
Unsupervised domain adaptation and super resolution on drone images for
autonomous dry herbage biomass estimation

Paul Albert1,3,5, Mohamed Saadeldin2,3,5, Badri Narayanan2,3,5, Brian Mac Namee2,3,5,
Deirdre Hennessy4,5, Noel E. O’Connor1,3,5, Kevin McGuinness1,3,5

1School of Electronic Engineering, Dublin City University
2School of Computer Science, University College Dublin

3Insight Centre for Data Analytics
4Teagasc, 5VistaMilk

paul.albert@insight-centre.org

Abstract

Herbage mass yield and composition estimation is an im-
portant tool for dairy farmers to ensure an adequate sup-
ply of high quality herbage for grazing and subsequently
milk production. By accurately estimating herbage mass
and composition, targeted nitrogen fertiliser application
strategies can be deployed to improve localised regions in
a herbage field, effectively reducing the negative impacts
of over-fertilization on biodiversity and the environment.
In this context, deep learning algorithms offer a tempting
alternative to the usual means of sward composition esti-
mation, which involves the destructive process of cutting
a sample from the herbage field and sorting by hand all
plant species in the herbage. The process is labour in-
tensive and time consuming and so not utilised by farm-
ers. Deep learning has been successfully applied in this
context on images collected by high-resolution cameras on
the ground. Moving the deep learning solution to drone
imaging, however, has the potential to further improve the
herbage mass yield and composition estimation task by ex-
tending the ground-level estimation to the large surfaces oc-
cupied by fields/paddocks. Drone images come at the cost
of lower resolution views of the fields taken from a high
altitude and requires further herbage ground-truth collec-
tion from the large surfaces covered by drone images. This
paper proposes to transfer knowledge learned on ground-
level images to raw drone images in an unsupervised man-
ner. To do so, we use unpaired image style translation
to enhance the resolution of drone images by a factor of
eight and modify them to appear closer to their ground-
level counterparts. We then use the enhanced drone im-
ages to train a semi-supervised algorithm that uses ground-
truthed, ground-level images as the labelled data together

8 fold 
upsampling, 
deblurring 
and visual 
domain
transfer

Figure 1. Up-sampling drone images by a factor of 8. Images
at the top are 64 × 64 crops from drone images. Images at the
bottom are up-sampled to 512× 512, deblurred and transferred to
the ground-level visual domain in an unpaired fashion. We use the
transformed images in a semi-supervised regression objective.

with a large amount of unlabeled drone images. We validate
our results on a small held-out drone image test set to show
the validity of our approach, which opens the way for au-
tomated dry herbage biomass monitoring www.github.
com/PaulAlbert31/Clover_SSL.

1. Introduction

Nitrogen fertilization has proven to be efficient in en-
hancing herbage quantity and quality, yet over-fertilization
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has detrimental effects on biodiversity and on the environ-
ment in general [4, 26, 35]. In this context, clover proves
to be an important ally to the farmer for two reasons. First,
clover naturally captures widely available nitrogen from the
atmosphere and renders it available in the soil for the grass
to use [40, 49]. Second, having proper amounts of clover in
the feed has been shown to increase cow appetite, which in
turn translates to higher milk production [15, 34]. Monitor-
ing clover content in the herbage then becomes an impor-
tant aspect of milk production and regular herbage biomass
probing is performed by humans to ensure a proper grass to
clover balance. The herbage probing process involves cut-
ting a sample from the field, drying it in lab before manually
separating each component of the herbage by hand [15].
Knowing the herbage composition and dry mass is valu-
able for the farmer but because existing probing processes
are destructive and time consuming it is never probed at
the farm level. In this context, deep learning has the ca-
pacity to provide a simpler, non-destructive alternative to
dry herbage phenotyping and mass estimation from images
alone. The feasibility of the method has been shown in pre-
vious works, often relying on partially labeled or unlabeled
images to reduce the strain of the lengthy data collection
process [2, 36, 47]. These works, however, only studied the
application of deep learning algorithms to ground-level im-
ages using handheld devices and tripods [19] or all terrain
vehicles (ATV) [46]. In this paper, we propose to extend the
dry biomass and herbage mass estimation problem to drone
images, which are more suitable for covering large herbage
fields. Because drones operate at higher altitudes, large land
areas that can span from tens to hundreds of square meters
depending on the altitude are captured in every drone image,
rendering the fine ground-truthing of data very challenging.
To mitigate this issue, we propose to transfer knowledge
learned from few high-resolution ground-level images to
drone images in an unsupervised manner. To do so, we ap-
ply an unpaired domain transfer algorithm [42] to the drone
images to enhance their resolution to 2048 × 2048 and to
reduce the visual domain gap with the ground-level images
(see Figure 1). We then train a semi-supervised neural net-
work for regression on a small number of labeled ground-
level images together with unlabeled drone images to ef-
fectively transfer knowledge between the two domains. To
evaluate the quality of our regression algorithm, we test it
on a small data set of ground-truthed drone images collected
in Ireland and evaluate the benefit the large quantities of
unlabeled images drone imagery provides to improve the
ground-level predictions. Our contributions are:

1. 328 drone images of herbage fields in Ireland;

2. An unpaired image transfer pipeline, increasing the
resolution of drone images 8 fold and transferring them
to the ground-level camera visual domain;

3. A semi-supervised regression that learns to estimate
dry herbage biomass from a small set of annotated
ground-level images and unlabeled drone images.

2. Related work
2.1. Computer vision for agriculture

Computer vision offers possibilities to revolutionize
smart agriculture by providing farmers with automated so-
lutions to address deficiencies in their fields and also to
drive efficiencies in their daily practice. Weed detection,
for example, is a topic that received significant attention
where undesirable weeds are automatically detected in a
field using image analysis. The weed detection process
encompasses simple edge detection or color filtering ap-
proaches [41, 44, 50]; random forest classifiers trained on
color features [21]; or more recently semantic segmenta-
tion neural networks [29]. Other popular phenotyping tasks
include fruit detection and counting in trees [1, 9, 45] or
wheat head identification [13]. Generative adversarial net-
works (GANs) are of special interest in the plant domain.
We separate here GANs architectures between the condi-
tional architectures that are trained with pairs of input and
outputs in the two different visual domains [22] and un-
paired architectures, i.e. CycleGAN [55] or Contrastive
Unpaired Translation [42] where images from both visual
domains are not semantically linked. Conditional GANs
have been successfully applied to generate RGB images
from semantic segmentation masks [56], to predict cabbage
growth [14], or plant super-resolution to improve feature
detection [12]. Unpaired GANs have been used to estimate
disease spreading on leaves [31, 37, 38] or to improve the
realism of synthetic images [6, 18]. Finally, drone (UAV)
imaging holds important potential for automating farm tasks
since drones can easily cover large areas of uneven ter-
rain [53]. Deep learning has been successfully applied
to derive growth rate from nitrogen fertilization on drone
images [20], estimate the emergence rate of seeds in the
field [33], wheat density [25], weed detection [16], and land
classification [11]. The main drawback when applying deep
learning on drone images for plant phenotyping remains the
difficulty of ground-truthing the images because of the large
areas covered [53].

2.2. Biomass composition prediction from canopy
images

Herbage biomass composition from images gained trac-
tion after the publication of the GrassClover image dataset
for semantic and hierarchical species understanding in agri-
culture [46,47]. To solve the biomass composition problem,
Skovsen et al. [47] propose to create artificial images where
grass/clover/weeds elements are manually cropped from the
raw images and pasted in a random fashion on a soil back-
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ground image to create a synthetic but fully segmented im-
age. A semantic segmentation network is then trained on the
synthetic data and predicts species pixel percentages from
the real RGB images and a least-squares regression algo-
rithm predicts the dry biomass from the pixel percentages.
The Irish grass clover dataset [19] proposes, additionally to
the dry biomass percentages, to predict the herbage height
pre-grasing (cm) and the dry matter per hectare (kg DM/ha)
from the canopy images. Although both datasets provide
an additional large amount of unlabeled images, the respec-
tively baseline are purely supervised and do not make use
of the raw images. Subsequent algorithms were published
and tested on both datasets to attempt to use the raw data
to improve the biomass prediction. Narayannan et al. [36]
proposed to use mean imputation to infer labels for the par-
tially labeled samples before training a convolutional neural
network (CNN) on the larger dataset. Albert et al. [2] gen-
erate synthetic semantic segmentation images in a similar
fashion to Skovsen et al. [47] but instead of using the linear
regression algorithm to predict at test time, the regressor
is used to automatically label raw images. The automati-
cally labeled data is then used together with the few ground-
truthed images to train a regression neural network robust
to label noise. Another work by Albert et al. [3] instead
uses an unsupervised learning algorithm [30] on the unla-
beled data to learn better initial representations that allow
for better accuracy numbers with limited amounts of labels.
Finally, Skovsen et al. [48] published an updated version of
their segmentation algorithm from synthetic data using style
transfer GANs to simulate different weather conditions and
multi-resolution prediction.

