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Abstract

We focus on the task of the Natural language-based vehi-
cle track retrieval of the 6th AI City Challenge. Performing
target vehicle retrieval using natural language descriptions
is a comprehensive task, requiring a model to first under-
stand the semantics of the language and vision modalities
and then match them to generate accurate retrieval results.
However, this task involves the following challenges: (1)
the ambiguity of the natural language descriptions towards
a target vehicle; (2) the matching between the linguistic se-
mantics of the language descriptions and the correspond-
ing static and dynamic properties of the target vehicle; (3)
the shortage of the annotated language and target vehicle
pairs. Obviously, focusing on solving a subset of the prob-
lems cannot generate a robust retrieval model. Therefore,
we propose a multi-granularity retrieval system to solve
this task, consisting of three main modules: (1) Language
parsing module that aims to obtain the fine-grained vehi-
cle attributes (e.g. color, type and motion) from the lan-
guage descriptions; (2) Language-augmented multi-query
vehicle track retrieval module that serves as our baseline
model to incorporate information from multiple imperfect
queries; (3) Target vehicle attributes enhancement module
that explicitly fuses the static and dynamic properties of the
target vehicle to generate the final retrieval results. Our
system has achieved the 1st place on the 6th AI City Chal-
lenge, yielding a strong performance on the private test set.

1. Introduction
Vehicle track retrieval has been an important part of ap-

plying AI to improve the efficiency of operations in city
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(b) Large Intra-class Variations

(c) Small Inter-class Variations

Language Query 1
"A red sedan turns right at the 

intersection after the traffic light."
"A dark-red SUV is turning left."

"Red crossover turns left from 
intersection."

Language Query 2
"A silver sedan turns right at an intersection 

and proceeds straight down the road."
"Grey 4 door sedan turning right."
"A silver sedan goes straight at the 

intersection."

(a) Language Ambiguity

Figure 1. Overview of the challenges in the dataset.(a) Language
ambiguity commonly existed in the language query set. (b) The
intra-class variations of the vehicle images in a vehicle track. (c)
The inter-class variations of different vehicle tracks.

environments. Previous works typically focus on building
vehicle retrieval systems that are image-to-image matching
based using image modality only, which aims to retrieve all
instances of a particular vehicle identity from a gallery set of
vehicle images that are captured under diverse traffic cam-
eras. The AI City Challenge has made a step further and for-
mulates a new task that incorporates a language modality,
called Natural language-based vehicle track retrieval. Dif-
ferent from the image-to-image style vehicle retrieval, also
known as vehicle re-identification, this task aims to retrieve
single-camera tracks of vehicles that are consistent with a
natural language query describing the static and dynamic
properties of the target vehicles. This task is inherently
challenging as it requires a retrieval model to first grasp
the semantics of the language and vision modalities and
then match them to generate accurate retrieval results. Con-
cretely, the challenges can be summarized as follows: (1) at
the language side, for a given target vehicle track, the cor-
responding language descriptions in a query set can some-
times be of low-quality, too general, ambiguous, or even
conflict, as shown in Fig. 1(a), which adds noise to both
training and evaluation of the retrieval model. (2) at the vi-
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sion side, vehicles with different identities show small inter-
class variations. As presented in Fig. 1(b) and (c), they of-
ten share same static properties (e.g. color and type) or dy-
namic properties (e.g. motion patterns), which significantly
increases the difficulties of the cross-modal matching. (3)
the training set provided consists of only 2155 annotated
language-vehicle pairs, which is insufficient for training a
robust retrieval model. Obviously, a retrieval model that
solves only a subset of the aforementioned problems cannot
generate desired retrieval results.

