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Abstract

Multi-Camera Multi-Vehicle Tracking (MCMVT) is an
essential task in the field of city-scale traffic management,
which usually consists of three sub-tasks: object detec-
tion and re-identification (ReID), single-camera tracking,
cross-camera trajectory association. Compared with exist-
ing methods, two challenges are considered and addressed
in this paper: (1) low-confidence objects could be missed
without extra data annotation, (2) precise association of
trajectories from different cameras is affected by multiple
factors. For the first challenge, a cascaded tracking method
based on detection, appearance features and trajectory in-
terpolation is proposed, exploiting potential real targets in
low-confidence objects to improve detection and identifi-
cation recall. For the second challenge, space, time and
appearance features are proposed to be the most crucial
factors for trajectory association, so a zone-gate and time-
decay based matching mechanism is proposed to adjust
original appearance matrix to link tracklets more precisely
from different cameras. Extensive experimental results val-
idate the effectiveness of the proposed innovative technolo-
gies.

1. Introduction

With the blossom of autonomous driving, the demand
for the digital traffic management platform and the devel-
opment of urban intelligence is becoming more and more
prominent. Among them, Multi-Camera Multi-Vehicle
Tracking (MCMVT) is one of the most important percep-
tion tasks. It aims at tracking the cross-camera trajectories
of multiple vehicles. Fig. 1 shows the complete tracking
chain of a certain vehicle under different cameras.

The MCMVT task usually consists of three sub-tasks:
object detection and ReID, single-camera tracking, cross-
camera trajectory association. The goal of the first two

Figure 1. Illustration of MCMVT. The top is the camera position
distribution map in the urban scene, arrows represent the directions
that cameras are facing; the bottom is the tracking trajectory of
vehicle 67 under different cameras.

sub-tasks is to identify the trajectory of each target seen in
single cameras with a tracking-by-detection manner. Out-
standing detection and tracking results have been achieved
in the computer vision community with accurate data an-
notation. However, city-scale annotation is heavy and ex-
pensive. Thus, fully utilizing pretrained detection models
trained on public datasets is necessary. The challenge is
that the performance of public models is unstable in unseen
scenes. Many objects would be filtered by a common con-
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fidence threshold, because the confidences of objects given
by public models are relatively low and indistinguishable.
When accurate targets in single cameras are obtained, the
last sub-task aims to concatenate multiple trajectories of
each single target. The challenge is that precise association
of trajectories from different cameras is affected by multi-
ple factors. To identify a unique target, we propose three
constraints that need to be considered: space, time and ap-
pearance. How to design an efficient mechanism to take
all of these constraints into consideration and improve the
matching precision is to be addressed.

For the first challenge, inspired by ByteTrack [39],
which uses low-confidence objects to assist in tracking, we
propose a cascaded association strategy including ReID and
box to match high-confidence objects, and mine the real tar-
gets from low-confidence objects using a strict IOU based
matching method. Thus, low-confidence objects that may
be filtered could be reserved, contributing to high target re-
call. Furthermore, trajectory interpolation is used to con-
nect fragmented tracklets.

To address the second challenge, on the basis of the orig-
inal matching matrix based on ReID feature similarity, we
introduce the spatial-temporal constraint information to op-
timize the clustering matrix by establishing the zone-gate
mechanism and time-decay filtering strategy. In this way,
high precision could be achieved.

The contributions of this paper could be summarized as
follows:
1). Propose a cascaded tracking method based on

detection-appearance features and trajectory interpola-
tion to improve target recall, without extra data anno-
tation.

2). Propose a zone-gate and time-decay based matching
mechanism to fully utilize space-time-appearance fea-
tures, contributing to precise trajectory association

3). Achieve an IDF1 score of 0.8371, which ranked the
3rd place on the public leaderboard of Track 1, AI
City Chalenge 2022.

