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Abstract

On the account of the explosive growth in the large-scale
transportation videos, vehicle retrieval plays an important
role in the public transportation security and the intelligent
transport system recently. Most vehicle retrieval algorithms
are vision-based and consist of vehicle re-identification and
vehicle tracking. However, the performance of vision-based
vehicle retrieval algorithms is constrained as the limited
information provided by traffic video streams. In this pa-
per, we propose a contrastive cross-modal vehicle retrieval
solution, maximizing the value of the complementation be-
tween natural language representation and vision represen-
tation. The framework of the proposed solution includes:
(1) Preprocess a source video in four ways for generating
local motional semantics and global motional semantics;
(2) Correspondingly, preprocess relevant description sen-
tences in two ways, including Textual Local Instance Se-
mantics Extraction (TLISE) and Textual Local Motional Se-
mantics Extraction (TLMSE); (3) Use a two-stream archi-
tecture model with four visual encoders and four text en-
coders to extract visual features and textual embeddings;
(4) Fuse visual features and textual embeddings respec-
tively by concatenating them along the feature channel in
the order of importance, and use them for retrieval. By
using the proposed solution, we achieved MRR score of
33.20%, ranking the 7th place in the Al City Challenge
2022 Track 2. The code is publicly available at https :
//github.com/Katherinaxxx/2022AICITY_T2.

1. Introduction

Vehicle retrieval is an important and active research do-
main in the last decade, and it has a wide range of applica-
tions in the industry. Most vehicle retrieval systems are em-
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Natural language description

"A gray sedan runs on the street followed by another gray vehicle."
"A gray sedan keeps straight following a larger black vehicle."
"A gray sedan stops at the intersection."

ﬂ Find answer track

Vehicle tracks

Fig. 1. Problem definition.

powered by vision-based re-identification (RelD) [, 2, 3].
The vision-based ReID models enable to extract vehicle
characteristics (e.g., appearance features) from an image or
a video stream, helping the systems retrieve the top-k sim-
ilar instances from a large-scale gallery by calculating the
similarity among those vehicle characteristics. In practice,
if traffic managers or police officers want to locate a sus-
picious target, they probably only have some language de-
scription about the suspicious target rather than an image
or a video. To resolve this situation, a cross-modal vehi-
cle retrieval paradigm is proposed, which focuses on how to
leverage heterogeneous data from different signal domains
like Computer Vision (CV) and Natural Language (NL).
The paradigm is shown as Fig. 1.

For the CNN-based contrastive representation methods,
some works [4, 5, 6] have been successfully applied to the
natural language-based vehicle retrieval. Firstly, they use a
CNN-based visual encoder and a CNN-based text encoder
to obtain high-level semantic visual representations and text
representations respectively. Secondly, two representations
are embedded into the same manifold space. Finally, two
embedded representations sharing the same space are used
to calculate the similarity matrix, and instances from the ve-
hicle gallery will be ranked based on the similarity matrix.
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Fig. 2. The framework of our vehicle retrieval solution.

Although the CNN-based contrastive representation meth-
ods obtained acceptable results, most of them either blindly
increase the number of convolution layers to pursue a slight
performance improvement at the cost of increasing the com-
putation burden. Moreover, most of them didn’t fully con-
sider the characteristics of the vehicle retrieval task in de-
signing the network structure, which also leads to the lim-
ited improvement of vehicle retrieval performance due to
the lack of context information about traffic flow and words
in natural language.

Another works [6, 7, 8] break through the above bottle-
neck by combining other information like the images, video
clips or box coordinates, to learn more explicit mutual infor-
mation between NL and CV, which confirms that obtaining
enhanced high-level vehicle semantics through with limited
data is crucial for cross-modal contrastive learning.

Inspiring by these works, in this paper, we propose a
natural language-based vehicle retrieval method based on
cross-modal contrastive learning. The framework of our ve-
hicle retrieval solution is shown as Fig. 2.