Performing accurate target vehicle retrieval using natural
language descriptions is a comprehensive task. In this pa-
per, we present a multi-granularity retrieval system consist-
ing of three main modules that tackle the aforementioned
challenges from three perspectives. Concretely, (1) We in-
troduce a Language Parsing module to obtain the fine-
grained vehicle attributes information and formulate corre-
sponding vehicle attributes labels to serve as extra super-
visory signals for later cross-modal matching. The moti-
vation lies in the fact that a language query sentence typi-
cally contains a detailed description of the target vehicle’s
color, type, and motion direction patterns. Unlike previ-
ous works [16], we add an extra motion direction parser
to extract motion direction words. Besides, we further ag-
gregate all parsed vehicle attribute words of a language
query via word frequency voting to generate extra super-
visory signals. (2) To tackle the language ambiguity prob-
lem commonly existed in the language query set, we present
a Language-augmented Multi-query Vehicle Retrieval
module that serves as our baseline model to incorporate in-
formation from multiple imperfect language descriptions in
the query set. This is significantly different from current
works which typically focus on experimenting under the
single-query setting (that is retrieving target vehicle given a
single text description as input). The motivation is that im-
perfect language descriptions could contain partial informa-
tion of a target vehicle and aggregating multiple imperfect
language descriptions of a target vehicle completes the lan-
guage feature descriptor for the target vehicle, which is ro-
bust to the language ambiguity and benefits the cross-modal
matching. Besides, following [1], we further augment the
language query set with BaiduNLP library [17] to incorpo-
rate more imperfect language sentences. (3) Although the
baseline model exhibits competitive retrieval performance,
the small inter-class variations and large intra-class varia-
tions of the target vehicles pose a great challenge for the
model to obtain robust retrieval results, which emphasize
the necessity of a post processing step. Thus, we propose a
Target Vehicle Attributes Enhancement module that fur-
ther refines the retrieval results by explicitly fusing the static
and dynamic properties of the target vehicles. Experiments
results indicate that our enhancement module significantly
boosts the final retrieval performance.

To sum up, this paper has the following contributions:
• We introduce a multi-granularity retrieval system to

tackle the natural language-based vehicle retrieval task
in the 6th AI City Challenge, which systematically
solves the noisy cross-modal matching problem from
different perspectives.

• We propose a language-augmented multi-query re-
trieval module to incorporate multiple imperfect lan-
guage descriptions to form a complete and robust lan-
guage embedding that alleviates the language ambigu-
ity problem commonly existed in the challenge.

• We devise a target vehicle attributes enhancement
module that refines the retrieval results by forcing the
predicted static and dynamic properties of target vehi-
cles to match the parsed language descriptions.

• Experiments show that our system achieves 1st place
on the private set of the challenge.

2. Related Work
2.1. Natural Language based Video Retrieval

Natural language based video retrieval task has attracted
increasing attention in recent years. In order to establish
a connection between text and video, early works [6, 10,
11, 15] mainly focus on extracting representative features
from both video and text data. These works utilize a tex-
tual feature extractor such as ERNIE [21],Word2Vec [14],
LSTM [7] to encode the language and employ a robust net-
work such as VIT [5] to extract visual feature. Recently,
large-scale pretrained vision-language models [12, 18, 27]
have achieved impressive performance in video retrieval
task. CLIP4Clip [13] explores a way to transfer the knowl-
edge of the pretrained model to video-language retrieval in
an end-to-end manner. CLIPBERT [9] employs sparse sam-
pling to enable affordable end to end learning for video-
language tasks. Wang et.al [25] further propose a new
framework which uses multiple queries as inputs to gen-
erate more accurate results instead of simply combining
similarity outputs of multiple queries from previous single-
query trained models. However, different from the tradi-
tional video retrieval task, vehicle retrieval task is essen-
tially an instance-level retrieval task that requires a model
to have a better understanding of traffic scenes and vehicle
attributes. Base on these characteristics, our method sys-
tematically solves the problem from multiple aspects and
explicitly integrate the properties of the target vehicle with
the language description.

2.2. Vehicle Re-identification

Vehicle Re-identification targets at retrieving the query
from a big gallery. However, it is a challenging task due to
many factors, such as occlusion and wide variety of appear-
ance under different environments. Most of the research
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efforts are dedicated to the design of network architecture
as well as loss functions. For the network architecture
design, PAMTRI [23] proposes pose-aware multi-task for
vehicle re-Identification. And it embeds multi-task learn-
ing pipeline including keypoints, heatmaps and segments.
Wang et.al. [24] proposed an orientation invariant feature
embedding module and a spatial-temporal regularization
module for vehicle re-identification framework. For the loss
functions, different implementations of triplet loss [8] are
provided under an extensive evaluation. Our task is differ-
ent in that the aim of our task is to perform cross-modal
matching between the language and vision modalities.