2. Related Work
2.1. Object Detection and Re-identification

Object Detection. Object detection, as the foundational
task for computer vision, is usually classified into two cat-
egories. One is the two-stage detectors and the represen-
tative works are R-CNN series [4, 5, 18, 26]. The other is
the one-stage methods which become well-known owing
to the YOLO series [2, 23–25]. Besides, it is also pos-
sible to categorize the detection methods into the anchor-
based [15, 27] and the anchor-free [32, 44]. Recently, the
transformer based detectors such as DETR [46] and Swin
Transformer [17] are booming, pointing out a new develop-
ment direction of object detection.

Re-identification. As an important component of
MCMVT, Vehicle ReID can not only assist in the process
of intra-camera tracking, but also plays an irreplaceable role
in inter-camera tracking. Within the research field of ReID,
many works focus on how to design efficient loss functions,
such as triplet loss [8], circle loss [28], etc. Also, weakly
supervised detection [45] and synthetic data [41] prove to
be beneficial by expanding the training data and reducing
the receptive field. He et al. [7] generate the pseudo la-
bels of test samples using Identity Mining Method, then
fine-tune the model on the test domain to improve the per-
formance. Moreover, Some post-processing techniques are
proposed to further optimize the identification resutls, such
as model ensemble [19], re-ranking [42], image-to-track re-
trieval [16], etc. Luo et al. [19] who won the 1st place in
Track 2 of AI City Challenge 2021 [22], prove that the tricks
of the person ReID strong baseline [20, 21] also have a sig-
nificant performance on Vehicle ReID. Due to the impres-
sive effect, we consider retraining the model based on this
method and use it as our ReID feature extractor.

2.2. Multiple Object Tracking

Multiple object tracking (MOT) is one of the dominant
topics for autonomous driving. Its goal is to associate the
same targets in the video sequence, and connect each of
them into a tracking chain with a unique identity. The
classical tracking methods are mainly based on the prob-
ability theory, especiallythe Kalman [34] and particle fil-
ters [6] lay a good mathematical foundation for tracking
problems. Based on the Kalman filter, SORT [1] is widely
used for tracking problems. In recent years, CNN-based
tracking methods have become popular. DeepSort [35], as
the representative method of separated detection and track-
ing (SDT), uses a stand-alone ReID model to reduce ID
switch. JDE [12,33,36,40] adopts a weight-shared CNN for
object detection and ReID feature extraction, which is con-
sidered a means of joint detection and tracking (JDT). Cen-
terTrack [43] detects targets with the point-based heatmap
and then tracks them with a simple greedy match. In ad-
dition, transformer-based tracking methods are also applied
successfully recently. TransMOT [3] applies a graph trans-
former for the spatial-temporal modeling. TransCenter [37]
is the first MOT architecture to predict the target heatmap
based on the transformer.

2.3. Multi-Camera Multiple Object Tracking

Based on the results of aforementioned tasks, the mis-
sion of multi-camera multi-target tracking is to connect the
tracking chains under different cameras in series. For this
purpose, there has been a lot of excellent work [9–11, 14,
30, 31, 38]. For example, [14] proposes Direction Based
Temporal Mask (DBTM) to reduce search space of match-
ing. [38] pre-defines enter/exit areas and a time window to
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constrain the clustering domain. However, the filtering con-
ditions of the above methods are relatively rough, resulting
in some limitations for further performance improvement.

3. Method
3.1. Vehicle Detection and Re-identification

As separate computer vision tasks, detection and re-
identification are the basic work of tracking, and there are
many mature solutions. So this paper will follow existing
methods to generate detection boxes and ReID features.

For the detection task, we use the YOLOv5x1 model
which is pre-trained on the COCO dataset [13]. As for ReID
task, we retrain the models as our ReID feature extractor
following the work proposed by Luo et al. [19], and config-
ures are set to the same. The loss function we use can be
formulated as:

L = Lc + αLt (1)

where Lc and Lt denote softmax cross-entropy loss [29]
and triplet loss respectively. α is a balance weight, set to 1
by default.

