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Abstract

Multi-Camera Multi-Target tracking (MCMT) is an es-
sential task in intelligent transportation systems. It is highly
challenging due to several problems such as heavy occlu-
sion and appearance variance caused by various camera
perspectives and congested vehicles. In this paper, we pro-
pose a practical framework for dealing with the city-scale
MCMT task, consisting of four modules. The vehicles detec-
tion and ReID feature extraction are the first two modules,
which locate all vehicles and extract the appearance fea-
tures for all cameras. The third module is Single-Camera
Multi-Target tracking (SCMT), which tracks multiple vehi-
cles to generate candidate trajectories within each camera
on the basis of the detected boxes and appearance features.
The last module is Inter-Camera Association (ICA), which
associates all candidate trajectories between two succes-
sive cameras using the K-reciprocal nearest neighbors al-
gorithm, and combines all successively matched trajecto-
ries for final results. The ICA module takes the constraints
of traveling time, road topology structures, and traffic rules
into consideration to reduce the searching space and accel-
erate the matching speed. Experiments results on the pub-
lic test set of 2022 AI CITY CHALLENGE Track1 demon-
strate the effectiveness of our method, which achieves IDF1
of 84.86%, ranking 1st on the leaderboard.

1. Introduction
With the rapid development of intelligent transporta-

tion systems, the demand for Multi-Camera Multi-Target
tracking (MCMT) has attracted extensive attention in recent
years. The purpose of the MCMT task is to track various
vehicle targets across multiple cameras as shown in Figure
1, which helps to analyze the traffic flow and travel times
along entire corridors. A system designed to tackle the
MCMT task typically consists of four sub-modules, namely

*Equally-contributed authors. †Corresponding author.

Figure 1. Illustration of Multi-camera Multi-target track-
ing (MCMT) task. The vehicles with the same identity that appear
in multiple cameras will be matched by our proposed system.

vehicle detection, Re-Identification (ReID), Single-Camera
Multi-Target tracking (SCMT), and Inter-Camera Associa-
tion (ICA). The general pipeline can be summarized as fol-
lows: First, the module of vehicle detection outputs vehicle
coordinates and categories in frames and extracts vehicle
features by ReID. Then, based on the vehicle location and
learned features, the SCMT module generates candidate tra-
jectories for every single camera. At last, the ICA module
matches these candidate trajectories across different cam-
eras to associate targets with global identities.

In the last few years, there are an increasing num-
ber of research efforts dedicated to solving the MCMT
task [16, 18, 19, 21, 33, 38, 40, 42, 43]. Although the per-
formance of the current state-of-the-art MCMT model is
competitive, there are still several challenges that remain
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unsolved: the occluded vehicles are hard to detect and ve-
hicles in different cameras have high intra-class variation.
For occluded vehicles detection problem, some vehicles can
be severely occluded by front ones in heavy traffic scenar-
ios, and cause difficulties for the SCMT module. For high
intra-class variation problems, one vehicle in different cam-
eras may suffer from appearance changes caused by light
and various camera perspectives. Furthermore, even in the
same camera, the extracted features are still hard to distin-
guish between the two vehicles with similar colors or types.

In this paper, we propose a new MCMT tracking system
utilizing the priors of basic traffic rules to alleviate these
problems. The pipeline of our proposed MCMT tracking
system is shown in Figure 2. Given a set of videos under
different cameras, our proposed system first detects all vehi-
cles via a detector and then extracts the appearance features
with ReID module. On the basis of the detected boxes and
appearance features, our SCMT module generates candi-
date trajectories within each camera. Finally, the ICA mod-
ule associates all candidate trajectories between two succes-
sive cameras using k-reciprocal nearest neighbors, which
are based on the box-grained appearance distance and then
combines all matched targets for multi-camera results. Par-
ticularly, the ICA module considers the constraints of trav-
eling time, road topology structures, and traffic rules to re-
duce the searching space as well as accelerate the matching
speed.

The rest of the paper is organized as follows: an
overview of related work is described in Section 2. Sec-
tion 3 introduces our proposed framework in detail. In Sec-
tion 4, we demonstrate sufficient experiments of our method
on the track1 of CVPR 2022 AI City Challenge. Finally, we
present the conclusion in Section 5.