3. Method
3.1. Overview

We aim to present an overall solution for the natural
language-based vehicle retrieval task. To carry out the task,
we systematically analyze the challenges of the task and
propose a multi-granularity retrieval system, as presented
in Fig. 2. In general, our system can be decomposed into
three main modules: the Language Parsing module, the
Language-augmented Multi-query Vehicle Retrieval mod-
ule, and the Target Vehicle Attributes Enhancement mod-
ule. These modules tackle the challenges of the task from
different granularities and altogether they achieve a remark-
able performance on the benchmark dataset. In the follow-
ing sections, we first introduce the details of the Language
Parsing module; then, we present our Multi-query vehicle
retrieval baseline model; finally, we illustrate the Target Ve-
hicle Attributes Enhancement module.

3.2. Language Parsing Module

According to the task setting, language descriptions of-
ten contain rich descriptive information about the static
and/or dynamic properties of the target vehicle. Specif-
ically, it mainly includes the type of the target vehicle
(pickup, truck, car), the color of the target vehicle (silver,
red, black), and the motion direction of the target vehicle
(go straight, turn left, turn right, etc.). We observed that
most language queries have a similar language structure like
main subject + action + (optional other subject + action),
which is organized around some core verbs. This motivates
us to apply SRL to parse the queries. SRL [20] is a task
which aims to get the semantic role of other parts in the sen-
tence for each verb, including the Agent of the action, the
Patient of the action, etc. In this task, we utilize a SRL tool
to parse the language query to extract the vehicle attributes
(type, color, motion) of the target vehicle.

Specifically, our language parsing module is mainly di-
vided into 3 steps: data pre-processing, statistics analysis
and extraction. First, in order to ensure the langauge queries
can be parsed correctly and efficiently, we performed the

following preprocessing operations: (1) Spell check. We
first detect misspelled words in queries, and then use the
Levenshtein distance metric to find the corresponding cor-
rect word with the shortest edit distance in our predefined
dictionary and replace it. (2) Word Conversion. SRL takes
verbs as the core to analyze different semantic roles in sen-
tence. However, due to the ambiguity of natural language
itself, some words can be used as both verbs and nouns,
such as turn and drive, which confuse the SRL tool. There-
fore, in order to parse the verbs in the sentence correctly, we
replace all these verbs with their corresponding past tense.

After the data pre-processing step, we apply the SRL tool
to parse the original language queries, and collect the main
vehicle attributes words, including the type of the target ve-
hicle, the color of the target vehicle and the motion direction
of the target vehicle. Given the word frequency statistics of
these attribute words, we keep the words with the highest
frequency, and build up three vehicle attribute word dictio-
naries regarding vehicles color,type and motion direction.
In general, the generated dictionaries contain 8 colors, 6
vehicle types and 4 motion states. Then, to obtain extra
vehicle attributes supervisory signals, for a given language
query set containing three language descriptions, we count
the word frequency statistics of the vehicle attributes related
words against predefined vehicle attributes dictionaries. A
specific vehicle attribute label is extracted if the word fre-
quency of the corresponding vehicle attribute related words
is larger than one. Note that we generate two types of la-
bels for each vehicle attribute, a multi-label format and a
one-hot label format. The multi-label format is generated
simply by thresholding word frequency that is larger than
one while the one-hot label format is obtained by taking the
maximum word frequency.

Finally, we get the vehicle color (Lcolor), type (Ltype)
and motion direction Ldirection labels for each language
query set from the corresponding semantic role, such
as ARG1-4 for color and type labels, ARG1,ARG2 and
ARGM-DIR for motion labels, as presented in Fig. 3. In
our experiment, we use these extra supervisory information
during both cross-modal training and target vehicle attribute
enhancement. The difference is that multi-label format is
adopted during cross-modal training to combat the language
ambiguity problem and the one-hot label format is used in
the enhancement module to serve as a strict constraint for
retrieval refinement.

3.3. Language Augmented Multi-query Vehicle Re-
trieval Module

Problem Formulation. Formally, given a vehicle track
database V = {v1, v2, ..., vn} and a language query qi of
vehicle track vi, the goal of natural language-based vehi-
cle retrieval is to successfully retrieve vi from V based on
qi. However, as mentioned in previous sections, given a
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Language Query 
"A red SUV runs down the street passing parking 
lot on the right side.",
"The red SUV is always in the right lane.",
"A red carriage went straight.",

"A red SUV runs down the street passing 
parking lot on the right side.",
"The red SUV is always in the right lane.",
"A red carriage went straight.",
"The red SUV goes straight in the right lane.",
"The red cart goes straight ahead.",
"A red wagon goes straight.",
"A red SUV drove down the street and turned 
right in the parking lot.",
"Red SUV going straight in the right lane.",
"A red SUV drove down the street and passed 
the parking lot on the right."