3.2. Single Camera Tracking

Considering the performance and robustness, we devide
the single-camera tracking problem into three parts, which
are box detection, feature embedding and target association.
We use the methods described above for the first two parts.
ByteTrack [39] is a state-of-art method which mine the real
target from the low confidence box sufficiently to improve
the tracking performance. Therefore, we take the Byte-
Track’s tracker management parts and association strategy
as reference. Beyond that, we find that ReID features are
of great importance, which will affect the performance of
MCMVT. The way only using IOU will cause false match-
ing, which will lead to a confusion in the appearance rep-
resentation of the tracking chain. So we use a cascaded
matching strategy.

Specifically, we first associate the high confidence box
with ReID features, then the unmatched trackers are associ-
ated with boxes by IOU. Lastly, we just match the low con-
fidence boxes with IOU to enhance the stability of tracking.
The Kalman filter is used for track updating.

3.3. Multi-Camera Vehicle Tracking

Different from the purpose of MOT, MCMVT needs
to match the inter-camera tracklets to obtain the complete
tracking chain of each target. A general solution is to use
ReID features to associate vehicle candidates under differ-
ent cameras. However, due to the similar appearance, the
ambiguity of the cropped image and the numerous candi-
dates in the gallery, directly using appearance features for

1https://github.com/ultralytics/yolov5

ID clustering faces many challenges. Hence, based on the
Sub-Clustering in Adjacent Cameras (SCAC) proposed by
Liu et al. [14], we cluster each pair of adjacent cameras sep-
arately, and then extend the clustering results to the entire
scene chain.

First of all, to improve the robustness and representation
ability of features, for tracklet i under camera N , we cal-
culate the average features of all frames and use it as the
trajectory feature ftNi for cross-camera matching. Then a
cosine similarity matching matrix M between camera N
and N +1 can be established based on the above ReID fea-
tures, i.e.,

M=



m(tN1 , tN+1
1 ) · · · m(tN1 , tN+1

j ) · · · m(tN1 , tN+1
J )

...
...

...
m(t

N
i , tN+1

1 ) · · · m(tNi , tN+1
j ) · · · m(tNi , tN+1

J )
...

...
...

m(tNI , tN+1
1 ) · · · m(tNI , tN+1

j ) · · · m(tNI , tN+1
J )


(2)

where I denotes the total number of tracklets in camera N ,
J denotes the total number of tracklets in camera N +1. N
is the camera ID, ranging from 41 to 45, and

m(tNi , tN+1
j ) = cos(ftNi , ftN+1

j
), (3)

means cosine similarity between tracklet tNi and tN+1
j .

Further, we propose a more advanced spatial-temporal
constraint method to dynamically regulate the matching ma-
trix, which can shrink the matching space and reduce the as-
sociation difficulty. This module includes two parts, namely
the zone-gate mechanism based on bi-directional main road
partition, and matching probability adjustment based on the
temporal decay curve.

3.3.1 Zone-Gate Mechanism

From Fig. 2, it can be seen that for intersection (camera) N ,
there are a total of 12 driving routes for vehicles. For all of
these driving routes, if the tracklet under this camera needs
to associate with the next intersection N + 1, it must pass
through zone 3 and 4; similarly, if it needs to associate with
the previous intersection N − 1, it must go through zone 7
and 8. With the simplified definition, we only focus on the
four bi-directional zones (3, 4, 7 and 8) on the main road,
regardless of whether it comes from or goes to the bypasses.
Following the above-mentioned principles, we divided the
zones of different intersections as shown in Fig. 3.

For tracklet tNi and tN+1
j , we construct the following

gate function:

g(tNi , tN+1
j ) =


1 if 3 ∈ ZtNi

, 8 ∈ ZtN+1
j

1 if 4 ∈ ZtNi
, 7 ∈ ZtN+1

j

0 else

(4)
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Figure 2. The analysis diagram of zones matching of intersections. The numbers represent zone IDs, arrows represent all possible driving
routes at intersection N .