Firstly, for learning more mutual information between
NL and CV, we proposed a set of effective data augmenta-
tion strategies. For local explicit information, we crop ve-
hicles from images and track vehicles to generate single-
camera trajectories. Correspondingly, we implement de-

pendency parsing to extract the attributes and the motion
descriptions of vehicles that correspond to vehicle cropped
images and trajectories. For global information, we gen-
erate motion images for each vehicle by pasting cropped
images of the relevant vehicle trajectory into one image.
Meanwhile, we cut video streams into a set of video clips
with 32 frames. Considering the context continuity of sen-
tences, we directly use complete sentences to extract global
textual features.

Secondly, we adopt a mature two-stream architecture
framework, which consists of a visual encoding module and
a text encoding module. Both contain four encoders respec-
tively, and they are applied for extracting local instance fea-
tures, local motional features, global motional features and
clip features. Specifically, the visual encoding module is
used to extract spatial-temporal visual features from images
and video clips, while the text encoding module is used
to extract high-level fine-grained semantic textual features
from extracted attributes and a complete sentence. How-
ever, the visual features and the textual features are learned
from different domains which causes difficulties to model
training based on the contrastive loss without alignment.
Thus, we utilize MLPs as projection heads for mapping
each embedding into the sharing space.

In the end, we introduce a symmetric weighted infoNCE
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loss for training, which includes text-to-vision infoNCE
loss [9] and vision-to-text infoNCE loss at the same time.
Besides, we add a weight discount factor on the symmetric
infoNEC loss to make the global embeddings with higher
weights.

The contributions of this paper are summarized as fol-
lows:

* We propose a set of effective data augmentation strate-
gies which can build an explicit connection between
NL and CV.

* For enhancing the high-level vehicle semantics, we in-
troduce four types of features for CV and NL respec-
tively, including local instance features, local motional
features, global motional features, and clip features.

* We introduce a symmetric weighted infoNCE loss for
the case where multiple embedding exists, which helps
converge to the global optimum.

2. Related Work
2.1. Text-Video Retrieval

The prototypical approach to text-video retrieval is to in-
tegrate textual and visual streams through a combination
of a pre-trained linguistic model and a video model typi-
cally pre-trained for various tasks and modalities, followed
by late fusion. Depending on whether multi-branch net-
works are used for video representation, we categorize ex-
isting methods into two groups, i.e., single-branch [10] and
multiple-branch methods [6]. A common implementation
of single-branch methods is to first extract visual features
from video frames by pre-trained CNN models, and sub-
sequently aggregate the frame-level features into a video-
level feature. For multiple-branch methods, multiple par-
allel video encoding branches are jointly used to represent
videos. One simple way is to utilize multiple independent
encoding branches with different video features as inputs
[6]. MoEE [I11], CE[6], MMT [12], MDMMT [5] and
TeachText [13] are all such efforts. Some works bene-
fit from pre-training their models with text images or pre-
training them on large-scale text-video datasets, such as
ActBERT [14] and ClipBERT [&] are single-stream models
jointly embedded in text-video pairs via a BERT-like archi-
tecture for early cross-modal fusion.

Recent work by CLIP4Clip [15] and StraightCLIP [16]
uses as a backbone a joint language-visual model pre-
trained by CLIP [17] on a large-scale text-image dataset.
Even using CLIP in a zero-beat manner exceeds most of the
recent works mentioned above [16], and it is particularly
noteworthy that CLIP’s rich joint text-image understanding
can be extended to video. CLIP4Clip [15] proposes several
video aggregation schemes, including mean pooling, self-
attention, and multimodal transformers, yet none of them al-

low text to be directly matched with its most relevant video
subregions to be directly matched.

2.2. Data Augmentation in NLP

With the development of deep learning technology, the
requirement for better neural network models for large-
scale data has also gradually increased. For classification
tasks, if the amount of data is very limited or the amount of
data differs greatly between different categories, the model
will be overfitted. Text augmentation is a very common
method to enhance the robustness of models, and common
text augmentation methods can be divided into lexical-level
methods, sentence-level methods, and model-based meth-
ods.

As for lexical-level methods, synonym replacement with
WordNet and word embedding substitution are very com-
mon techniques, which are widely used for text aug-
mentation, especially for semantic similarity tasks; Back-
translation is the most commonly used sentence-level
method, which can sometimes change the syntactic struc-
ture, and retain semantic information compared to replace-
ment words. And back-translation tends to increase the di-
versity of text data. However, the data produced by back-
translation depends on the quality of the translation meth-
ods, and some of which may not be as accurate as we as-
sume.

