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Abstract

Multi-Target Multi-Camera Tracking (MTMC) has an
immense domain of Intelligent Traffic Surveillance System
applications. Multifarious tasks manage to apply MTMC
trackings, such as crowd analysis and city-scale traffic man-
agement. This paper describes our framework using spatial
constraints for the Task of the Track I multi-camera vehi-
cle tracking in the 2022 Al City Challenge. The frame-
work includes single-camera detection and tracking, vehi-
cle re-identification, and multi-camera track matching. To
improve the system’s accuracy, we proposed Region-Aware
for the precision of vehicle detection and tracking, leading
to the effective service of vehicle re-identification models to
extract targets and appearance features. We use Crossing-
Aware for a tracker to utilize the rich feature to find the
tracklets and operate trajectory matching for multi-camera
tracklets connection. Finally, the Inter-Camera Matching
generated the global IDs for vehicle trajectory. Our method
acquired an IDF I score of 0.8129 on the Al City 2022 Chal-
lenge Track I public leaderboard.

1. Introduction

Multi-Target Multi-Camera Tracking aims to determine
the position of every vehicle at all times from video streams
taken in a multi-camera network. The resulting multi-
camera trajectories enable applications including visual
surveillance, suspicious activity, and anomaly detection.
Therefore, MTMC takes a vital role in a traffic surveillance
system.

Most MTMCT methods include the following two tasks.
The first task is a generation of local tracklets by tracking
each detected target within a single camera. The second
task is the cross-camera tracklet matching that matches the
local tracklet on all cameras to create a complete trajectory
for each target in the entire multi-camera network.

In the traffic surveillance system, cameras are often
spaced far apart to reduce costs, and their fields of view do
not always overlap. The placement of cameras results in a
largely unsolved problem: (1) The background clutter and
clogged objects cause errors such as incomplete local track-
ing results under a single camera. (2) The dramatic change
in image and surroundings caused by different viewing an-
gles from different cameras makes cross-camera local track-
ing matching extremely difficult. (3) The number of cam-
eras on which each target appears and the number of targets
in the entire multi-camera network is unknown, and thus it
becomes even more difficult to deduce the global trajectory
of each target.

Better detectors, data association strategies, or single ob-
ject tracking could solve the issues of background clutter
and object occlusions. However, since there are different
fields of view from diverse cameras, it is hard to set the hy-
perparameter of the vehicle detector or tracker to satisfy the
outside environment scenario of the camera. We introduce
Region-Aware Vehicle Detection (RW) to improve the de-
tector’s precision, which produces high accuracy in detec-
tion and even tracking. Since the number of people is typi-
cally unknown in advance and the amount of data to process
is enormous, we proposed Crossing-Aware Single-Camera
(CW) Tracking and Inter-Camera (IC) Matching. CW re-
duces the unimportant MTMC candidate to reduce the ten-
sion for associates with all candidate trajectories of all cam-
eras. IC is the Multi-camera Tracklets Matching with utiliz-
ing the feature of trajectory and removing the unnecessary
trajectories to enhance the quality and quantitive of the sys-
tem.

In summary, the main contributions of this paper are
summarized as follows:

e We introduce Region-Aware Vehicle Detection (RW)
to improve precision, leading to improvements in ve-
hicle detection and tracking.

e We present Crossing-Aware Single-Camera Tracking
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Figure 1. The camera locations, their surrounding roads, and ex-
ample of result in MTMC framework.

(CW), which helps downsize matching space for visual
re-identification and tracklets merging.

e We demonstrate the Inter-Camera Matching (IC),
which accurately merges trajectory and removes the
outlier.

e The comprehensive experiments show the efficiency of
the framework.

The rest of this paper is organized as follows. In Sec-
tion 2, the related works review some method impact on
the framework. The detail of the proposed method is pre-
sented in a detailed description in Section 3. In Section 4,
the experiments show qualitative and benchmark results of
the proposed method. Conclusions are mentioned in Sec-
tion 5.

2. Related Work

A large amount of literature on person Re-ID and
MTMC have attracted growing attention in the past few
years. In addition, some works tackle vehicle Re-ID due to
smart-city-related systems. This section discusses the most
relevant research works to the MTMCT tasks in three parts:
Multiple Vehicle Tracking, Vehicle Re-identification, and
Trajectory Clustering.