2. Related work

2.1. Vehicle Detection

Object detection is one of the most popular tasks in the
field of computer vision and image processing, and it lo-
cates the existence of objects in an image by predicting the
bounding boxes and categories. The vehicle detection task
is a special object detection branch, which pays more at-
tention to vehicles in images or videos. Based on different
backbones, existing object detectors can be divided into two
branches: CNN-based object detectors [3,14,26,34,35] and
transformer-based detectors [5, 27, 62].

Owing to the success of convolution networks, the CNN-
based detectors have achieved tremendous progress, such as
SSD [26], Yolo [34], Faster-RCNN [35], Cascade-RCNN
[3]. SSD and Yolo are one-stage detectors, which trade
off the speed and accuracy to run in a real-time manner.
Faster-RCNN and Cascade-RCNN are two-stage detectors,
which are usually more accurate and flexible but time-

consuming. The other branch is transformer-based detec-
tors, which are inspired by the success in natural language
processing. Transformer structure can learn sequences via
self-attention mechanism. The recently-proposed object de-
tectors, such as DETR [5], Swin Transformer [27], intro-
duced vision transformers that achieve competitive perfor-
mances on object detection benchmarks by treating an im-
age as a sequence of patches. In general, CNN-based detec-
tor can capture spatial information inside each patch, which
means it can well handle the spatially-local patches, and
transformer-based detectors are better at capturing a long-
distance pixel relation.

2.2. Re-identification

As one of the most important components in the multi-
camera traffic flow, re-identification (ReID) aims to retrieve
the same vehicle captured by different cameras [58]. CNN-
based ReID methods have received extensive attention and
shown strong feature representation ability. In these meth-
ods, several loss functions, sampling strategies, and data
generation methods are proposed to learn discriminative
feature representation.

There are three commonly used loss functions for ReID,
including identity loss, verification loss, and triplet loss
[53]. By using identity loss such as cross-entropy loss [57],
the training process of ReID is treated as an image clas-
sification problem. Verification loss such as contrastive
loss optimizes the pairwise relationship [44] by treating the
training process as an image matching problem. Triplet
loss treats the ReID training process as a retrieval ranking
problem [17], aiming to make the distance between positive
pairs smaller than negative pairs.

Because of the imbalance between positive and nega-
tive pairs, sampling strategies play a constructive role in the
training process of ReID model. Hermans et al. [17] and
Chen et al. [6] adopt identity sampling to mine informative
samples. The basic idea is to sample a certain number of
identities in each training batch. Moreover, several adaptive
sampling strategies are proposed to better adjust the con-
tribution of positive and negative samples, such as Sample
Rate Learning (SRL) [47] and curriculum sampling [45].

CNN-based ReID methods have performance limitations
due to the limited amount of labeled data because data an-
notation is costly. To solve this problem, Generative Adver-
sarial Networks (GAN) are used to synthesize more vehi-
cle images in the ReID training process. Zhou et al. [61]
extract view-invariant features by transforming single-view
features into multi-view features. Chen et al. [9] use syn-
thetic data and real data to improve the performance of the
foggy vehicle ReID task.
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Figure 2. The pipeline of our MCMT tracking system. All vehicle objects are first detected using the detectors and then the ReID module
extracts the corresponding appearance features. Then, all the detected boxes and their features are fed into the SCMT Module, which
generates all trajectory candidates for every single camera. Finally, our proposed ICA module matches all trajectory candidates across all
cameras as the final result.

2.3. Single-Camera Multi-Target Tracking

Modern SCMT trackers can be classified as tracking-
by-detection methods and joint-detection-tracking methods.
Tracking-by-detection methods [2, 4, 10, 32, 49, 54, 55] ob-
tain detection boxes first and then associate them based on
appearance and motion clues. With the improvement of ob-
ject detection techniques [13, 14, 27, 34, 35], tracking-by-
detection methods have dominated SCMT task for years.
SORT [2] adopts the Kalman filter algorithm for motion-
based multi-target tracking given observations from deep
detection models. DeepSORT [49] introduces deep visual
features into object association in the framework of SORT.
Recently, several joint-detection-tracking methods incorpo-
rate appearance embedding or motion prediction into de-
tection frameworks [23, 37, 48, 56, 60]. The joint trackers
achieve comparable performance with low computational
costs. However, the joint trackers are facing the problem
that the competition between different components lowers
the upper bound of tracking performance. The success of
the latest SORT-like frameworks [4, 10, 55] indicates that
the tracking-by-detection paradigm is still the optimal solu-
tion in terms of tracking accuracy.