Model-based methods can be classified as semi-
supervised and unsupervised methods. Semi-supervised
and unsupervised learning methods were proposed to make
better use of unlabeled data and alleviate the dependence on
large-scale labeled datasets, and have proven to be a power-
ful learning paradigm. For example, MixMatch [ 18] mixes
unlabeled data with labeled data by approximating the low
entropy labels of unlabeled samples generated by the means
of MixUp. UDA [19] filters the augmented data similar to
the original data by training classifiers.

3. Method

In the Natural Language-based vehicle retrieval system,
it is important to build a connection between visual knowl-
edge and textual knowledge. Bai et al. [20] proposed a
framework that directly used global textual embedding and
fused visual features on cross-modal representation learn-
ing. However, we consider that the local textual descrip-
tion like “gray sedan” is equally important. Furthermore,
building a mutual connection between local visual features
and local textual embeddings is a more fine-grained method
for improving model performance. Based on the ideas men-
tioned, we develop a set of data augmentation strategies and
construct a dual-stream network that can learn cross-modal
knowledge effectively.
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Sentence Type and Color Motion

A gray sedan stopped at the intersection. gray sedan stop at intersection
A red wagon drives straight through the intersection. red suv drive straight

A wine-red SUV runs down the street not yielding to a pedestrian. red suv run down the street

Table 1. A example of text attributes extraction.

3.1. Data Augmentation

Although there are many kinds of vehicles on the road
in reality, we can mainly describe a target from three as-
pects: appearance characteristics, motion trajectories, and
surrounding environment. For the first aspect, most people
usually use colors and types of vehicles to describe them,
such as “a gray sedan”. For the second aspect, when de-
scribing a vehicle’s motion, people tend to use terms like
“turn left”. For the last aspect, making a detailed descrip-
tion with the help of the surrounding environment is an ef-
ficient way of locating the target rapidly. For example, we
can easily locate the target from traffic flow with the sen-
tence “A gray sedan keeps straight following a larger black
vehicle” on the account of the given “larger black™ refer-
ence. According to the three aspects mentioned, we develop
some data augmentation strategies for sentences and source
videos.

3.1.1 Textual Data Augmentation

Sentences contain higher-level semantics compared with
images, and more intuitive information e.g. the characteris-
tics and motion of vehicles. However, it is still difficult to
learn the representation of target vehicles and retrieve their
trajectories correctly with limited sentences. The situation
will be worse when the description sentences are ambigu-
ous, inaccurate, or extremely similar.

According to the problems mentioned above, we develop
a three-stage textual augmentation strategy:

The first stage is spelling correction. We find that there
exists some spelling errors in both training and test set.
They will be recognized as “UNK” causing a negative in-
fluence on the model. To ensure the accuracy of description
sentences, we correct some spelling errors. For example, we
change the wrong word “mint” to “mini”, “SVU” to “SUV”".

The second stage is information extraction shown as Ta-
ble 1, including Textual Local Instance Semantics Extrac-
tion (TLISE) and Textual Local Motional Semantics Ex-
traction (TLMSE). Specifically, we find that the descrip-
tion sentences are mostly of short length and without com-
plex syntactic structure. Furthermore, the target vehicle is
the subject of most description sentences, while the mo-
tion of the target vehicle is the verb. Therefore, we pro-
pose the TLISE and the TLMSE based on dependency pars-
ing. For the TLISE, we use “nltk” to extract the subject and

the adjective modifying the subject in each sentence as the
type and color of the target vehicle, respectively. For the
TLMSE, we extract the verb and its complement as the mo-
tion.

The third stage is disambiguation. In this dataset, we ob-
serve that there are some descriptive differences and diver-
sity in the sentences when describing the same trajectory.
For example, some people use the present tense, but oth-
ers tend to use the present progressive tense. Besides, as
we know, there are many words to describe colors. When
it comes to a red car, some people may use “wine-red” in-
stead of “red”. To reduce the impact of these differences
and diversity, we further normalize the extracted attributes.
First, we summarize the types and colors of the extracted
vehicles into mapping tables separately. We use these ta-
bles to normalize the extracted type and color of vehicles,
for example, “suv”, “wagon”, “mpv” are mapped to “suv”,
“red”, “maroon”, “reddish” are mapped to “red”. Then we
change all the verbs of the motion to the original verb form
and change all the nouns to lowercase.