2.1. Multiple Vehicle Tracking

Detection model Moving object detection and identifi-
cation is one of the most fundamental and challenging prob-
lems in multiple object tracking [38,39]. The advent of con-
volution neural networks and deep neural network architec-
tures has made solving the complicated problem in object
detection algorithms more convenient and reliable. It avoids

manual feature extraction and uses a data-driven approach
that automatically allows machines to learn feature expres-
sions. There are two standard classifications of object de-
tection, two-stage detection and one-stage detection. Two-
stage frameworks separate the detection process into the
region proposal and the classification stage, and the well-
known models are Fast R-CNN [7], Faster R-CNN [30], and
Mask R-CNN [8]. At the same time, one-stage detectors
handle a single feed-forward fully convolutional network
that directly provides the bounding boxes and the object
classification, and the widely used models are YOLO [29],
SSD [19]. Meanwhile, one of the biggest challenges many
object detection methods face is the dilemma between speed
performance and accuracy. It finds hard to improve both
of them simultaneously. At present, there are some high
accurate real-time one-stage anchor-based object detectors
YOLOV4 [2], EfficientDet [33]. This paper uses YOLOv5
[15], scaled-YOLOv4 [40], and YOLOR [41] for object de-
tection because it gets the highest accuracy in many bench-
marks and has fast convergence.

Tracking model Multiple Object Tracking (MOT) plays
a vital role in computer vision. video-based systems [25]
use them as the core process. Many MOT studies adopt
building as the post-process of detection models based on
object detection development. The tracking could be run of-
fline in traffic analysis or online, running real-time process-
ing simultaneously with the camera or video input frame.
The model can use detection over the entire frame sequence
for the offline methods and then global optimizations, in-
cluding graph-based and hierarchical methods. The stan-
dard offline methods have structure as the graph model,
which can be enhanced by using minimum cost flow [42],
and subgraph decomposition [34]. On the other hand, the
online method is the tracking-by-detection paradigm, which
uses only current and previous frames to link detection re-
sults per frame or track into longer tracks with spatial and
temporal consistency. The challenge of the online method
is the feature association between tracking objects and de-
tection results. Therefore, to estimate the match between
them, the process could use Kalman Filter based [1]. In this
paper, we use the SORT [ 1], DeepSORT [44], JDE [43], and
FairMOT [47] which requires no online training, allowing
for fast-speed tracking of objects.

2.2. Vehicle Re-identification

Vehicle Re-Identification (Re-ID) is essential in multi-
camera traffic flow for intelligent cities systems to retrieve
vehicles that emerge in various surveillance. Re-ID fea-
tures efficiently work on occlusion and viewpoint changes.
Therefore, it plays a vital role in tracklet formation and
matching in MTMC. There are some approaches to im-
prove the Re-ID model. First, several loss functions, sam-
pling strategies and samples generation methods have been
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Figure 2. The pipeline of Multi-Target Multi-Camera: The MTMC system first runs the detector to acquire the bounding box of the
vehicle from each frame of each camera video. After that, we use the Re-ID model to extract the features of the target bounding box,
which are fed to the single-camera tracker to induce single-camera tracklets. Finally, we use both the single-camera tracklets and the Re-ID
feature for the Inter-camera matching to generate a multi-camera trajectory with IDs.
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Figure 3. Zone of vehicle multi-camera tracking: the zone; and
zones are out of the main road. The zonex connects to the next
camera that has higher ID, and zone4 links to the adjoining camera
that has lower ID.

proposed to learn discriminative representations. The well
studied person re-identification usually studies loss func-
tions [4], partbased models [32] or unsupervised/semi su-
pervised learning [6]. Second, working with sampling
strategies, many useful tricks [17,24] have been proposed

to set strong baselines for the field. In order to learn the
robust vehicle representation, many recent works have ex-
plored samples generation methods. Last, to enrich the do-
main of data, the topic has seen multi domain learning [10],
largescale datasets [2 1], synthetic data [48] and so on. With
the emergence of transformer-based vision tasks, vehicle re-
identification has been greatly improved as in [11]. Due to
the promising results of this work [22], we also rely on a
global feature learning approach for our vehicle re-ID com-
ponent.