2.4. Inter-Camera Association

After obtaining all results from the above three mod-
ules, the inter-camera association can be treated as trajecto-
ries matching or tracklets retrieval problem. Many previous

works attempt to tackle this problem from different aspects.
Chen et al. [7,8] establish a global graph for multiple track-
lets in different cameras and optimize for an MCMT solu-
tion. Recently, many works [19, 25, 43, 52] find that traffic
rules and spatial-temporal constraints can be regarded as the
prior knowledge to filter out the tracklets candidates, which
reduces the searching space significantly. After the prepro-
cessing, Hsu et al. [19] use the greedy algorithm to search
the valid tracklet pairs. Ye et al. [52] adopts the Hungarian
matching algorithm to find the global optimization results
with the distance matrix of all tracklets candidates between
two successive cameras. Liu et al. [25] introduces hierar-
chical clustering to gather potential trajectory pairs within
two cameras. Different from the existing works, on the
one hand, we first construct the distance matrix with box-
grained features. On the other hand, we find tracklet pairs
in a novel reranking-based way.

3. Method

This section presents the details of our framework for
Multi-Camera Multi-Target tracking (MCMT). As shown in
Figure 2, there are four modules in our system, including
Detection, ReID, SCMT, and ICA.

3.1. Detection

Vehicle detection is a basic and important module in
MCMT. To obtain the best performance of bounding boxes
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(a) (b)

Figure 3. Examples of detected small and occluded vehicles. The
left image shows the vehicle lost if without large input size and
image patches strategies. The right image demonstrate our detec-
tion model can detect the small and occluded vehicles.

in each frames, we select the state-of-art object detection
framework Cascade-RCNN [3]. As most two stage detec-
tion network, Feature Pyramid Network(FPN) [24] is fol-
lowed by backbone to increase semantic features informa-
tion at each level in the extracted features. We train this ve-
hicle detection model with COCO pretrained weights, and
use train and validation data in track1 of AI City Challenge
2022 for final detection model. In the traffic scene, as shown
in Figure 3, we find small and occluded vehicles hard to
detection out. To solve the above problems, firstly, the
larger resolution, data flipping and data cropping are also
exploited as data augmentation for facilitating training. Sec-
ondly, in test phase, we use two methods to process input
images, increasing the maximum resolution to 2666*1600
of input images, and splitting an input RGB image into four
patches with overlapping. Then, we feed the processed im-
ages into the vehicle detection model, and merge the two
output results. From Figure 3, we can see that some small
objects and occluded objects can be detected.

3.2. Re-identification

Re-identification is a fundamental task in MCMT. In or-
der to extract robust and discriminative appearance feature
representations for vehicles, several common networks such
as HRNet [46], ResNeXt101 [51], ResNet [15], Res2Net
[12] and ConvNeXt [28] are used as backbone for ReID
training. Due to the large visual appearance changes caused
by different cameras, vehicle orientation, illuminations and
occlusions in the MCMT task, both cross-entropy loss and
triplet loss are used for optimization. Given an input image
x with label y, the predicted probability of x can be repre-
sented as ŷ. The cross-entropy loss is formulated as follow:

Lce = − 1

N

N∑
i=1

C∑
j=1

yij log(ŷij) (1)

where N represents the number of training samples within
each batch, and C represents the number of vehicle identi-
ties. Note that yij = 1 if xi belongs to j th ID, else yij = 0.

Triplet loss focuses on optimizing the distance from a
triplet which contains one anchor sample xa, one positive

sample xp and one negative sample xn. Given a pre-defined
margin m, triplet loss aims to make the distance between
positive pairs smaller than negative pairs by m:

Ltri =

N∑
i=1

max(m+ d(fa
i , f

n
i )− d(fa

i , f
p
i ), 0) (2)

where fa, fp, fn are the feature representations of anchor
sample, positive sample and negative sample respectively,
and d(·) represents the distance between two features.

In order to improve the performance of ReID features
in Track1 of AICity Challenge 2022, two types of model
ensemble methods are tried in the ReID module, namely
the model soups [50] and feature concatenation. Finally,
we simply concatenate ReID features extracted from five
models to obtain the ensembled ReID features.