Figure 3. Illustration of split zones in bi-directional main road.
Red, green, blue and white correspond to zones 8, 7, 3 and 4 re-
spectively in Fig. 2.

where Zt denotes the list of zones that trajectory t tra-
verses. As shown in Eq. (4), the gate will be switched
ON only when tNi passes through zone 3 and tN+1

j passes
through zone 8, or tNi passes through zone 4 and tN+1

j

passes through zone 7.
With the gate function g(·), we obtain the space-aware

mask matrix G and filtered similarity matrix M
′
:

M
′
= G ·M (5)

which greatly reduces the matching space.

3.3.2 Time-Decay Strategy

Empirically, humans often consider the elapsed time as an
important factor when they try to identify a target across
different cameras. Inspired by this, this paper introduces the
time variable, to adjust the matching probability between
different vehicles. Through this method, the performance
of MCMVT is further improved.

Figure 4. The time decay curve, the horizontal axis represents
elapsed time, and the vertical axis is the matching probability.

Specifically, we obtain the actual distance between ad-
jacent intersections according to the GPS position of each
camera, and then set the average elapsed time of each road
based on experience. Our temporal probability curve is
shown as Eq. (6) and Fig. 4.

p =


0, if T < Tmin

1 + (1− pmin)
T−Tmean

Tmax−Tmean
, if Tmin ≤ T < Tmean

1− (1− pmin)
T−Tmean

Tmax−Tmean
, if T ≥ Tmean

(6)
The matching probability decays linearly from point

(Tmean, 1) to both ends, whose decay slope is determined
by (Tmean, 1) and (Tmax, pmin). Theoretically, a vehicle
can stay between two intersections for a long time, but can-
not appear at the next intersection in a very short time.
Therefore, when the time reaches the maximum threshold
Tmax, the matching probability drops to pmin; when the

3313



time is less than Tmin, the matching probability is truncated
to 0.

It is worth noting that, the elapsed time T is related to
the driving direction of the main road, i.e.:

T =

{
TN+1
j,s − TN

i,e, if 3 ∈ ZtNi
, 8 ∈ ZtN+1

j

TN
i,s − TN+1

j,e , if 4 ∈ ZtNi
, 7 ∈ ZtN+1

j

(7)

where Ts means the start time, Te means the end time.
Then we generate a temporal decay matrix P and apply

it to the following equation,

M
′′
= G ·M

′
(8)

to get the final spatial-temporal constrained matching ma-
trix M

′′
.

3.4. Trajectory Post-Processing

Despite using the cascaded tracking framework, the final
results still have fragmented trajectories, which inevitably
leads to true targets missing. To further improve the recall
rate, we design an interpolated post-processing module for
interrupted trajectories.

Assume that the time series in which trajectory t exists
are [1, 2, ..., T1], [T2, T2 + 1, ..., Tn], where T2 > T1. It is
reasonable to believe that in the interval [T1, T2], the trajec-
tory is temporarily lost due to occlusion or other reasons,
so we use linear interpolation to complete the tracking box
B at time T , which belongs to [T1, T2]. The interpolation
formula is as follows:

BT = BT1
+ (BT2

−BT1
)
T − T1

T2 − T1
(9)

Fig. 5 shows the visual tracking results before and after
post-processing. It can be seen that this module plays an
important role in maintaining the coherence of the tracking
trajectory and improving the detection recall and identifica-
tion recall.

4. Experiments
4.1. Datasets

We participated in Track 1, which takes CityFlowV22

as the dataset (name it AIC22-T1). The dataset contains
3.58 hours (215.03 minutes) of videos collected from 46
cameras spanning 16 intersections in a mid-sized U.S. city.
The dataset is divided into 6 scenarios. Scenario S06 is used
for testing.

For the ReID module, we used the benchmark of AI
City Challenge 2021 Track 2 (name it AIC21-T2), which
consists of a real-world dataset and an additional synthetic
dataset3.