2.3. Trajectory Clustering

One of the multiple camera multi-tracking methods is
a trajectory clustering problem. Many prior works follow
this strategy for MTMC. To build a global graph for multi-
ple cameras, graph-based methods [3] establish connection
for multiple tracklets in various cameras and optimize for
a MTMC solution. By considering spatial-temporal con-
straints and traffic rules, [13] implement these conditions
into the clustering stage, which results in significantly re-
ducing the searching space. Thus, vehicle re-identification
accuracy improves significantly. By learning the transition
time distribution for each pair of adjacently connected cam-
eras, The methods [36] run well on the same camera distri-
bution of test data and training data. With a different test set
without knowing camera allocation, methods [28] observe
some basic rules to constrain the matching field. By using
sub-clustering in adjacent cameras, the methods [ 18] match
as many trajectories as possible while still ensuring accu-
racy. The following Sections show the seriated step-by-step
of our framework.
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Figure 4. Examples of wrong bounding box in vehicle detection.
(a) The image shows wrong position boxes, which cover traffic
signs and obstacles on pavement. (b) The image demonstrates
overlap of detection. (c) The image illustrates wrong size of a
bounding box.

3. Methodology
3.1. MTMC pipeline

The pipeline of MTMC framework is shown in Figure
2, which we modify from our exist structure [37]. There
are five steps in the proposed MTMC: (1) Running object
detection, obtaining the bounding box from each frame,
and applying Region-Aware (RW) for the bounding box fil-
ter. (2) Extracting the appearance feature of each bounding
box. (3) Applying the Re-ID feature and bounding box to
generate Single-Camera Tracking (SCT) results and utiliz-
ing Crossing-Aware (CW) for the tracklet filter. (4) Using
the feature of each trajectory to generate the Inter-Camera
Matching (IC) results. The detailed process will be de-
scribed in the Sections below.

3.2. Region-Aware Vehicle Detection
3.2.1 Model Detection

Precise vehicle detection is a provision for following ve-
hicle tracking and matching. We evaluated state-of-the-
art detection algorithms, Mask R-CNN [&], YOLOVvS5 [15],
scaled-YOLOvV4 [40], and YOLOR [41]. All models are
pretrained on the COCO dataset and do not introduce exter-
nal data to the detection. We fetch the bounding box of the
detected object in each video frame and the corresponding
confidence using the detection model. Table 4 shows the
comparison and impact result of each detector.

For more detail, only 3 of 80 categories in the COCO
dataset relate to the vehicle, such as cars, trucks, and buses.
To prevent multiple definitions of one object, we perform
class-agnostic object detection [14] for all vehicle. We ex-
tract a detection bounding box for each camera frame for
succeeding vehicle tracking and matching:

B = {(bi,t;)|i € v} Q)

where b; is the corresponding bounding box information, ¢;
is the time frame, and v is the length of video. For more
information, After getting the detection results, we have a

[ cO41 | c042 [ c043 | c044 [ c045 | c046 |

zone; | 0.15 | 0.1 | 0.15 | 0.15 | 0.15 | 0.1
zoneg | 0.1 0.1 | 015 | 0.15 | 0.15 | 0.15
zoneg | 0.2 0.2 0.2 0.2 0.2 0.2
zoneyg | 0.3 0.3 0.3 0.3 0.2 0.2

Table 1. Vehicle detection threshold for each zone.

bounding box b = (z¢, Y, w, h, ). pe = (Te,Ye) is the
position of center point, (w, k) are the width and height of
bounding box, and v is the confident score. Finally, we ap-
ply the bounding box filter to get a higher precise bounding
box, which is illustrated the in following Section.

3.2.2 Bounding Boxes Filter

The filter removes the wrong bounding box by using the
region threshold, fault size and position (such as static traf-
fic signs, utility holes, and traffic lights), and bounding box
overlap. These raw bounding boxes may contain false posi-
tives, resulting in the tracking task’s lower accuracy. For the
region threshold, we determine the zone where the bound-
ing box belongs by considering the position of the center
point of the bounding box, p. € zone;. Based on Table 1,
we revise the threshold of the bounding box to determine if
the detection result is kept. Moreover, we remove the wrong
size and fault position of bounding box (as shown in Fig. 4).