Augmented Language Query
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Figure 2. Overview of our method. First, Language Parsing module parses all the language sentences qi of a language query set Qi to
obtain the fine-grained vehicle attributes information, which are then transformed to extra supervisory signals through words frequency
voting. Then, BaiduNLP library is applied to augment the language query set Qaug

i to include more imperfect language sentences. A multi-
query vehicle track retrieval model Mmulti(·) is constructed with vehicle track images vi, sampled Nq language sentences Qaug

i , and a
motion image mi as inputs. The Motion Eb

m(·) and Vehicle Track Eb
v(·) encoder have the same network architecture (Spatial-Temporal

Transformer Encoder [3]), producing corresponding vehicle track feature ftrack and motion feature fmotion. ReID feature extractor
Eb

reid(·) is also utilized to extract robust vehicle track features freid. Note that the ReID feature extractor is fixed during training. The
vehicle Track feature ftrack is further strengthened by the parsed color Lcolor and type Ltype labels to obtain fine-grained vehicle color
feature fcolor and vehicle type feature ftype. Then, a Contextualized Aggregation module Eh

veh(·) is applied to re-weights all the vehicle
related features to obtain the final vehicle embedding fvehicle. Similarly, the sampled Nq language sentences in a language query set are
forwarded to a language encoder Eb

lang(·), which are then fused by another Contextualized Aggregation module Eh
lang(·) to generate final

language embedding flang . Then, the cross-modal matching similarity is calculated by a simple dot product between fvehicle and flang .
After the training, the similarity score is further refined by the Target Vehicle Attributes Enhancement module.

Data Preprocessing

Language 
Query

Spell Check

Word 
Conversion

SRL Parsing

A white SUV moving straight on the freeway being followed by another white car.

A white SUV moved straight on the freeway followed by another white car.

• [ARG1: A white SUV] [V: moved] [ARGM-DIR: straight on the freeway] [ARGM-ADV: 
followed by another white car] .

• [ARG2: A white SUV] moved straight on the freeway [V: followed] [ARG1: by another white 
car] .

1. [ARG1] [ARG2] [ARG3] [ARG4] : Color ( white, red, …) and Type (suv, pickup, …) key 
words,

2. [V] [ARG2] [ARGM-DIR] : Motion (turn left, turn right, stop …) key words

Color
8 classes

Type
6 classes

Motion
4 classes

Group and Clustering

Queries’ Color Label, Type Label, Motion Label

Past Tense

Figure 3. Overview of the Language Parsing Module. First we
perform data preprocessing. Then, we take the SRL tool to parse
the language queries and group the words to produce the vehi-
cle attribute word dictionaries. Finally, we take the corresponding
keywords to generate final vehicle attributes labels.

language query set containing multiple language query sen-
tences, each language query sentence qi is often imperfect
and the query set suffers from the language ambiguity prob-
lem. Thus, instead of performing single-query vehicle re-
trieval, we adopt multi-query retrieval, where we define
a language query set Qi = {q1i , q2i , ..., qki } for a vehicle
track vi, which contains multiple imperfect language de-

scriptions. Here we formulate the language-based vehicle
retrieval as follows,

∀j, j ̸= i,Mmulti(Qi, vi) > Mmulti(Qi, vj) (1)

where Mmulti(·) denotes the learned retrieval model and
our goal is to retrieve a target vehicle track vi from the
vehicle track database V based on a language query set
Qi = {q1i , q2i , ..., qki }. Mmulti(·) ∈ R reflects how the
language query set matches the vehicle track. Ideally, as il-
lustrated in equation 1, a perfect retrieval would score the
matching language-vehicle pair higher than non-matching
pairs. Then we denote the similarity score of language-
vehicle pair as,

Mmulti(Q, v) = S(Elang(Q), Eveh(v)) (2)

where Elang(·) denotes the language encoder network
which maps the input query set to a high dimensional vec-
tor Elang(Q) ∈ Rm. Eveh(·) denotes the vehicle track en-
coder network, which maps the input vehicle track to the
same embedding space Eveh(v) ∈ Rm. S(·) is the scoring
function which measures the similarity between Elang(Q)
and Eveh(v). Here we choose cosine similarity as S(·).
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Overall Vehicle Track Encoder Eveh(·). It can be de-
composed into three parts: a vehicle track encoder Eb