3.3. Single-Camera Multi-Target Tracking

Provided with the high-quality detection results and
ReID features, our Single-Camera Multi-Target Tracking
focuses on associating targets throughout the video frames
following the tracking-by-detection paradigm. We adopt
the classic tracker DeepSORT [49] as our baseline method
and improve it with various advanced techniques. Deep-
SORT uses the Kalman filter [2] to predict motion of the
tracked targets and adopts Hungarian algorithm [20] to as-
sociate detection results to tracklets according to appear-
ance and motion similarity. The unmatched detections are
used to initialize new tracklets.

In order not to miss potential targets with low detection
confidence (e.g. occluded targets and small targets), we set
a high score threshold and a low score threshold to filter de-
tection results as BYTETrack [55] does. We first match the
high score detection boxes to the tracklets based on appear-
ance similarity. Then we perform IoU matching between
the unmatched tracklets and low score detections with a
strict minimum IoU threshold. New tracklets are initiated
only for unmatched high score detections.

For the appearance matching, the ensembled ReID fea-
tures are employed to discriminate targets. Similar to
[10, 48] the tracklets appearance states are updated in an
exponential moving average (EMA) manner as follows:

eti = αet−1
i + (1− α)f t

i (3)

where we denote eti as the appearance state of the i-th
tracklet at frame t and f t

i as the ReID feature of the cur-
rent matched detection, α = 0.9 is a momentum term.
For the motion prediction, we upgrade the Kalman filter
from two aspects. The vanilla Kalman filter is based on
constant velocity motion and a linear observation model,
which is not suitable for all situations in reality. In order
to reduce the impact of detection noise, we borrow NSA
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(a) (b)

Figure 4. Comparison of tracking results before and after using
offline re-link strategy. (a) is the results that the ID of the occluded
white car switched from 5 to 94. (b) is the results of using offline
re-link.

kalman filter from [10, 11], which incorporates the confi-
dence of detection into covariance calculation. To further
improve the robustness of nonlinear motion, we replace the
standard Mahalanobis distance [31] with smoothed Maha-
lanobis distance when measuring motion similarities, simi-
lar to [29,30]. The final similarity distance D is a weighted
sum of appearance feature cosine distance da and smoothed
Mahalanobis distance dm as follows:

D = λda + (1− λ)dm (4)

It is difficult to detect objects under severe occlusion in
heavy traffic scenarios. Lots of ID switches will occur and
affect multi-camera tracking results seriously. As shown in
Figure 4a, the track ID of the white car switches from 5 to
94 after being occluded. Because the velocity of the white
car changes sharply when it starts, the Kalman filter is un-
able to predict correct states. To solve this problem, we re-
fine the tracking results with offline re-link. We first screen
out trajectories end or start in the middle of the scene. Then
we adopt the greedy algorithm to merge the broken tracklets
based on the appearance similarities. An interval threshold
and a maximum cosine distance threshold are preset to dis-
regard infeasible matching. Figure 4b shows the tracking
results of using offline re-link strategy, the track identity of
the white car maintains 5 after being occluded.

Although we have adopted various techniques to reduce
ID switches, the trajectories can still be incomplete. As
shown in Figure 5, the targets entering the scene from the
area away from the camera tend to be ignored at the be-
ginning frames, because the detection confidences of small
targets are too low to initiate tracklets. Tracking backwards
can solve the problem by initiating tracklets in the area close

(a) visualization of low score area

(b) forward tracking trajectory

(c) forward and backward tracking trajectory

Figure 5. Example of our tracking method in both temporal di-
rections. (a) shows all the detection boxes with their scores. The
detection scores in the yellow area are too low to initialize new
tracklets due to occlusion and small size. (b) shows the trajectory
of forward tracking results. The beginning part of the trajectory is
missing. (c) shows the trajectory after merging forward and back-
ward tracking results, which is more complete.

to the camera. For further improvement, we perform track-
ing in both temporal directions similar to [39]. By running
our tracker on the video frames one time in the forward di-
rection, one time in the backward direction, and merging the
tracked targets to generate complete trajectories, the recall
can be further improved.