2https://www.aicitychallenge.org/2022-track1-download/
3After consulting the official by email, it is confirmed that the dataset

can be used.

Figure 5. Illustration of tracking visualization before and after
trajectory interpolation under the C042 camera. Top: before inter-
polation; Bottom: after interpolation.

4.2. Evaluation Metric

For track 1: City-Scale Multi-Camera Vehicle Tracking,
the evaluation metric is IDF1, which measures the ratio
of correctly identified detections over the ground-truth and
the average number of calculated detections. Its specific
calculation formula is:

IDF1 =
2 · IDTP

2 · IDTP + IDFP + IDFN
(10)

where IDTP is the number of true positive identities,
IDFP is the number of false positive identities and IDFN
represents the number of false negative identities.

In addition, reference mcetrics such as IDP , IDR,
Precision, Recall are also provided, but are not used for
ranking.

4.3. Implementation Details

Our tracking system runs on a PC with four Tesla V100
(32 GB) GPUs, the deep learning framework is PyTorch 1.8.
Following [14], in the vehicle detection part, we set the im-
age size to 1280 and the confidence threshold to 0.1 to pre-
dict each frame of all test videos. Then the cropped images
are resized to (384, 384) to extract ReID features, whose
dimension is 2048 dimensions. In the single-camera track-
ing stage, the high confidence is set to 0.4, while the low
confidence is set to 0.1. Besides, the IOU cost confidence
for the high confidence box association is set to 0.8 and the
IOU cost confidence for the low confidence box association
is 0.5. In the inter-camera matching stage, the temporal de-
cay probability pmin is set to 0.7, the average elapsed time
Tmean between adjacent cameras is shown in Tab. 1.

4.4. Quantitative and Qualitative Evaluation

4.4.1 Quantitative Results

Based on the method described in Sec. 3, our team (TAG)
tested scenario 6 in the CityFlowV2 dataset, the generated
results can get an IDF1 score of 0.8371, which ranked the
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Camera Pairs (041, 042) (042, 043) (043, 044) (044, 045) (045, 046)

Average Elapsed Time (s) 82 32 57 33 50

Table 1. The average elapsed time of different adjacent camera pairs

Figure 6. Top: visualization of multi-vehicle tracking across cameras, the first row is the results of ID 63 and the second is ID 13; Bottom:
projection of the above two vehicle tracking results on GIS map.

3rd place on the public leaderboard. The overall results of
the leaderboard are shown in Tab. 2.

4.4.2 Qualitative Results

In order to illustrate the effect of vehicle tracking more in-
tuitively, we show the tracking positions of vehicles 13 and
63 at different times in Fig. 6. It can be seen that even when
the vehicle 13 appears in the field of view with a tiny target,
it can be well matched and tracked. Meanwhile, it gives the
results of projecting the trajectories of both vehicles onto

the GIS map using matrix transformation. With such tools,
traffic flow analysis and road labeling can be more easily
performed.

4.5. Ablation Study

To analyze the influence of different datasets on the
ReID model, comparative experiments are conducted on the
dataset of AIC21-T2 and AIC22-T1. As shown in Tab. 3,
the performance of the model trained on AIC21-T2 is bet-
ter. Through visualization, we found that the reason why
AIC22-T1 performs not well is the lack of data diversity.
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Rank Team ID Team Name IDF1 Score

1 28 matcher 0.8486
2 59 BOE 0.8437
3 37 TAG 0.8371
4 50 FraunhoferlOSB 0.8348
5 70 appolo 0.8251
6 36 Li-Chen-Yi 0.8218
7 10 Terminus-AI 0.8171
8 118 FourBeauties 0.8166
9 110 Orange Peel 0.8140

10 94 SKKU Automation Lab 0.8129

Table 2. The public leaderboard of track 1, our team takes the third
place.

backbone IDF1 IDP IDR

ResNeXt101-IBN-a∗ 0.7813 0.8498 0.7230
ResNeXt101-IBN-a 0.7851 0.8481 0.7309

Table 3. ResNeXt101-IBN-a∗ is trained on AIC22-T1 and
ResNeXt101-IBN-a is trained on AIC21-T2.