In addition, we find that most of the sentences in the
training set are repeated. If we only use “nl” sentences
to train the model, the small quantity of training data will
easily lead to overfitting. Therefore, we use both ”nl” and
“nl_other_view” sentences for data augmentation and train-
ing, in which we use the reciprocal of the number of occur-
rences of each sentence as the sampling weight.

3.1.2 Visual Data Augmentation

For source videos, we mainly divide the augmentation into
four parts:

Firstly, we crop instances from random frames according
to their bounding boxes. The cropped images mainly con-
tain appearance information of instances, which correspond
to the short appearance description extracted by TLISE.
Thus, the subset of cropped images can be used to train the
Local Instance Encoder from the visual encoding module,
which focuses on extracting instance features.

Secondly, we track vehicle instances and generate the
corresponding single-camera trajectories. The trajectories
are composed of sequences of bounding boxes. Similarly,
the trajectory sequences correspond to the short motion de-
scription extracted by TLMSE. The sequences of bounding
boxes are used to train the Local Motion Encoder from the
sequences of bounding boxes, which focus on extracting in-
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stance motion features.

Thirdly, in order to learn semantics from global motion
and the surrounding environment, we generate motion im-
ages for each vehicle by pasting cropped images of the rel-
evant vehicle trajectory into the same background image.

Finally, in order to learn special-temporal information,
we cut video streams into multiple video clips. For each
video stream, the first and last frames of the source video
are retained, and the remaining frames are evenly sampled
to obtain 32 frames of video clips. The clips lacking enough
frames are padded by all-zero frames.

3.2. Explicit Cross-Modal Knowledge Learning

Cross-modal feature extraction plays a key role in the
whole NL-based vehicle retrieval framework. In order to
learn fine-grained knowledge from cross-modal data gener-
ated by our data augmentation, we construct a dual-stream
architecture model which consists of a visual encoding
module and a textual encoding module. Each encoding
module has two local encoders and two global encoders.
Moreover, we utilize MLPs as projection heads to map each
module’s output into the sharing space.

3.2.1 Fused Visual Features

For visual features, we construct a visual encoding mod-
ule with Local Instance Encoder, Local Motion Encoder,
Global Motion Encoder, and Clip Encoder.

The Local Instance Encoder and Global Motion Encoder
are CNN-based models, on account of CNN-based models
being able to provide more robust spatial features. We use
SE-ResNeXt 101 model [21] or EfficientNet B3 model [22]
pretrained on ImageNet [23].

RNN-based models and Transformer are good at pro-
cessing temporal information. Considering the temporal
characteristic of motion information, we use Bi-directional
Long Short-Term Memory (BiLSTM) [24] for Local Mo-
tion Encoder, and use Video Swin Transformer [25] or
video encoder in VideoClip [26] for Clip Encoder. The Lo-
cal Motion Encoder can well model the context information
of vehicle trajectories based on the sequences of bound-
ing boxes, and the Clip Encoder can provide rich spatial-
temporal features that are benefited from the Transformer
architecture.

In addition, for each four visual encoders, we utilize pro-
jection heads for mapping each encoder’s output into the
spaces of contrastive representation learning. The projec-
tion head uses a MLP can be expressed as:

evis = gi(hi) = Wio (BN (W;h;)), 1
where BN (-) is a Batch Normalization (BN) layer, o is a

ReLU layer. W; is a fully connected layer and the out-
put dimension is 512. h; is the visual features extracted by

the visual encoders, which correspond to local feature, local
motion feature, global motion feature and clips feature.