3.4. Inter-Camera Association

Inter-Camera Association (ICA) is the last but impor-
tant module of the MCMT. Using the trajectories gener-
ated by the former three modules, ICA associate all track-
lets with same identities by appearance features and spatial-
temporal information. It uses two consecutive cameras to
match tracklets according to the entry and exit of the road.
However, ICA also faces some challenges need to be tack-
led. For example, there are several vehicles with similar ap-
pearance in the matching pool of tracklet candidates, which
makes the model prone to match with those noisy samples.
Besides, due to the different location of cameras, some ob-
jective factors like illumination, perspective also make this
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(a) zones in camera c042 (b) zones in camera c043

Figure 6. Examples of predefined zones to describe trajectories.
According to the traffic rules, each trajectory must be valid. For
the two cameras, valid trajectory is [(1, 4), (1, 5), (1, 6), (3, 2), (3,
5), (3, 6), (5, 4), (5, 2), (5, 6), (6, 2), (6, 4)]. For those vehicles
from c042 to c043, they must drive out of zone 4 in c042 and
must drive in zone 1 in c043. Only a small number of trajectories
will be retained with this strict constraint. For c042 to c043, Only
trajectories through [(1, 4), (5, 4), (6, 4)] in c042 and [(1, 5), (1, 4),
(1, 6)] in c043 will be filtered out as possible matching candidates.

part more difficult. To tackle these challenges, as shown
in Figure 7, different to previous tracklet-grained matching
strategy, we propose a novel box-grained matching module
to find the same identities in box-level in a successive and
sequential way, and the solution of details are as follows.

3.4.1 Zone-based Tracklet Candidates Filter

Since vehicles must obey the traffic rules and can only pass
along special routes due to road topology structures, we use
the same strategy as [52] to filter almost all vehicles that
are impossible to cross other cameras. First, we predefine
zones for every enter/exit area of all camera. Figure 6 shows
an example of camera C042 and C043. Zone 1, 3, 5, 6 are
termed as “in zone” in camera C043, which allow a car to
enter this camera. Zone 2, 4, 5, 6 are termed as “out zone” in
camera C042, which permit a car to leave this camera. Once
zones are allocated, we assign every tracklet as a certain
trajectory with an “in zone”-“out zone” and corresponding
start-end time,

Traji = {[zin, zout], [tin, tout]} (5)

where [tin, tout] is the start-end time. [zin, zout] is the “in
zone” id and “out zone” id of trajectory i, respectively. For
zin, the id should be assigned when a vehicle is just entering
the camera and its center point first touches corresponding
zone. For zout, the id should be determined with the zone
where the last frame of a trajectory last appears.

After all trajectories are generated, the raw tracklets may
contain false positives, such as the first batch of “in zone”
tracklets and the last batch of “out zone” tracklets. In addi-
tion, the tracklets only pass through sub-paths without en-
tering the main road are impossible to find their other parts
from other cameras. So we roughly filter out tracklet candi-
dates with traffic rules, road structures, and traveling time.

Specifically, take an connected road (zone 4 of C042 as “out
zone” and zone 1 of C043 as “in zone”) into account. On the
one hand, we drop tracklets with zone id not equal to 4 and
tracklets with zone id equal to 4 that show up late in camera
C042. On the other hand, we drop tracklets with zone id not
equal to 1 and tracklets with zone id equal to 1 that show up
early in camera C043, which can be formulated as follows,

Trajout = [Trajiout(tout) < Tout & Trajiout(zout) = 4] (6)

Trajin = [Trajiin(tin) > Tin & Trajiin(zin) = 1] (7)

Where Tout and Tin are the thresholds of frame id for “out
zone” and “in zone”. After the filter, the search space is
significantly reduced.

3.4.2 Box-grained Distance matrix Construction and
Optimization

Once Trajout set and Trajin set are obtained, previous
methods [25,52] calculate the tracklet-grained distance ma-
trix for the final matching. This way only can get limited
performance due to some noisy appearance features within
tracklets may dominate their representations. To solve this
problem, we calculate the box-grained distance matrix in-
stead. Take two connected zones (e.g. zone 4 of C042
as “out zone” and zone 1 of C043 as “in zone”) into ac-
count, before starting to match, we need to calculate the
distance between each box for the two zones. “Out zone”
and “In zone” can be termed as Zout = [T1, ...Tn] and
Zin = [T̄1, ..T̄m], where Ti = [B1

i , ..., B
hi
i ] and T̄j =

[B̄1
j , ..., B̄

hj

j ] are the tracklets of “Out zone” and “In zone”’,
respectively. Bh

i is the hth box feature of tracklet i. From
this we can get the similarity matrix S between the two
zones:

S =

 cos(B1
1 , B̄

1
1) . . . cos(B1

1 , B̄
hm
m )

...
. . .