v(·),
a vehicle motion encoder Eb

m(·), and a vehicle contextual-
ized aggregation encoder Eh

veh(·). Following [3,25], we im-
plement Eb

v(·) and Eb
m(·) as a spatial-temporal transformer

encoder network that share the same network architecture.
They are initialized with the same pre-trained transformer
encoder weights and the only difference is that the inputs
to Eh

veh(·) is a video-based vehicle track images and the
inputs to Eb

m(·) is a single image-based vehicle motion im-
age. Note that they both are leanred end-to-end. The moti-
vation of this separate encoders design lies in the fact that
the motion image focuses on the global context information
and dynamic properties of a target vehicle while the vehi-
cle track video represents local static and dynamic proper-
ties of a target vehicle. For a given vehicle track vi and
its corresponding motion image mi generated by follow-
ing [1], the motion encoder generates fmotion = Eb

m(mi)
and the vehicle track encoder produces ftrack = Eb

v(vi).
To further constrain the vehicle track embedding ftrack,
we forward ftrack through two different embedding lay-
ers (Fully-connected layers) to extract the color embedding
fcolor and the type embedding ftype, which are learned
under the supervisory signal from Lcolor and Ltype with
the loss function denoted as Lcolor and Ltype. Simi-
larly, we constrain fmotion with Ldirection, the loss func-
tion of which is denoted as Ldirection. Furthermore, fol-
lowing previous works [1, 16], we add a Re-identification
(ReID) feature extractor to further extract discriminative
vehicle track embedding feature freid = Eb

reid(vi). In
order to effectively combine multiple feature embeddings,
we choose to adopt a contextualized aggregation network
that is based on transformer attention network Eh

veh(·) to
fuse the aforementioned vehicle related embeddings via
fvehicle = Eh

veh([ftrack, freid, fcolor, ftype, fmotion]).
Language Encoder Elang(·). For a language query set

Qi, in training, we first sample a subset from the set consist-
ing of Nq language sentences. For instance, we set Nq = 3.
Then, we forward these language sentences to the language
encoder {fq1, fq2, fq3} = Eb

lang(Qi = {q1i , q2i , q3i }). To
combat the language ambiguity problem discussed previ-
ously, we adopt a contextualized aggregation network based
on transformer that combines {fq1, fq2, fq3} to flang via
flang = Eh

lang([fq1, fq2, fq3]). Following [25], we choose
the distilbert as the base structure of the Eb

lang(·). In infer-
ence, since the aggregation network Eh

lang(·) can dynami-
cally fuses any number of language sentences in a query set,
we thus set Nq = 3 to incorporate all language sentences in
the test language query set.

Language Augmentation. In order to enhance the
model robustness and take better use of the capacity of
multi-query retrieval model Mmulti(·), we propose to fur-
ther integrate the language augmentation strategy [2] to

expand the training language query set from Q to Qaug .
Specifically, we collect all the language queries in the train-
ing dataset of Track2, then translate the language descrip-
tions into Chinese and back-translate them afterwards.

Cross Modal Matching. The final cross modal match-
ing between a language query set Qi and a vehicle track vi
is performed by scorei = S(fvehicle, flang) where S(·) is
a cosine similarity function.

Total Loss functions. For a batch of N language-vehicle
pairs, it consists of N ×N possible sample pairs. The total
loss function is defined as follows,

L = Lmain + Lcolor + Ltype + Ldirection (3)

where Lmain is the symmetric InfoNCE loss that is defined
as,

Lt2i =
1

N

N∑
i=1

−log
exp(S(f i

vehicle, f
i
lang)/τ)∑N

j=1 exp(S(f
j
vehicle, f

j
lang)/τ)

(4)

Li2t =
1

N

N∑
i=1

−log
exp(S(f i

lang, f
i
vehicle)/τ)∑N

j=1 exp(S(f
j
lang, f

j
vehicle)/τ)

(5)

Lmain = Lt2i + Li2t (6)

and Lcolor, Ltype, and Ldirection are standard multi-label
classification loss.

Inference. At inference stage, we first adopt the aver-
age model soup strategy [26] that averages several models
trained with different hyperparameters. Then, the averaged
model are utilized to generate the retrieval results for the
test set denoted as Mmodel for later enhancement.

3.4. Target Vehicle Attributes Enhancement Mod-
ule

Since we do not explicitly align the static and dy-
namic vehicle properties of the target vehicle between the
two modalities during the cross-modal training, we pro-
pose a post-processing enhancement module to explicitly
align these properties of the target vehicle between the two
modalities. The implementation of the enhancement strate-
gies presented in this section is essentially carried out by
re-weighting the retrieval results generated by our baseline
model introduced in previous section.

