameras have different technical characteristics. These
properties make both sub-tasks of MTMCT especially chal-

Figure 1. Challenges of tracking vehicles within a camera view
– Tracking vehicles in real-world scenarios is challenging due to
heavy occlusions, e.g., when vehicles wait at a traffic light. Some
vehicles are not detected while they are occluded which often leads
to track fragmentation or identity switches.

lenging in this context. To solve these problems, most
of the Single-Camera Tracking (SCT) methods follow the
tracking-by-detection paradigm [2–4, 49, 51, 58, 60]: First,
a set of detections is generated for each video frame inde-
pendently. Afterward, these detections are linked together
to form tracks based on a similarity metric. Usually, this
similarity metric considers visual features extracted by a re-
identification (re-ID) model together with position informa-
tion.

This has been proven to be a powerful approach in ideal
environments where targets are visible in their entirety.
However, in real-world environments, this is often not the
case: Vehicles occlude each other, particularly in crowded
scenes (see Fig. 1) at traffic lights or when vehicles over-
take each other. As a result, single-camera tracklets are di-
vided into multiple fragments or the tracklet switches from
one vehicle to another. To solve this, we develop a track
refinement module consisting of several mechanisms to fur-
ther improve single-camera tracklets obtained by the JDE
tracker [57]. Besides filtering methods such as background
filtering and track filtering, splitting approaches are lever-
aged to reduce the number of identity switches. For in-
stance, we propose to employ K-Means clustering to split
tracklets in which multiple vehicles occur based on the vi-
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sual appearance. Visual information is also used to re-
connect multiple track fragments belonging to the same ve-
hicle and therefore tackle the problem of fragmentation.
Moreover, a so-called track completion component finalizes
tracklets based on the knowledge that cars cannot suddenly
appear or disappear in the middle of the camera view.

Following many works from related literature [25,28,44,
47], visual features are the core component of our Multi-
Camera Tracking (MCT) approach since they efficiently re-
identify vehicles across cameras. We use a background sub-
traction model similar to [47] to handle occlusions from
static objects. This model removes detections occluded by
static objects such as traffic lights. It also discards tracks
located entirely in the background, such as parked vehicles.
Besides visual features, we also consider the structure of
the scene. Our scene model includes information about the
topology of the traffic camera network as well as tempo-
ral information. This way we prevent implausible matches
of tracks across cameras. Finally, we also adopt the pro-
posed track completion approach to the multi-camera track-
ing task.

Our main contributions can be summarized as follows:

• We develop a robust MTMCT system that leverages
topological and temporal information and is easily ex-
tendable.

• We address the primary error source, i.e., single-
camera tracking errors caused by occlusions, through
our track refinement module.

• We propose an explicit track completion mechanism
that improves single-camera tracking results and is
also applicable and beneficial for the cross-camera
tracking task.

2. Related Work
2.1. Vehicle Detection

Vehicle detection is a domain-specific sub-task of ob-
ject detection, which is often associated with autonomous
driving and smart cities. In recent years the contribution
of several large datasets for vehicle detection and track-
ing [6, 10, 11, 17, 67] has facilitated the adoption of object
detection architectures such as SSD [29], YOLO [5, 40],
and Faster R-CNN [42] to the vehicle detection task. In
fact, several challenges [35, 36, 67] have been proposed,
which often resulted in the adoption of variants of the
YOLO-based models [18,30,54,55] which offer a favorable
trade-off between accuracy and computational efficiency.
While adopting a large offline ensemble of detectors in such
challenges is a widely used approach [47], the winner of
track 3 of the 2021 AI City Challenge [28] used a single
YOLOv5 [23] detector. Therefore, we follow this practice
and adopt YOLOv5 as our sole detector in this work.