3.3. Vehicle Re-identification

To match the vehicle, we need to compare the feature
of each bounding box in a single camera or trajectory in
multi-cameras for right matching. We use strong baseline
[23,24] and good re-identification method [22] to train the
model and run the extraction feature from the bounding box
we cropped. We train models on both the CityFlow dataset
[35] and Synthetic Vehicle X dataset [40]. We train the re-
id models with Cross-Entropy loss and Triplet loss. The
Cross-Entropy loss is formulated as follow:

1 N
Lee =~ ;yilog (1)) )

where y is the actual label, and g; is the classifier’s output.
The loss is the negative of the first before multiplying by the
logarithm of the second. Also, IV is the number of exam-
ples. The triplet loss can be formulated as:

N

Lii= Y0 |5 = S0 = 15 = F s +a] @)

i=1

f denotes the learned embedding function applied to all data
points, « is the margin of triplet loss, and [I], is the same as
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Figure 5. Visualization of the determination of the direction of ve-
hicles. (a) The image shows the correct direction of the trajectory
with the green two side arrow. (b) The image demonstrates the
incorrect trajectory direction with a red arrow. (c) The example of
break motion tracking trajectory into two correct tracklets.

max(0,1). Moreover, f¢, fP, f™ are the anchor, positive,
and negative samples in the feature space, respectively. Fi-
nally, we extract a detection bounding box for each camera
frame for succeeding vehicle tracking and matching:

Fy = {(bs, fi, ti) li € v} 4

where f; is the corresponding Re-ID feature. Table 6 shows
the comparison and impact result of each re-identification
model.

3.4. Crossing-Aware Single-Camera Tracking
3.4.1 Vehicle Tracking

We use a tracking-by-detection scheme in the video frame
to link all detected vehicles to several trajectory candidates
for single-camera tracking of multi-vehicle targets in single-
camera tracking. Beside using FairMOT [47] as the baseline
tracker, we also test several of the single-camera tracking
model (SORT [1], DeepSORT [44], JDE [43]), which is a
integrated SCT model for detection and tracking paradigm.
We modify all the tracker builder and track management
parts, namely Kalman Filter [16], into the vehicle tracking
version. The modified models use the Re-id feature to con-
struct the trajectory for each vehicle. For further details, as
shown in Figure 2, we trim the related target image from
the detection results and use the Re-ID model to extract the
corresponding vehicle Re-ID features. After that, the track-
ers use information matrices of the bounding box and ve-
hicle Re-ID features to assign corresponding tracklet IDs
with vehicle detection. Finally, the tracker generates a set

c041 -c042 | c042-c043 | c043 - c044 | c044 - c045 | c045 - c046

2—4 0.7 0.5 0.6 0.5 0.6
42 0.5 0.6 0.5 0.5 0.5

Table 2. Clustering threshold for MTMC.

tracklets:
Tia = {(biais fid,irtia) i € v} ®)

where, T; is the tracklet corresponding to ¢d. Table 5 shows
the comparison and impact result of each tracker.

3.4.2 Tracklets Filter

After getting the tracklets from a tracker, we filter the incon-
siderable tracklets from the raw tracklets. The unimportant
trajectory belongs to a vehicle with a route that does not
connect to the main road (as shown in Fig. 5-b). We only
keep the trajectory that has enter entry or exit-entry in the
zoney or zoney (as shown in Fig. 5-a). However, there is a
trajectory with two or more tracklets connections (as shown
in Fig. 5-c); we break them into the correct route by using
redefined zone in each camera. After obtaining a higher
accuracy trajectory by operating CW, the following Section
illustrates the matching path from multi-camera.

3.5. Inter-Camera Matching
3.5.1 Adjacent Similarity Association

Adjacent Matching is used to fuse two trajectories of the
neighboring camera and cluster between the zones of dif-
ferent cameras. We estimate the similarity between each
trajectory between two bordering cameras. We compute tra-
jectory features represented by averaged features of bound-
ing boxes of all frames. We calculate the features by using
the bounding boxes that size is bigger than ;. The simi-
larity of tracklets T; and T} can be computed using cosine
similarity of average feature of trajectory F; and Fj:

F; x F
S(Ti7Tj): .