Target Vehicle Attribute Predictors. To explicitly
learn classifiers that individually predict different vehicle at-
tributes, we formulate three separate classification networks
focusing on vehicle color Ccolor(·), vehicle type Ctype(·),
and vehicle motion direction Cdirection(·) respectively. To
train the color Ccolor(·) and the type Ctype(·) classifiers,
we first crop the vehicle track images from the vehicle track
dataset V and generate corresponding one-hot format label
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Figure 4. The training examples of motion direction classifier
Cdirection(·). We draw the trajectory of the target vehicle on the
corresponding background image. In order to make the movement
state more clear, we uniformly sample 1 to 4 cropped vehicle track
images and paste them on the trajectory with each image serving
as a training example for our motion classifier.

for vehicle track color and type attributes as mentioned in
the Language Parsing module. With these training set, the
learned Ccolor(·) and Ctype(·) could individually predict
vehicle color and type attributes given a vehicle track. For
the motion direction classifierCdirection(·), we draw the ve-
hicle motion trajectory on the motion image mi and use the
generated motion label Lmotion to train the classifier. An
example training image is presented in Fig. 4.

For these three classifiers, we adopt EfficientNetB3 [22]
network as the backbone network accompanied by a corre-
sponding classification head. We adopt cross-entropy loss
function as the training loss function.

Retrieval Enhancement With Re-weighting. With the
learned color, type, and motion direction predictors, we
design a simple yet effective re-weighting strategy to fuse
them with the retrieval matrix generated by our baseline
model. Specifically, for each language query Qi, we check
all the candidate vehicle tracks in V . If the predicted ve-
hicle attributes of this candidate vehicle track is consistent
with the vehicle attributes label parsed from the query, we
increase this pair’s similarity score, otherwise, we decrease
the similarity score. This strategy can be formulated as,

Mattri
ij =

{
sattri, Lattri

i == P attri
j

−sattri, otherwise
(7)

where attri stands for the attributes of vehicles includ-
ing color,type and direction. M is a N × N score ma-
trix which measures the consistency of target vehicle at-
tributes and language description. Li is the property label
obtained by parsing the language queries Qi, Pj is the pre-
diction made by classification models of track vj . sattri is
the penalty coefficient, scolor, stype, sdirection can be dif-
ferent according to the importance of different properties.
The final target vehicle score matrix Mtgt is:

Mtgt = M color
tgt +M type

tgt +Mdirection
tgt (8)

According to our experiments, this strategy greatly boost
our retrieval performance.

Figure 5. Overview of the relation module. (a) detection results (b)
trajectory mask filtering. yellow area stands for trajectory mask
(c) related vehicle. red box represents front vehicle, green box
represents target vehicle, blue box represents back vehicle..

3.5. Related Vehicle Attribute Enhancement Mod-
ule

In addition to the target vehicle attributes, some sen-
tences also provide us informative clues about properties
of related vehicles such as ’following red sedan’, ’behind
another white vehicle’. To exploit these valuable informa-
tion, we propose a Related Vehicle Attribute Enhancement
Module which greatly boost the final performance of the re-
trieval task. This module extracts information about related
vehicles both from natural languages and video frames.

First of all, in order to obtain the potential related vehi-
cle locations, we use object detection framework Cascade-
RCNN [4] which is trained by AICITY22-track1 training
data to detect all vehicles in each frame, the result is shown
in Fig. 5(a). Since we only concern about the related cars
which are the vehicles in front of or behind the target vehicle
in this task, we filter out the irrelevant vehicles, for exam-
ple, vehicles in opposite lanes. We assume that the related
vehicle and the target vehicle have similar trajectories and
denote the trajectory mask of target vehicle as T , the n-th
detected bounding box area of vehicle as bn. For each track,
T is obtained by merging the bounding box area of target
vehicle in each frame. After that, we compute the intersec-
tion over union(IOU) between each (bn, T ) pair and filter
out the bounding boxes whose IOU(bn, T ) is lower than the
threshold δ, Fig. 5(b) shows the filtering results. After filter-
ing, we calculate the L2 distance between target vehicle and
related vehicles and seek out vehicles in front of and behind
the target vehicle based on such distance. Specifically, for a
frame t, the distances are calculated by following equation:

Dt
n =

√
(xt

n − xt
tgt)

2 + (ytn − yttgt)
2 (9)

where Dt
n is the L2 distance between the i-th detected

bounding box of frame t btn and the target bounding box
bttgt provided by track information, xt

n, ytn are the center
coordinates of btn. Similarly, xt

tgt and yttgt are the center
coordinates of bttgt.