2.2. Vehicle Re-identification

Vehicle re-ID has attracted increasing attention in the
computer vision community in the context of intelligent
transportation systems. Although re-ID has been researched
for a long time, the vehicle re-ID task is still extremely
challenging. Similar to person re-ID, high intra-class and
small inter-class variances are prominent problems in ve-
hicle re-ID due to different camera perspectives and sim-
ilar vehicle appearances [22]. Several earlier works at-
tempted to design invariant features for vehicles in different
scenes. In [16], a descriptor with a global feature invariant
to affine transformations and global illumination changes is
designed. In [12], the Local Binary Patterns (LBP) and Lo-
cal Variance (VAR) are applied to local grid cells of the im-
age for extremely low-resolution vehicle re-ID. More recent
works apply deep learning and achieve competitive results
by learning global features using a bag of tricks [32,33,64].
An Identity Unrelated Information Decoupling paradigm is
proposed in [31] to learn invariant features of the vehicle
with the same ID in different scenes using camera perspec-
tive and background information as two kinds of identity-
unrelated information. Global feature learning does not
rely on prior knowledge such as a specific structure, i.e.,
a body structure. Therefore, methods from the widely ac-
tive field of person re-ID may be adapted to vehicle re-ID.
While complex methods aim at making use of the particular
structure of the domain with attention mechanisms [8, 65]
or using auxiliary high-level semantic attributes [27, 46],
similar concepts are available for the task of vehicle re-ID
as well [9, 14, 24]. In this work, we rely on a global fea-
ture learning approach for our vehicle re-ID component, as
in [19, 28, 36, 47].

2.3. Single-camera Tracking

Most SCT approaches use the tracking-by-detection
paradigm, i.e., the task is divided into a detection step us-
ing an efficient detector followed by an association step, in
which detections of the same targets are matched based on
a similarity measure [2–4, 41, 45, 49, 51, 58–61, 63]. Most
methods combine position and motion information [2, 3],
and additionally re-ID features [4, 49, 51, 58] or other cues
such as pose information [51, 60]. While these approaches
are highly effective, the temporal context available in videos
is often considered less. In [38], the TPM algorithm is
proposed, which efficiently combines multiple short sub-
trajectories into a long trajectory and, using trajectory con-
text, mitigates missing detections. TNT [56] uses a graph-
based model to incorporate temporal and appearance infor-
mation for tracking simultaneously.

Nonetheless, a recent line of works tightens the link be-
tween detection and tracking by extending object detec-
tors to trackers [1, 66], incorporating tracking results as
prior knowledge for detection [15, 66] or 3D CNNs to de-
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Figure 2. System diagram of the proposed MTMCT system – First, we generate tracklets by looking at vehicle detections in each video
feed. Then, these tracklets are filtered, split, clustered and completed, resulting in high quality single-camera tracks. Finally, these tracks
are joined across cameras into multi-camera tracks.

tect tracklets [37]. TrackFormer [34] leverages recent ad-
vances in vision transformers to address occluded, missing,
or noisy detection. In addition, TransTrack [50] further im-
proves performance by combining the object query from
DETR [7] and a track query.

2.4. Multi-camera Tracking

Typical MTMCT pipelines include detection, MTSCT,
and cross-camera clustering [21, 25, 44, 53]. Recent
works [20, 21, 25, 39] use additional external information
about the camera setup to improve their pipeline. In [21,28,
47] the scene topology is used to prevent infeasible cross-
camera transitions, camera adjacency in [28, 39, 47], the
movement directions are used in [20] to determine the plau-
sibility of camera transitions while camera-specific areas
are defined in [21] to determine the possibility of tracks
appearing in multiple cameras. Specker et al. [47] propose

an occlusion-aware approach to discard obstacle-occluded
bounding boxes and overlapping tracks. Last year’s win-
ners of AI City Challenge [35] especially focused on spatio-
temporal information and traffic rules [28, 30, 63]. Inspired
by these recent trends, we adapt a clustering approach to
cluster tracks from adjacent cameras and leverage informa-
tion about the scene’s topology.

3. Methods

3.1. Overview

Our multi-target multi-camera vehicle tracking system
with its components is depicted in Figure 2. In general, it
consists of three main parts.

The first one is the single-camera tracking stage which
takes videos as input and generates a set of single-camera
tracklets for each input video. Specifically, vehicles are de-
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tected, and appearance features are extracted using a vehicle
re-identification approach. Subsequently, a single-camera
tracker is applied in order to group detections into single-
camera tracklets.

The second part is the Track Refinement Module (TRM)
which contains several post-processing steps that aim at re-
ducing the number of identity switches and fragmentations.

Finally, multi-camera tracking is performed by associ-
ating the single-camera tracklets provided by the previous
stages. Two rounds of clustering are applied, followed by
our track completion module to finalize tracks that must
have predecessors or successors since they start or end in
the middle of camera views. All the modules and compo-
nents are described in detail in the following sections.