Sk Rk N (6)
[[E:]] > [| 5]

3.5.2 Adjacent Filter

After calculating feature similarity, we reduce the pressure
of clustering in inter-camera association by filtering out the
wrong matching of two adjacent tracklets in bordering cam-
eras. First, to determine the connection of the two trajecto-
ries, we use the redefined zones, which are the entry and
exit entrance of tracklets, to remove unconsiderable pairs of
tracklets. For more detailt, the camera zone, is connected
to the zone, of the next camera, and zone, is connected
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Method [ IDF1 | IDP | IDR | Precision | Recall | | Tracker | IDF1 | IDP | IDR | Precision | Recall |
Baseline | 65.45 | 88.98 | 51.76 91.58 53.27 SORT 77.34 | 82.75 | 72.60 85.85 75.33
+RW 76.00 | 83.07 | 70.03 86.33 72.78 DeepSORT | 80.08 | 84.30 | 76.27 86.66 78.40
+CW 79.95 | 84.03 | 76.25 87.02 78.96 JDE 81.09 | 86.96 | 75.96 89.32 78.01
+IC 81.15 | 85.34 | 77.35 87.65 79.45 FairMOT 81.15 | 85.34 | 77.35 87.65 79.45

Table 3. The performance of Traffic-Aware method on the leader-
board.

| Detector | IDF1 | IDP [ IDR [ Precision | Recall |
Mask R-CNN [ 79.05 [ 86.71 [ 72.64 [ 89.50 [ 74.98
YOLOV5 81.15 | 85.34 | 77.35 | 87.65 | 79.45
scaled-YOLOV4 | 80.78 | 86.70 | 75.61 | 89.12 | 77.72
YOLOR 80.75 | 86.93 | 7538 | 89.71 | 77.79

Table 4. The performance of each Detector on the leaderboard.

to the zoney of the previous camera (as shown in Fig. 3).
Second, by the time frame index, the period of the end time
of the first tracklet with the start time of the second one is
lower than ;. We only keep the twos that satisfy the con-
dition.

3.5.3 Inter Matching

Inter matching is used for clustering between all connected
multi-cameras. It is used to cluster all tracklets in the cam-
era. We use a hierarchical algorithm to produce the global
IDs of vehicles for MTMC. For further detail, we use the
agglomerative clustering algorithm for matching IDs, and
there are different thresholds from zones and zoney back
and forth (as shown in Table 2).

4. Experiments
4.1. Implementation Details

The framework has been implemented and tested on
RTX A6000 GPUs with 48GB memory and two-thread In-
tel 19-9900X 3.50GHz. In the detection process, we test
YOLOVS [15], scaled-YOLOv4 [40], and YOLOR [41]
models pre-trained on COCO to perform vehicle detection.
In the vehicle Re-ID process, we test the combination of
several models with [27] to enhance the performance on
both tracking and matching. ResNet [9], ResNext [45],
ConvNeXt [20] as backbones. All backbone are pre-trained
on ImageNet [5]. We use both modified SORT [1], Deep-
SORT [44], JDE [43], and FairMOT [47] to perform single-
camera vehicle tracking in the single-camera tracking pro-
cess and test which one gives a better result.

Table 5. The performance of each Tracker on the leaderboard.

’ Backbone \ IDF1 \ IDP \ IDR \ Precision \ Recall ‘

ResNet 7771 | 83.82 | 72.42 86.90 75.08
ResNeXt 81.09 | 86.85 | 76.04 89.24 78.12
ConvNeXt | 80.96 | 86.80 | 75.85 89.15 77.90
Merge-all | 81.29 | 87.04 | 76.26 89.37 78.30

Table 6. The performance of each Backbone on the leaderboard.

4.2. Datasets

Track 1 of the AI City Challenge 2022 uses the CityFlow
[35] dataset for evaluation and ranking. CityFlow is one of
the most prominent and figurative MTMC datasets captured
in the actual scene of a United States city. For Track 1, the
training set and validation set contain 3.25 hours of traf-
fic video from 40 cameras, which locate at 10 intersections
in a city, a length of about 2.5 kilometers. Furthermore,
CityFlow contains various road traffic types, including in-
tersections, road extensions, and highways. The test set
includes six intersections for the competition and the de-
tection samples from the committee. Moreover, we also
use the data of CityFlowV2-RelD and Synthetic Vehicle X
dataset [46] to train the Re-ID models.