Obviously, smallest Dt
n appears when box btn and bttgt

are the same vehicle and this kind of box is represented in
green in the Fig. 5(c). After finding the detected target box,
we divide the remaining boxes into two categories: boxes
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in front of target Bfront and boxes in back of target Bback.
Since the target vehicle is moving forward, front vehicles
will be closer to the target vehicle in the next frame, on the
contrary, if the vehicle is behind the target, the distance Dt

n

will getting larger. This can be formulated as follows:{
btn ∈ Bfront, Dt

n > Dt+1
n

btn ∈ Bback, otherwise
(10)

Then we can get the front vehicle and back vehicle
bounding boxes by finding the minimum Dt

n in Bfront and
Bback respectively, these two kind of boxes are also drawn
in red and blue in Fig. 5(c).

After obtaining the language relation information ex-
tracted by language parsing module and track relation in-
formation generated by above procedure, we employ the
re-weighting strategy mentioned in section 3.4 to generate
score matrices Mfront and Mback for front vehicle and back
vehicle respectively, thus the final similarity matrix Mfinal

becomes:

Mfront = M color
front +M type

front (11)

Mback = M color
back +M type

back (12)

Mfinal = Mmodel +Mtgt +Mfront +Mback (13)

where Mmodel is the similarity matrix calculated by
Mmulti(·).

4. Experiments
4.1. Dataset

Following previous works [3, 25], we use three datasets
to train our retrieval system, namely CityFlowV2-NL,
AICITY22-track1 and the synthetic data. Specifically, we
adopt CityFlowV2-NL to train our the multi-query retrieval
model Mmulti(·). For training the ReID model Eb

reid(·) to
extract appearance features from the vehicle track, we uti-
lize the training set of AICITY22-track1 and the synthetic
data.

4.2. Evaluation Metric

Following the setting of Track2, we adopt the mean re-
ciprocal rank (MRR) as the main evaluation metric. MRR
is denoted as:

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
, (14)

where |Q| is the number of language query and ranki de-
notes the ranking of the ground truth track for the i-th lan-
guage query. We also report MRR results of Recall @5 and
Recall @10.

Table 1. Comparisons between our method and other teams on the
benchmark of Track2. Our results rank 1st.

Team ID MRR
176 56.52%

6 52.51%
4 47.73%

183 43.92%
91 36.11%
44 33.38%

4.3. Implementation Details

For the Multi-Query Vehicle Track Retrieval model
Mmulti(·), following [25], we adopt the spatial-temporal
transformer model proposed in [3] as the initialized weights
for Eb

v(·) and Eb
m(·), which is pre-trained on the Conceptual

Captions [19] and WebVid-2M [3] datasets. The language
encoder Eb

lang(·) is initialized from the DistilBERT base-
uncased model pre-trained on the English Wikipedia and
Toronto Book Corpus. All other parts of the model are ran-
domly initialized. Mmulti(·) is trained end-to-end with a
batch size set to 20 and is optimized with AdamW optimizer
with learning rate set to 0.00003. We train the model for 20
epochs in total with a learning rate scheduler set to Linear
Warmup Cosine Annealing Learning Rate Scheduler. For
Eb

v(·) and Eb
m(·), the input number frames are set to 16 and

1 accordingly and we resize the vehicle track and motion
image inputs to 224 × 224. The multi-query number Nq is
set to 4 in training and set to 3 in testing.

4.4. Comparisons with Other Teams

As shown in Tab. 1, our overall model result won the first
place with the MRR of 56.52%, surpassing the second-best
team by a large margin (4.01%).

4.5. Ablation Study

According to Tab. 2, our multi-query retrieval model
Mmulti(·) achieves a strong performance of 37.05% MRR,
which verifies the effectiveness of the adoption of multi-
query to tackle the language ambiguity problem commonly
existed in the benchmark dataset. Then with language
augmentation from BaiduNLP library, we further boost
the performance by 2.12% MRR, achieving 39.17%MRR.
This demonstrates the language back-translation is effec-
tive. Then, we perform average-based model soup, which
boost the MRR to 40.73%. Furthermore, we performed
the Target Vehicle Attribute Enhancement post-processing
strategy, which significantly improves the MRR by 15.79%.
This suggests that although the model could learn a compet-
itive cross-modal matching baseline with limited and noisy
annotated language-vehicle pairs, yet applying explicit con-
straints to the alignment between the two modalities is still

3222



1. A brown sedan runs down the 
street followed by another vehicle.
2. Convertible dark-colored car 
with a gray car behind it.
3. A black sedan keeps straight 
followed by another vehicle.