3.2. Detection

To be able to track vehicles’ routes within a camera net-
work accurately, it is essential to detect them reliably. The
detection stage should not miss vehicles since subsequent
tracking, and filtering stages can suppress false positives or
multiple detections for the same instance. In contrast, it is
more challenging to interpolate missing bounding boxes af-
terward. We employ the YOLOv5 [23] single-stage detector
due to its good trade-off between speed and accuracy. It is
applied to each video frame to obtain the bounding boxes
of the occurring vehicles and a confidence score that ex-
presses the detector’s certainty. To avoid false negatives,
i.e., missing vehicles due to the reasons mentioned above,
we rely on a low confidence threshold for detections of 0.1.
Moreover, we found that using the off-the-shelf YOLOv5x6
model pre-trained on the COCO [26] dataset is sufficient
to achieve promising performance and detect all vehicles.
Training on external data or fine-tuning the model on the
challenge dataset is not required. Since the COCO [26]
dataset considers a variety of different classes which are not
relevant to the multi-camera tracking task, classes such as
person, etc., are discarded, and only detections for different
types of vehicles are kept. Using a low detection threshold
leads to many double detections, so non-maximum suppres-
sion (NMS) is applied directly after detection as a first filter-
ing step. Strongly overlapping bounding boxes measured by
the intersection-over-union (IoU) in the video frames are fil-
tered to reduce the number of bounding boxes to one per ve-
hicle instance. Subsequently, the bounding boxes for each
frame in the videos are forwarded to a vehicle re-ID network
to extract meaningful appearance descriptors.

3.3. Vehicle Re-identification

Vehicle re-ID is the task of extracting meaningful fea-
ture representations of vehicles’ visual appearances to as-
sess the similarity between different vehicles based on a
distance measure. This pipeline stage constitutes an inte-
gral part of single-camera tracking and multi-camera asso-

ciation. Many approaches and best practices can be trans-
ferred from the widely studied topic of person re-ID.

However, vehicle re-ID raises additional challenges
since multiple, almost identical cars from the same make,
model, and color may appear in the scene. As a result, mod-
els have to be able to distinguish vehicles based on small-
scale visual features, e.g., scratches, dirt, or special equip-
ment. Data augmentation and synthetic data are essential
since the challenge dataset is limited concerning the num-
ber of cars and trucks and therefore lacks diversity. Simi-
lar to the strong baseline for re-ID [32], we train different
models using real-world data, synthetic data, as well as im-
age data that was transferred from the synthetic to the real-
world domain using a generative adversarial network [13].
This procedure leads to diverse appearance representations
which generalize well when used as an ensemble. In gen-
eral, we rely on a global approach which means that we
aim at learning one global feature vector instead of extract-
ing multiple embeddings for different parts of the vehicles.
Such approaches are lightweight, do not tend to overfit, and
deliver robust results.

In detail, we train ResNet-101 IBN-A and ResNeXt-
101 IBN-A models with an input image size of 384 × 384.
A fully-connected classification layer is appended to these
backbone networks with as many output neurons as in-
stances in the training dataset. During inference, i.e., fea-
ture extraction, the classification layer is omitted. As done
in many works, the stride parameter of the last pooling layer
is set to 1 to keep fine-grained details. Analogous to current
state-of-the-art approaches to re-identification, a combina-
tion of the cross-entropy classification loss function and the
metric learning triplet loss function is used. While the for-
mer aims to identify the vehicles, the latter helps to learn
features being close in embedding space for samples of the
same class and far for similar vehicles originating from dif-
ferent classes. We extract 2048-dimensional feature vectors
for each bounding box extracted in the previous detection
stage. Bounding boxes and corresponding appearance rep-
resentations serve as input for the subsequent single-camera
tracking.

3.4. Single-camera Tracking

In this processing step, detections within the video
frames are combined to form so-called tracklets. Track-
lets represent the spatial-temporal trajectories of vehicles
crossing a single camera view. Our method uses the JDE
tracker [57] that associates detections to tracklets building
on motion tracking using a Kalman filter and visual similar-
ity based on the extracted re-identification embeddings. The
tracker outputs a set of tracklets containing the correspond-
ing bounding boxes and feature vectors for each time step
the tracklet is visible. Situations in which vehicles lower
their velocity and come to a stop at traffic lights are a signif-
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icant challenge in the dataset. The motion estimates of the
Kalman filter get worse, and due to heavy occlusions, many
tracks get fragmented. To reduce the negative impact of
such situations, we perform single-camera tracking in both
temporal directions [48]. First, the video is processed from
start to end and then from end to start. By searching for the
best overlap between tracklets from the forward and back-
ward tracking and keeping the larger one, robustness against
fragmentation is greatly increased.