Module IDF1 IDP IDR Precision Recall

baseline 0.8057 0.8480 0.7675 0.8903 0.8059
+Zone-Gate 0.8095 0.8710 0.7561 0.8979 0.7794

+Time Based Decay 0.8151 0.8893 0.7523 0.9179 0.7765
+ByteTrack 0.8235 0.8827 0.7718 0.9024 0.7848

+ReID-ByteTrack 0.8344 0.9008 0.7771 0.9193 0.7898
+Post-Processing 0.8371 0.8878 0.7918 0.9046 0.8069

Table 4. Ablation experiments on each incremental module.

One vehicle instance in AIC22-T1 has fewer views than
that in AIC21-T2. Therefore, we adopt the model trained
on AIC21-T2 as the ReID feature extractor.

Tab. 4 lists the ablation experiment results about adding
different modules. Among them, the baseline represents
solutions proposed by Liu et al. [14]. It can be seen that
the zone-gate mechanism based on the bi-directional main
road division and the time-decay matching probability ad-
justment further improve the IDP score. It is mainly due
to the constraints of the spatial-temporal information on the
original appearance matrix, which reduce the search space
and the matching difficulty. Meanwhile, the introduction
of the optimized ByteTrack framework can mine the use-
ful information of the low-confidence boxes and promote
the tracking performance; the last post-processing module
greatly improves IDR score by linking interrupted trajecto-
ries, although it causes a decrease in IDP.

5. Conclusion
In this paper, we realize a complete MCMVT tracking

scheme, including detection, ReID, single-camera tracking

and multi-camera matching. In particular, to further en-
hance the tracking performance, we propose more advanced
solutions and strategies. First, we design a cascaded track-
ing method to relieve the problem of true targets detection
and tracking missing and improve the identification recall.
Secondly, the zone-gate and time-decay based mechanism
is proposed to optimize the matching space, ensuring a high
identification precision. Finally, we use trajectory interpola-
tion as the post-processing unit to keep tracked trajectories
coherent, and achieve an IDF1 score of 0.8371 in the track
1, which ranked the 3rd place on the public leaderboard.

References
[1] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and

Ben Upcroft. Simple online and realtime tracking. In 2016
IEEE international conference on image processing (ICIP),
pages 3464–3468. IEEE, 2016. 2

[2] Alexey Bochkovskiy, Chien-Yao Wang, and Hong-
Yuan Mark Liao. Yolov4: Optimal speed and accuracy of
object detection. arXiv preprint arXiv:2004.10934, 2020. 2

[3] Peng Chu, Jiang Wang, Quanzeng You, Haibin Ling,
and Zicheng Liu. Transmot: Spatial-temporal graph
transformer for multiple object tracking. arXiv preprint
arXiv:2104.00194, 2021. 2

[4] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE inter-
national conference on computer vision, pages 1440–1448,
2015. 2

[5] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
580–587, 2014. 2

[6] Fredrik Gustafsson, Fredrik Gunnarsson, Niclas Bergman,
Urban Forssell, Jonas Jansson, Rickard Karlsson, and P-
J Nordlund. Particle filters for positioning, navigation,
and tracking. IEEE Transactions on signal processing,
50(2):425–437, 2002. 2

[7] Shuting He, Hao Luo, Weihua Chen, Miao Zhang, Yuqi
Zhang, Fan Wang, Hao Li, and Wei Jiang. Multi-domain
learning and identity mining for vehicle re-identification. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition Workshops, pages 582–583,
2020. 2

[8] Alexander Hermans, Lucas Beyer, and Bastian Leibe. In de-
fense of the triplet loss for person re-identification. arXiv
preprint arXiv:1703.07737, 2017. 2