...
cos(Bhn

n , B̄1
1) . . . cos(Bhn

n , B̄hm
m )


n∑

i=1
hi×

m∑
j=1

hj

(8)

where cos represents cosine distance, Bh
i is the hth (h ∈

[0, hi]) box feature of tracklet i of “out zone”, B̄h
j is the

hth (h ∈ [0, hj ]) box feature of tracklet j of “in zone”. The
similarity matrix still needs to be optimized because of se-
vere occlusion, illumination or different view perspective.
To make the similarity matrix more convincing, we focus
on adjusting the weights among boxes in three steps. First,
we introduce the reranking method [59] to reconstruct the
similarity matrix S of distance matrix D. Second, we refine
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Figure 7. Matching process. Once the tracklet candidates between two connected zones are provided, we calculate and refine the distance
matrix first (∗ The dark read bold arrow indicates the refine operations). Then we treat every box Bh

i in “out zone” as a probe to find their
associated tracklet by the principle of k-reciprocal nearest neighbors. The final pairs of tracklets are generated by simple count calculation.

it with interval prior,

Di,j =

e
αt×(tlow−ti,j)

βt ×Di,j, ti,j < tlow

e
αt×(ti,j−tupp)

βt ×Di,j, ti,j > tupp
(9)

where Di,j is the distance between i and j in the distance
matrix, αt and βt are the hyper parameters, tlow and tupp
are the lower threshold and upper threshold of traveling time
window, respectively. Finally, we refine the distance matrix
with occlusion rate to generate a convincing distance matrix
D for final matching,

Di,j =

{
eαo×(1+ro) ×Di,j , ro > rthre

Di,j

(10)

Where αo is the hyper parameter, ro and rthre are the oc-
clusion rate for box i and occlusion threshold, respectively.

3.4.3 Tracklet Association with k-reciprocal Nearest
Neighbors

For associating tracklets between two connected zones with
the distance matrix D, we propose a novel and effective
matching strategy to find all the convincing pairs. Inspired
by [59], all tracklets are associated with the principle of k-
reciprocal nearest neighbors. First, we define N(Bh

i , k) as
the k nearest neighbors of a probe Bh

i ,

N(Bh
i , k) = (B̄1, B̄2, ..., B̄k), |N(Bh

i , k)| = k (11)

Where | · | is the number of top-k candidates. Accord-
ing to [59], the k-reciprocal nearest neighbors are more re-
lated to probe Bh

i than k-nearest neighbors. Then we find
a matched tracklet for every probe Bh

i of “out zone” by
counting the most frequent k-reciprocal nearest frames of
a tracklet among all tracklet boxes from “in zone”,

M(Bh
i , T̄j) = MaxCount{N(Bh

i , Bj) ∧N(B̄j , B
h
i )} (12)

Where B̄j is the box in tracklet T̄j of “in zone”. Once every
box in “out zone” is assigned one matched tracklet from “in
zone”, two tracklets are the same vehicle if the in-tracklets
with the most matching times in every out-tracklets.

3.4.4 Post-processing after matching

Following the tracklet association process, we first check
the validity of all matched pairs, it it a invalid pair, if the
time of ’out zone’ is behind of ’in zone’, and then we re-
move these invalid pairs. Secondly, we assign a global id
if the two pairs share the same tracklet, meanwhile, if two
matched pairs have the common trajactory, the two global
id would be merged to a unique one, we process all cameras
pairs and output the final matched result for submission.

4. Experiments

4.1. Datasets

The CityFlowV2 1 dataset are collected from 46 cam-
eras spanning 16 intersections in a mid-sized U.S. city. The
dataset covers a diverse set of location types, including in-
tersections, stretches of roadways, and highways. For city-
scale multi-camera vehicle tracking track, it is divided into
6 scenarios. 3 scenarios are used for training, 2 scenarios
are for validation, and the remaining scenario is for testing.

In order to improve the performance of ReID features,
we use not only real data, i.e., train and validation data from
Track1 of AICity Challenge 2022, but also synthetic data
for re-ID model training. Synthetic data is generated by
VehicleX [41], which is a publicly aviablable 3D engine.
There are 2028 vehicles (666 real vehicles and 1362 syn-
thetic vehicles) and 229345 images (27195 real images and
192150 synthetic images) used for ReID training.