3.5. Single-camera Track Refinement

Although the JDE single-camera tracker delivers primar-
ily promising results, some systematic error sources exist.
On the one hand, many tracks are fragmented due to occlu-
sions caused by other vehicles or obstacles. On the other
hand, identity switches occur, especially in scenes when
cars stop at traffic lights or overtake each other. We have
developed and combined several methods to post-process
and greatly enhance single-camera tracklets in our TRM.
Each of them is explained in the following.

Background filtering Analogous to the work of Specker
et al. [47], we filter false positive detections based on a
background-foreground segmentation model. First, fore-
ground regions are determined by computing areas that do
not change during the video. Detections or even entire
tracklets are discarded if they overlap with the static back-
ground by more than 50%.

Time gap splitting Time gaps between associated detec-
tions in single-camera tracklets may indicate that the vehi-
cle got lost and re-identified after, i.e., it was occluded.
Since this may lead to identity switches, we examine such
time gaps within single-camera tracklets. If the gap is suf-
ficiently large and the re-ID features representing the visual
appearance change too much, tracklets will be split and di-
vided into two new ones.

Turn splitting Another common source of error is iden-
tity switches that occur when a vehicle leaves a camera view
and a second one enters it nearby. In some cases, the track-
let of the leaving vehicle is not finished, but instead, it is re-
sumed by the entering one. This problem is straightforward
to remedy by examining the direction of travel and splitting
the tracklet if it is suddenly reversed. In contrast to, e.g.,
people, it is improbable that a vehicle performs such a ma-
neuver due to traffic rules.

Visual appearance splitting To further reduce the num-
ber of identity switches, we propose a visual appearance
splitting mechanism. For this, K-Means clustering is ap-
plied to the embeddings of a tracklet to group them into two

clusters. If two different vehicles appear within the same
tracklet, the respective detections should be assigned to dif-
ferent clusters. Subsequently, the distance between the clus-
ter centers is leveraged to assess whether the tracklet shows
multiple vehicles. If the Cosine distance between the cluster
centers exceeds 0.68, the tracklet will be split at the point
after which all detections were assigned to the same clus-
ter. The high threshold ensures that correct tracklets are not
divided.

Single-camera clustering After splitting tracklets to cor-
rect identity switches, we use two rounds of Agglomera-
tive Clustering to merge fragments showing the same ve-
hicle. To do this, a distance matrix of size Nc × Nc is
constructed where Nc equals the number of single-camera
tracklets found in camera c. Each element at position (x, y)
of the matrix corresponds to the Cosine distance between
the mean feature vectors of two tracklets Tx and Ty . In the
first round, no constraints are applied to combine tracklets
that overlap in time and position. This leads to great im-
provement, especially in waiting situations with heavy oc-
clusions near traffic lights. A low distance threshold of 0.1
is used for the first clustering to avoid false-positive combi-
nations. Afterward, tracklet clusters are merged. If some
of the tracklets overlap in time, detections of the longer
tracklet are kept, and detections of the shorter one are dis-
carded. Before the second clustering, the distance matrix
is re-computed using the newly created tracklets. In con-
trast to the first round, constraints w.r.t. time overlap, time
gaps between fragments, and direction of travel are applied.
This allows leveraging a higher distance threshold of 0.3 to
reduce the number of fragments further.

Single-camera track completion We propose a track
completion module since vehicles follow strict traffic rules
and are unlikely to disappear in the middle of the cam-
era view suddenly. As long as vehicles do not reach the
frame boundaries or the video ends, there must be a succes-
sor tracklet. We aim at connecting single-camera tracklets
based on these prior assumptions. For each tracklet, the fol-
lowing actions are performed:

1. Check if the tracklet is already finished, i.e., enters and
leaves the camera or starts/ends with the start or end of
the video.

2. If not, search for possible predecessors and successors
based on direction, time gap, distance, and visual sim-
ilarity.

3. Merge tracklets with the best matching predecessor
and/or successor.

After the track completion refinement step, most single-
camera tracking errors are corrected, and the number of
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identity switches and fragmentations is greatly lowered. We
conclude the refinement pipeline by applying several filter-
ing methods. This includes omitting short tracklets with less
than five detections, tracklets that cannot appear in another
camera, as well as static tracks that do not change position.