4.3. Evaluation Metrics

The AI City challenge Track 1 [26] uses IDF1 [12,31],
IDP, and IDR as evaluation indicators, which estimate the
trajectory consistency in the camera network, and calcu-
late the ratio of correctly identified vehicles over the av-
erage number of ground-truth and predicted vehicles. More
specifically, they count the IDF1 score by using the false
negative ID (IDFN), false positive ID (IDFP), and true pos-
itive ID (IDTP):

2IDTP

IDF1 = 7
2IDTP+IDFP+IDFN ™

where IDFN, IDTN, and IDTP are defined as follows:

IDFN =YY " m (0,0, (¥) .1, A) (8)

9 teTy

IDFP =33 m@m(¢),0.t,A) (9

¢ teT,
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Figure 6. Visualization of vehicle multi-camera tracking results.

IDTP = "len(9) — IDFN = len(p) — IDFP
9 P

(10)
where the ground truth trajectory is denoted as ¥, @, ()
stages the best matches of the estimated trajectory for .
¢ is trajectory result. ¥, (¢) denotes the best matches of
ground truth trajectory for ¢. t states as the frame index. A
is the IOU threshold that determines if computed bounding
box matches the ground truth. m(-) represents a mismatch
function which is set as 1 if there is a mismatch at t, other-
wise, m(-) is set as 0.

4.4. Ablation Study

This section shows the result of the proposed method and
the combination of models for each task. Our baseline uses
ConvNeXt as the backbone for re-identification, FairMOT
for tracking, and YOLOVS for the detector.

Table 3 shows the effect of using each module separately
on the results. We demonstrated the outcomes of the pro-
posed RW, CW, and IC outcomes on performance. The RW
increases the score by nearly 9%. CW and IC, respectively,
further improve the performance of the model.

Furthermore, Table 4 illustrates our testing with both the
given detection result from the committee (Mask R-CNN)
and new results from the current state-of-the-art detectors
(YOLOVS, scaled-YOLOvV4, and YOLOR). As can be seen,

all of the outcomes of new detectors have a higher score
than the given result, and the YOLOVS provides the highest
IDFI1.

Moreover, Table 5 describes the examination by replac-
ing the tracker with SORT, DeepSORT, JDE, and FairMOT.
The SORT with using only IoU gets the lowest score. The
DeepSORT, JDE, and FairMOT scored 80.08, 81.09, and
81.15.

In addition, Table 6 verifies the influence of different
backbone networks (ResNet, ResNeXt, ConvNeXt) on the
model. Finally, the best performance was achieved by
merging ResNet, ResNeXt, and ConvNeXt.

4.5. Quantitative Result

The final ranking result on the testing sequence is shown
in Table 7, where our result is in bold. One week before the
leaderboard finalizes, 50% of the test was used to evaluate,
and we were on the top. However, last two days and af-
ter the finalization, our performance ranking dropped with
a closing score of 81.29, which was lower than the first rank
with 3.57%. Since it is improbable that our framework over-
fits the dataset, one potential answer for this reduction is the
unbalanced separation of the experimental data.

5. Conclusions

This paper illustrates a robust traffic-aware city-scale
multi-camera Vehicle Tracking. The method has been
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[ Rank [ TeamID | IDFI

1 28 84.86
2 59 84.37
3 37 83.71
4 50 83.48
5 70 82.51
6 36 82.18
7 10 81.71
8 118 81.66
9 110 81.4
10 | 94 (Ours) | 81.29

Table 7. Leaderboard of City-Scale Multi-Camera Vehicle
Tracking. 0.8129 is the final score of Dataset A in 2022 Al City
Challenge Track 1.

shown to successfully define the corrected movement di-
rection, which goes through the multi-camera. The pro-
posed method’s performance shows its effectiveness and ef-
ficiency in determining a vehicle’s route in different camera
views. We submit results to the Al City 2022 Challenge
on Track 1 MTMC tracking contest and get the score that
competes against other participant teams on the 2022 chal-
lenge leaderboard. We will improve each component fur-
ther for future work, both in time processing and robustness.
For example, we manage typical detection errors, e.g., false
positives due to vibrant or reflective background and defi-
ciency of detection in large or small vehicles. Moreover, we
will learn a better model for the route that can acclimate to
the new scenes and weather circumstances. We will adopt
the proposed method to handle online streaming of multi-
ple traffic videos and performance optimization to run the
pipeline on edge devices and embedded platforms.
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