3.2.2 Fused Textual Embeddings

As for textual embeddings, we routinely use pretrained
transformer-based models, i.e., ROBERTa [27] or DeBER-
TaV3 [28], as the Textual Local Instance Encoder, the Tex-
tual Local Motion Encoder, and the Global Motion Encoder.
They focus on extracting textual embeddings from appear-
ance description, motion description and the complete sen-
tence description, respectively. Meanwhile, we use a pre-
trained encoder from VideoClip to encode description sen-
tences as one of global text encoders. Equally, we map all
textual embeddings into the sharing space by the projection
heads. The projection head uses a MLP can be expressed
as:

€t = gt(ht) = WtU(LN(Wtht))7 ()

which is textual embedding, where h; is last hidden state
extracted by the text encoder and LN (-) is a Layer Normal-
ization (LN) layer. W, is another fully connected layer and
the output dimension is 512.

3.2.3 Representation Learning on Fused Cross-modal
Features

After visual feature extracting and textual embedding ex-
tracting, we can obtain a set of cross-modal features pairs

Scross:
local local
{Evi ) Eti }
{Elocal Eiggal

Seross = | footmt )] 3
cross {ngzbal’EfTi;)bal} ( )

lobal local
{Egc ) Etc }

where { El9cal | Elocall jg a pair of local instance features
from visual encoding module and textual encoding module.
Equally, { Elocal | Elocall jg g pair of local motion features,
{Bglobal [globaly ¢ 4 pair of global motion features, and
{Eglobal | plocaly jg a pair of clip features.

Intuitively, the global features are supposed to contain
more information than the local features. Therefore, we
fuse all visual features and textual embeddings respectively
in the order from local to global, to obtain the fused visual
features and the fused textual embeddings.

For representation learning, in Fig. 2, we not only cal-
culate the contrastive losses between features in each cross-
modal features pairs, but also the contrastive loss between
fused visual feature and fused textual embedding. Particu-
larly, the contrastive losses of local instance cross-modal
feature pairs and local motion cross-modal feature pairs,
provide an explicit supervised signal to the models, as there
is almost a one-to-one correlation between cross-modal in-
formation in each pair.
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3.3. Symmetric Weighted InfoNCE Loss

To learn the representation of visual information and tex-
tual descriptions, we perform symmetric weighted InfoNCE
loss to achieve well-aligned between cross-modal features
mentioned above.

Given a batch of N text-vision embedding
pairs, which is consist of M embeddings, i.e.,
€t,5,v> Cvis,i,ys (Z,j € N,ye M) .

Therefore, the batch consists of NxN sample pairs, in
which only one pair is positive and others are negative. To
maximize the cosine similarity of the text and vision em-
beddings, we first utilize symmetric infoNCE loss, which is
consist of two parts, text-to-vision and vision-to-text. Sup-
pose T denotes a temperature learnable parameter initialized
with 1 and cos denotes the cosine similarity.

The text-to-vision infoNCE loss is formulated as:

1N
Li2vis,y = N Zlog
i=1

The vision-to-text infoNCE loss is formulated as:

N
1 exp(cos(et,i,~, evis,i T

Lyisaty = 77210g < p(cos(et,i,; vis,i,y)/T)
N = TN exp(cos(er,iys €oisin)/T)

exp(cos(evis,i,vs €t,i,v)/T)

Z;V:1 exp(cos(evis, i,y €t i,y )/T)

“

(O]

The symmetric InfoNCE loss is formulated as:

LS,’y — Ltzvi“"ﬁ ;LvisZt,'y (6)

Since the embeddings of each pair are of different impor-
tance, we optimize the symmetric InfoNCE loss by adding
an increasing weight discount factor, which makes the latter
embeddings with greater weights. The weighted symmetric
InfoNCE loss is formulated as:

M
M-
Lswnce = Z o TLg ., (7
7=1
where « is the weight discount factor, we set & = 0.5. As
mentioned above, we have five kinds of pairs of visual fea-
tures and textual embeddings, we set M = 5.

4. Results
4.1. Dataset

The CityFlow-NL dataset consists of a training set and
a test set, containing 2155 and 184 trajectories respectively,
and each trajectory was annotated with three natural lan-
guage descriptions tagged as “nl”. It is worth noting that
the training set also provides several additional descriptions
for each trajectory, tagged as “nl_other_views”. As we have
mentioned in subsection 3.1.1, there exists noise in both
training and test set. To avoid the influence of noise data,
we use the mean textual embeddings to find the most similar
samples.