3.6. Cross-camera Association

After the single-camera tracklets have been finalized, the
next step is the association of tracklets from different cam-
eras that show the identical vehicle to obtain multi-camera
tracks.

Multi-camera clustering Many works [25, 28, 47] re-
garding multi-camera tracking solve the task by hierarchi-
cal clustering, so we also rely on this approach. Like many
other works [21,28,47], we make use of so-called zones. In
detail, we leverage four different zones: one for each possi-
ble direction vehicles can come from or go to, respectively.
This scene model is helpful to constrain impossible transi-
tions of vehicles between cameras. Inspired by [28], two
rounds of clustering are applied. In the first one, tracklets
are clustered separately for each possible transition between
the cameras, and in the second one, all tracks from adjacent
cameras are clustered. In contrast to [28], we modify the
distance metric and do not solely rely on the Cosine distance
between the tracks’ mean features for clustering. [47] indi-
cates that it is beneficial to consider the distance between
the most similar detection pair between two tracks in addi-
tion to the distance of mean features. So, we build the dis-
tance matrix by multiplying both aforementioned distances.
The idea is that tracklets may be merged when either the
visual appearances of vehicles across whole single-camera
tracklets are very similar or when there is one strong agree-
ment between detections of the tracklets. We set distance
values between tracks that cannot belong to the same ve-
hicle due to invalid zone transitions or impossible transi-
tion durations to infinity. This limits the search space, and
thus false-positive associations are avoided. After the sec-
ond clustering step, tracklets within the same clusters are
merged to form multi-camera tracks.

Multi-camera track completion Similar to the single-
camera track refinement stage, resulting multi-camera
tracks are post-processed by our track completion module.
For instance, some tracks may not be matched by the pre-
vious clustering step since they do not start or end in tran-
sition zones. The track completion algorithm is identical to
the single-camera version, but instead of searching for can-
didates within the camera, the search space is composed of
tracks from adjacent cameras.

Approach IDF1 IDP IDR

Baseline 76.42 78.80 74.19
+ TRM 82.07 86.08 78.41
+ multiplying best match distance 83.12 86.45 80.04
+ multi-camera track completion 83.48 86.74 80.46

Table 1. Ablation Study – Comparison of the influence of dif-
ferent modules on the overall multi-camera tracking performance.
The proposed track refinement module leads to the most signifi-
cant improvement. The use of the combined distance and of the
multi-camera track completion component brings lower but still
significant improvements.

4. Evaluation
Experimental results are presented in this section. After

briefly introducing the CityFlowV2 [52] dataset and evalu-
ation metrics, we provide an ablation study, qualitative re-
sults, and the final challenge ranking.

4.1. Datasets

We used the two datasets allowed for track 1 of the
AI City Challenge 2022: the real-world CityFlowV2 [52]
dataset and the synthetic VehicleX [62] dataset.

CityFlowV2 This dataset is a benchmark for city-scale
MTMCT. The training and validation sets consist of a high
number of video feeds covering intersections of a road net-
work of a U.S. city. Different city areas are represented,
such as residential areas and highways. Some intersections
are covered by multiple overlapping video feeds. However,
the test set only covers intersections along a single stretch of
a highway, with only one camera for each intersection. This
makes the tracking task somewhat simpler, but the training
and validation sets can hardly be used to predict tracking
performance on the test set.

VehicleX The VehicleX dataset is a synthetic dataset built
from rendered 3D models of vehicles. The synthetic images
are placed on background images taken from a real-world
dataset. It can be used to augment a smaller, real-world
dataset such as CityFlowV2.

4.2. Evaluation Metrics

The challenge ranking is based on the IDF1 score. This
is a comprehensive metric that measures both SCT and
MCT performance. In our ablation study, we also provide
the IDP (identity precision) and IDR (identity recall) met-
rics [43].

4.3. Results & Discussion

This section provides qualitative and quantitative results
for different stages of our pipeline.
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(a) Turn splitting

(b) Visual appearance splitting

(c) Single-camera clustering

(d) Single-camera track completion

Figure 3. Track refinement module results – Qualitative evalu-
ation of our TRM. Figure 3a visualizes a case where the tracklet
transitions from a vehicle leaving the scene to one driving into
the scene at the frame boundary. By analyzing the direction of
travel, our TRM separates the tracklets. In Figure 3b, each row
of images stands for one tracklet after the split. One can observe
that our clustering approach is able to determine and correct the
identity switch. In Figures 3c and 3d, the last row visualizes the
merged tracklet and the rows above visualize separate track frag-
ments. The resulting tracklets are greatly enhanced by combining
several sub-tracklets showing the same vehicle.