1. A gray sedan keeps straight followed 
by a silver vehicle.
2. A gray sedan crosses the intersection 
with all other cars parked.
3. A gray sedan going straight down the 
street with cars parking on the side.

1. A red sedan runs down the 
street followed by another 
silver vehicle.
2. Red car goes straight 
followed by a grey car.
3. A red car continues forward.

Rank 1

Rank 6

Full Model

Rank 1

Rank 6

Baseline

Figure 6. Qualitative Comparisons between our full model and our
baseline model.

Table 2. Ablation study. Baseline is the Mmulti(·) model trained
without language augmentation. NL Aug. represents the language
augmentation through language back-translation. TVAE denotes
the Target Vehicle Attribute Enhancement module. PL. denotes
the pseudo label exploration.

Baseline NL Aug. Model Soup TVAE PL. MRR Recall@5 Recall@10

✓ 37.05% 57.61% 76.63%
✓ ✓ 39.17% 63.58% 77.17%
✓ ✓ ✓ 40.73% 64.67% 77.17%
✓ ✓ ✓ ✓ 56.52% 71.20% 83.15%

✓ ✓ ✓ ✓ ✓ 66.06% 82.61% 90.22%

important and has a great potential to further boost the per-
formance, which has not been fully explored in previous
works.

4.6. Qualitative Results

We visualize the ranking results of our full model and
our baseline model in Fig. 6, which clearly shows the ef-
fectiveness of our proposed modules. All the top-6 ranking
results are relevant to the language query descriptions.

4.7. Upper Bound

The test images are assumed to be unknown by default.
However, camera deployments in a traffic transportation
system are usually accessible, meaning that the exits and
entrances of each movement captured by a camera could be
pre-defined. Besides, the trajectories of vehicle tracks under
various cameras are provided, meaning that the direction of

Figure 7. Upper bound performance of our system by re-training
Cdirection(·) with pseudo labeled trajectories of vehicle tracks. We
mark all the intersections in the cameras and cluster all the trajec-
tories with simple traffic rules to assign pseudo labels to the tra-
jectories.

these vehicle trajectories can be pseudo labeled via cluster-
ing and a set of traffic rules (priors). This motivates us to
further explore the performance upper bound of our system
by re-training our motion direction classifier Cdirection(·) in
a semi-supervised manner. Concretely, for each test cam-
era, we draw several specific intersection regions as pre-
sented in Fig. 7, and we use simple traffic rules to determine
the pseudo label of each vehicle trajectory. Then, we train
Cdirection(·) with these pseudo labeled vehicle trajectories.
The network is a simple Bi-LSTM network. Note that the
inputs of Cdirection(·) are the points embedded by a coor-
dinate embedding layer along the vehicle motion trajectory,
without any image information. Interestingly, this simple
design further boosts the final performance to a new level,
achieving 66.06% shown in Tab. 2.

5. Conclusion

We presented a multi-granularity retrieval system for the
natural language-based vehicle retrieval task in the 6th AI
City Challenge. We analyzed the dataset provided by the
challenge and summarized three main problems: the lan-
guage ambiguity in the language query set, the challenging
intra- and inter- class variations in target vehicle tracks, and
the shortage of the annotated language-vehicle pairs. To
tackle these problems, we first presented a Language Pars-
ing module to extract fine-grained vehicle attributes infor-
mation from the language query and formulate extra super-
visory signals for later cross-modal training. Then, we in-
troduced a multi-query vehicle track retrieval strong base-
line model that incorporates multiple imperfect language
descriptions to match the described target vehicle track,
which helps obtain complete and robust language embed-
ding that benefits the overall cross-modal matching. Finally,
we proposed a target vehicle attributes enhancement mod-
ule to further refine the retrieval results through a set of pre-
scribed constraints that force the predicted properties of a
target vehicle to match the corresponding language descrip-
tions. Experiments on the private set of the challenge show
that our solution achieved the 1st place.
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