[9] Hung-Min Hsu, Tsung-Wei Huang, Gaoang Wang, Jiarui
Cai, Zhichao Lei, and Jenq-Neng Hwang. Multi-camera
tracking of vehicles based on deep features re-id and
trajectory-based camera link models. In CVPR Workshops,
pages 416–424, 2019. 2

[10] Hung-Min Hsu, Yizhou Wang, and Jenq-Neng Hwang.
Traffic-aware multi-camera tracking of vehicles based on
reid and camera link model. In Proceedings of the 28th
ACM International Conference on Multimedia, pages 964–
972, 2020. 2

3316



[11] Young-Gun Lee, Jenq-Neng Hwang, and Zhijun Fang. Com-
bined estimation of camera link models for human track-
ing across nonoverlapping cameras. In 2015 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), pages 2254–2258. IEEE, 2015. 2

[12] Wei Li, Yuanjun Xiong, Shuo Yang, Mingze Xu, Yongxin
Wang, and Wei Xia. Semi-tcl: Semi-supervised
track contrastive representation learning. arXiv preprint
arXiv:2107.02396, 2021. 2

[13] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 3

[14] Chong Liu, Yuqi Zhang, Hao Luo, Jiasheng Tang, Weihua
Chen, Xianzhe Xu, Fan Wang, Hao Li, and Yi-Dong Shen.
City-scale multi-camera vehicle tracking guided by cross-
road zones. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4129–
4137, 2021. 2, 3, 5, 7

[15] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C
Berg. Ssd: Single shot multibox detector. In European con-
ference on computer vision, pages 21–37. Springer, 2016. 2

[16] Xinchen Liu, Wu Liu, Tao Mei, and Huadong Ma. A
deep learning-based approach to progressive vehicle re-
identification for urban surveillance. In European conference
on computer vision, pages 869–884. Springer, 2016. 2

[17] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 10012–10022, 2021. 2

[18] Xin Lu, Buyu Li, Yuxin Yue, Quanquan Li, and Junjie Yan.
Grid r-cnn. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 7363–
7372, 2019. 2

[19] Hao Luo, Weihua Chen, Xianzhe Xu, Jianyang Gu, Yuqi
Zhang, Chong Liu, Yiqi Jiang, Shuting He, Fan Wang, and
Hao Li. An empirical study of vehicle re-identification on
the ai city challenge. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
4095–4102, 2021. 2, 3

[20] Hao Luo, Youzhi Gu, Xingyu Liao, Shenqi Lai, and Wei
Jiang. Bag of tricks and a strong baseline for deep person
re-identification. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition workshops,
pages 0–0, 2019. 2

[21] Hao Luo, Wei Jiang, Youzhi Gu, Fuxu Liu, Xingyu Liao,
Shenqi Lai, and Jianyang Gu. A strong baseline and batch
normalization neck for deep person re-identification. IEEE
Transactions on Multimedia, 22(10):2597–2609, 2019. 2

[22] Milind Naphade, Shuo Wang, David C. Anastasiu, Zheng
Tang, Ming-Ching Chang, Xiaodong Yang, Yue Yao, Liang
Zheng, Pranamesh Chakraborty, Christian E. Lopez, Anuj
Sharma, Qi Feng, Vitaly Ablavsky, and Stan Sclaroff. The
5th ai city challenge. In The IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR) Workshops,
June 2021. 2

[23] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali
Farhadi. You only look once: Unified, real-time object de-
tection. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 779–788, 2016. 2

[24] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster,
stronger. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7263–7271, 2017. 2

[25] Joseph Redmon and Ali Farhadi. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767, 2018. 2

[26] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information process-
ing systems, 28, 2015. 2

[27] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 2

[28] Yifan Sun, Changmao Cheng, Yuhan Zhang, Chi Zhang,
Liang Zheng, Zhongdao Wang, and Yichen Wei. Circle loss:
A unified perspective of pair similarity optimization. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 6398–6407, 2020. 2