Figure 4. Cross-camera track completion – Qualitative results
of our multi-camera track completion component. It is capable of
connection track fragments even if the visual appearance differs
due to varying lighting conditions and viewing angles.

TRM Figure 3 visualizes qualitative examples for se-
lected components of the proposed TRM. One can observe

Rank Team ID IDF1 Rank Team ID IDF1

1 28 84.86 11 114 81.27
2 59 84.37 12 57 80.95
3 37 83.71 13 5 79.55
4 Ours 83.48 14 18 78.79
5 70 82.51 15 38 75.53
6 36 82.18 16 49 74.57
7 15 81.71 17 109 72.62
8 118 81.66 18 4 72.55
9 110 81.40 19 141 62.12
10 94 81.29 20 16 60.94

Table 2. Challenge results – Challenge results on the official test
set.

that the turn splitting component (see Figure 3a) is able
to detect sudden changes of direction and split the track-
lets accordingly. Furthermore, the proposed clustering ap-
proach to correct identity switches is working as expected,
as shown in Figure 3b. Detections belonging to different ve-
hicles are assigned to different clusters and are subsequently
divided into separate tracklets. To reduce the number of
fragmented tracklets, we use single-camera clustering (see
Figure 3c) and the introduced track completion module (see
Figure 3d). The single-camera clustering example shows
a partly occluded vehicle that appears mainly in the back-
ground with a small size. As a result, the single-camera
tracklet is divided into multiple fragments. Our clustering
approach is capable of reuniting the fragments based on vi-
sual similarity. The single-camera tracklet completion mod-
ule handles cases where the visual similarity is lower, e.g.,
due to different distances from the camera. The sample pic-
tured in Figure 3d visualizes such a case. It shows that using
the information that a tracklet is not completed yet and thus
a successor must exist, tracklets can be merged accurately
based on movement information.

Multi-camera track completion Regarding multi-
camera track completion, we present an example of a
vehicle performing a U-turn and driving back the way it
was coming from in Figure 4. Different colors stand for
other multi-camera tracks before the module is applied.
Due to different lighting conditions and viewing angles, the
tracks were not merged during the cross-camera clustering.
Leveraging movement information and less strict con-
straints allows the connection of the track fragments and,
therefore, the improvement of the resulting multi-camera
tracks.

Ablation Table 1 presents the impact of the TRM module,
the multiplied distances, and the multi-camera track com-
pletion on the multi-camera tracking accuracy. The results
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(a)

(b)

Figure 5. Qualitative Multi-camera Tracking Results – Each row shows a single-camera tracklet from a different camera. The upper
track shows the effectiveness of our TRM. The lower track shows that with our approach, even with variation in viewing angles and lighting
conditions, vehicles can be tracked through multiple cameras.

indicate that single-camera track refinement is the most cru-
cial component for increasing performance. Single-camera
tracklets constitute the base of the whole multi-camera
tracking pipeline, and errors in this stage impede robust
cross-camera association. Moreover, the results show that
post-processing resulting multi-camera tracks using prior
knowledge about traffic rules further enhances the results.

Challenge results Table 2 compares our approach with
the other challenge participants. We achieved fourth place
with an IDF1 score of 83.48%.

Final results Last but not least, we give some final qual-
itative results of our tracking approach in Figure 5. Each
row represents a single-camera sub-tracklet from the multi-
camera track. The first example shows a track that bene-
fits from our single-camera clustering and track completion.
The car is almost entirely overlapped by another vehicle
in the top row, leading to fragmentations after the single-
camera tracking stage. Our track refinement strategy cor-
rects the error before cross-camera clustering. The example
shown in Figure 5b proves the capability of our approach
to robustly track the routes of vehicles across multiple cam-
eras and thus allow applications such as automatic traffic
monitoring.

5. Conclusion
In this work, we have proposed a multi-target multi-

camera vehicle tracking system that focuses on improving

single-camera tracklets to enhance the overall performance.
In addition, the featured track completion strategy is also
applied to the cross-camera association task. Experimen-
tal validation proved the effectiveness of the proposed ap-
proaches. In summary, the tracking system achieves an
IDF1 score of 83.48%, which corresponds to the fourth po-
sition in track 1 of the AI City Challenge 2022.
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