During the training process, we deploy 10-fold cross val-
idation on the training set to reduce overfitting.

4.2. Evaluation Metics

In the leaderboard, the Natural Language-Based Vehicle
Retrieval task uses the mean reciprocal rank (MRR) [29] as
the main evaluation metric. MRR is formulated as

1 Q| 1
MRR = 3 ; — (8)
where rank; refers to the rank position of the correct trajec-
tory for the i-th text descriptions, and () is the set of descrip-
tion sentences. Recall @5, Recall @10 are also evaluated for
all submissions

In addition, we also consider Recall@1 to choose the

best version during training process.

4.2.1 Comparsion with Other Teams

As shown in Table 2, the proposed method currently rank
7th on the private test published by the organizers, with
a MRR score of 0.3320. Moreover, the consistent perfor-
mance on all Test datasets demonstrates the effectiveness
and robustness of the proposed method.

Rank Team ID Team Name Score
1 176 Must Win 0.6606
2 6 Thursday 0.5251
3 4 HCMIU-CVIP 0.4773
4 183 MegVideo 0.4392
5 91 HCMUS 0.3611
6 44 P&L 0.3338
7 10 Terminus-Al 0.3320
8 41 MARS_WHU 0.3205
9 24 BUPT_MCPRL_T2 0.3012
10 56 folklore 0.2832

Table 2. The private test result.

4.2.2 Abation Study

As illustrated in Table 3, we conduct ablation studies with
different modules of our proposed method. “Baseline” rep-
resents the use of ResNet50 as local instance encoder and
global motion encoder, and RoBERTa as text encoders.
“Local motion & TLMSE & TLISE” donates the three-
stream architecture with local cropped image, sequence of
bounding boxes and motion image. “Symmetric Weighted
InfoNCE Loss” represents the use of Symmetric Weighted
InfoNCE Loss as objective function. “Video clip” provides
the four-stream architecture with local cropped image, se-
quence of bounding boxes, motion image and video clip.
The introduction of Video clip has achieved a relative MRR
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Method Performance

Baseline v v v v v v
Local motion & TLMSE & TLISE v v v v v
Symmetric Weighted InfoNCE Loss v v v v v
Video clip v v v v
Large Size & Model v v v
10-fold cross validation v v
Ensemble v

MRR(%) 20.05 21.09 21.81 24.07 27.97 31.76 33.20

Table 3. Ablation Study on TestA in the online evaluation system.

improvement of 22.6%, which indicates that the global mo-
tion feature obtained by Video clip plays a vital role in nat-
ural language-based vehicle retrieval. “Large Size&Model”
means using a larger pretrained model, such as DeBERTa
as text encoders and SE-ResNeXt 101 as local instance en-
coder and global motion encoder, the input size of the image
is increased from 288 x 288 to 320 x 320, which proves the
great importance of the input size and parameter quantity.
“10-fold cross validation” shows that MRR is significantly
improved after training with cross validation, indicating that
it can reduce overfitting caused by data noise and the small
amount of data. Finally, through model ensemble, we im-
prove the baseline from 21.09% to 33.20% mAP MRR on
the test set.

5. Conclusion

In this paper, using cross-modal contrastive learning,
we propose a robust two-stream architecture framework to
learn the vehicle and textual representations for the text-
vehicle retrieval task. To establish an explicit connection
between CV and NL, we propose an effective data aug-
mentation pipeline. Further, we design a two-stream archi-
tecture model with four visual encoders and four text en-
coders to efficiently extract visual features and textual em-
beddings, and apply the four types of features for CV and
NL respectively to enhance the high-level vehicle seman-
tics and model robustness. Finally, we competed in AICity
Challenge 2022 and achieves 33.20% MRR accuracy and
reaches the 7th place in the private test.

Future work will continually explore the efficient text-
video retrieval methods for the intelligent transportation
system. Besides, more investigation will be made to dis-
cover powerful and stable optimization objectives, Addi-
tionally, we will utilize more elaborate multi-modal fusion
architectures to enhance the learning of text-video represen-
tation.
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