1https://www.aicitychallenge.org/2022-data-and-evaluation/
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4.2. Implementation Details

Re-identification. We mainly use PaddlePaddle frame-
work to train our models, and the model is trained using
SGD with momentum 0.9. During training, the cos-decay
learning rate scheduler is adopted. Moreover, several data
augmentations such as random crop, random flip and auto
augment are used as in training.

Single-Camera Multi-Target Tracking. For filtering
the detection results, the high score threshold is 0.6 and low
score threshold is 0.1. For data association, the similarity
distance threshold is 0.45, the momentum term α in EMA
is 0.9 and the weight factor for appearance feature distance
λ is 0.98.

4.3. Metrics of Evaluation

For MCMT tracking, the IDF1 score [36] is used to rank
the performance in the final leader board. IDF1 measures
the ratio of correctly identified detections over the average
number of ground-truth and computed detections. The eval-
uation tool provided by the challenge, which are adopted by
the MOTChallenge [1,22], which are computed in the eval-
uation system, are IDF1, IDP, IDR, Precision and Recall.

4.4. Experiments Results

ReID ensemble. In order to evaluate the performance
of ReID features, we split a query set and a gallery set
from train and validation data of Track1 of AICity Chal-
lenge 2022, and use the mean Average Precision (mAP) of
the top-K (K=100) matches as the metric. As shown in the
Table 1, HRNet48 is the best individual model to extract
ReID features, and ensembled ReID features obtained by
concatenating the features of five models achieve the best
results. Therefore, ensembled ReID features are employed
to SCMT module for appearance matching.

Feature mAP

HRNet48 48.76
ResNeXt101 47.15

ResNet50 46.69
ConvNeXt-tiny 45.77

Res2Net200 41.44
Ensembled 49.23

Table 1. Comparison of different ReID features.

Inter-Camera Association. Table 2 shows the abla-
tion of different proposed strategies. Compared with the
baseline of tracklet-grained matching, we can get 2.14%
IDF1 gain with box-grained k-reciprocal nearest neighbors,
which demonstrate the effectiveness of proposed matching
method. After that, IDF1 achieves 81.58% when we replace
the distance matrix with reranking method. We introduce

post-process to throw away invalid pairs that have impossi-
ble traveling time. This process further improves IDF1 with
1.52%. Besides, refining the distance matrix with interval
prior and occlusion rate makes our model achieve the SOTA
results, which obains 84.86% in final leaderboard.

Method Dist Re Ass PP IDF1 IDP IDR

tracklet L2 H 78.26 80.61 76.05
box L2 R 80.40 82.66 78.25
box Rr R 81.58 84.52 78.84
box Rr R ✓ 83.10 87.96 78.75
box Rr ✓ R ✓ 84.86 91.37 79.21

Table 2. Comparison of strategies in matching stage. “Dist” indi-
cates how to build distance matrix, which has two options: L2 and
Rr (Reranking). “Re” indicates whether refine the distance ma-
trix with interval prior and occlusion rate. “Ass” indicates associa-
tion methods, which contains H (Hungarian) and R (k-Reciprocal).
“PP” is the post-process after matching.

Rank Team ID Team Name IDF1

1 28 matcher (ours) 84.86
2 59 BOE 84.37
3 37 TAG 83.71
4 50 FraunhoferIOSB 83.48
5 70 appolo 82.51
6 36 Li-Chen-Yi 82.18
7 10 Terminus-AI 81.71
8 118 FourBeauties 81.66
9 110 Orange Peel 81.40

10 94 SKKU Automation Lab 81.29

Table 3. Leaderboard of Track1 in the AI City Challenge 2022.

Comparison with other teams. The proposed system
is submitted to the Track1 of AICity Challenge 2022 for
evaluation. As shown in Table 3, our system scores 84.86%
IDF1 and ranks first place among over 20+ teams from all
over the world.

5. Conclusion

In this paper, we propose an effective Multi-Camera
Multi-Target Tracking framework. The proposed frame-
work obtains MCMT results by performing vehicle de-
tection, re-identification, single-camera multi-target track-
ing and inter-camera association. Experiments results
on the public test set of 2022 AI CITY CHALLENGE
Track1 demonstrate the effectiveness of our method, which
achieves IDF1 of 84.86%, ranking first on the leaderboard.
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