[29] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon
Shlens, and Zbigniew Wojna. Rethinking the inception archi-
tecture for computer vision. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
2818–2826, 2016. 3

[30] Zheng Tang, Milind Naphade, Ming-Yu Liu, Xiaodong
Yang, Stan Birchfield, Shuo Wang, Ratnesh Kumar, David
Anastasiu, and Jenq-Neng Hwang. Cityflow: A city-scale
benchmark for multi-target multi-camera vehicle tracking
and re-identification. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
8797–8806, 2019. 2

[31] Zheng Tang, Gaoang Wang, Hao Xiao, Aotian Zheng, and
Jenq-Neng Hwang. Single-camera and inter-camera vehicle
tracking and 3d speed estimation based on fusion of visual
and semantic features. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition workshops,
pages 108–115, 2018. 2

[32] Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos:
Fully convolutional one-stage object detection. In Proceed-
ings of the IEEE/CVF international conference on computer
vision, pages 9627–9636, 2019. 2

[33] Zhongdao Wang, Liang Zheng, Yixuan Liu, Yali Li, and
Shengjin Wang. Towards real-time multi-object tracking. In
European Conference on Computer Vision, pages 107–122.
Springer, 2020. 2

[34] Greg Welch, Gary Bishop, et al. An introduction to the
kalman filter. 1995. 2

[35] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. Simple
online and realtime tracking with a deep association metric.
In 2017 IEEE international conference on image processing
(ICIP), pages 3645–3649. IEEE, 2017. 2

3317



[36] Mingze Xu, Chenyou Fan, Yuchen Wang, Michael S Ryoo,
and David J Crandall. Joint person segmentation and iden-
tification in synchronized first-and third-person videos. In
Proceedings of the European Conference on Computer Vi-
sion (ECCV), pages 637–652, 2018. 2

[37] Yihong Xu, Yutong Ban, Guillaume Delorme, Chuang Gan,
Daniela Rus, and Xavier Alameda-Pineda. Transcenter:
Transformers with dense queries for multiple-object track-
ing. arXiv preprint arXiv:2103.15145, 2021. 2

[38] Jin Ye, Xipeng Yang, Shuai Kang, Yue He, Weiming Zhang,
Leping Huang, Minyue Jiang, Wei Zhang, Yifeng Shi, Meng
Xia, et al. A robust mtmc tracking system for ai-city chal-
lenge 2021. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4044–
4053, 2021. 2

[39] Yifu Zhang, Peize Sun, Yi Jiang, Dongdong Yu, Zehuan
Yuan, Ping Luo, Wenyu Liu, and Xinggang Wang. Byte-
track: Multi-object tracking by associating every detection
box. arXiv preprint arXiv:2110.06864, 2021. 2, 3

[40] Yifu Zhang, Chunyu Wang, Xinggang Wang, Wenjun Zeng,
and Wenyu Liu. Fairmot: On the fairness of detection and
re-identification in multiple object tracking. International
Journal of Computer Vision, 129(11):3069–3087, 2021. 2

[41] Zhedong Zheng, Minyue Jiang, Zhigang Wang, Jian Wang,
Zechen Bai, Xuanmeng Zhang, Xin Yu, Xiao Tan, Yi Yang,
Shilei Wen, et al. Going beyond real data: A robust visual
representation for vehicle re-identification. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition Workshops, pages 598–599, 2020. 2

[42] Zhun Zhong, Liang Zheng, Donglin Cao, and Shaozi Li. Re-
ranking person re-identification with k-reciprocal encoding.
In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 1318–1327, 2017. 2

[43] Xingyi Zhou, Vladlen Koltun, and Philipp Krähenbühl.
Tracking objects as points. In European Conference on Com-
puter Vision, pages 474–490. Springer, 2020. 2

[44] Xingyi Zhou, Dequan Wang, and Philipp Krähenbühl. Ob-
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