2.3. Semi-supervised regression from images

Semi-supervised regression (SSR) solves a regression
task on a dataset where the labeled data is limited but the
unlabeled data is plentiful. Although semi-supervised clas-
sification received many important contributions in the last
years, the attention given to SSR has been limited. Tim-
ilisina et al. [51] construct a fully connected graph from
the feature representations of every sample before perform-
ing a bounded heat diffusion process to annotate the unla-
beled data. Jean et al. [23] adopt a Bayesian approach by
fitting the labeled representations with gaussian processes
and training an auxiliary regularization objective to mini-
mize the predictive variance with regards to the unlabeled
points. Bzdok et al. [10] apply an autoencoder on top of
medical images of brain voxels to solve a action regression
task. The autoencoder is used to compress the input vectors
and to ensure that the features extracted from labeled and
unlabeled images will be compatible with the end logistic
regressor. Li et al. [32] propose a process to aggregate the
predictions from multiple regression predictions into a safe
pseudo label for the unlabeled samples by means of solv-

ing a convex linear combination of each regressor output.
Zhou et al. [54] co-train two KNN regressors with differ-
ent distance metrics that predict pseudo labels to be used
by the other regressor on the unlabeled data, effectively re-
ducing confirmation bias. Note that semi-supervised clas-
sification algorithms such as consistency regularization ap-
proaches [8, 52] or pseudo-labeling [5] should translate to
the regression setting.

3. Unsupervised domain adaptation and super
resolution on drone images

We aim to solve the biomass prediction task jointly from
a small set of ground-level images Xl with biomass labels
Yl (ground-level images) together with a large set of un-
labeled (raw) images Xu from a different visual domain
(drone images) in an unsupervised fashion. To do so, we
use two neural networks: Ψ performing super resolution
and visual shift from the domain of Xu to Xl and Φ, a re-
gression network we use to learn jointly from Xl and Xu by
optimizing a semi-supervised objective.

3.1. Dataset presentation

We consider here three different herbage biomass es-
timation datasets. The first one is the publicly available
GrassClover dataset [46]. This dataset is composed of 157
annotated images (to be divided between training set and
validation set) and 31.600 unlabeled images. The image
acquisition was carried out in Danish fields between 2017
and 2018 using for the most part an ATV mounted camera.
The ground-truth collected is composed of the dry biomass
percentages for the grass, white clover, red clover, total
clover and weeds. The second dataset is the Irish clover
dataset [19], which is composed of 424 training images, 104
held out test images, and 594 unlabeled images. The im-
ages were captured in the south of Ireland in the Summer of
2020 using a camera mounted on a tripod. The ground-truth
collected is composed of the dry biomass percentages for
grass, total clover and weeds (%), the herbage height (cm),
and the herbage dry matter per ha (kg DM/ha). Finally, we
propose in this paper an extension of the Irish dataset where
we collect drone images in the same 23 herbage paddocks
originally studied in Ireland in late Autumn of 2021. We
collect between 36 and 7 drone images per paddock at an
altitude between 6 and 12 meters. The drone we use is the
DJI Mavic 2 Pro 1 with its default camera, taking pictures
at a resolution of 5472 × 3648. Although our drone is not
capable of capturing its altitude relative to the land below,
we subtract the above sea level GPS altitude of the drone
from the land altitude at the associated GPS coordinates to
obtain an approximate relative altitude using an open source

1https://www.dji.com/ie/mavic-2
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Altitude: 12M Altitude: 8M

192 x 192128 x 128

Figure 2. Drone image cropping process at different altitudes. Given that resolution of the image is fixed, we increase or reduce the cropped
area. All crops are then bicubicly upscaled to 2048× 2048 before deblurring.

API 2. We obtain 328 drone images in total with their asso-
ciated altitude. Because of the huge areas covered by drone
images, the ground-truth we collect is limited to the dry
herbage mass at the paddock level and we omit the grass
height and biomass percentage information. The resulting
80 labeled drone images are only used as a means to test the
knowledge transfer from the ground-level to the drone im-
ages and not used for training. We propose two ground-truth
estimations for the drone images: the first is a visual estima-
tion performed on site at the time of the image collection by
two human experts, very familiar with the site and that vi-
sually estimate the herbage on site every week. The second
is obtained following the protocol of Egan et al. [15]: we
cut two 1.2 × 8 meters strips in the paddocks 4 cm above
ground level (typical cow grazing height) using an Etesia
lawn mower (Etesia UK. Ltd., Warwick, UK). A 100 grams
sample is collected from the cut material and dried at 95°C
for 16 hours to obtain the dry herbage mass. We compare
our algorithm against the human estimation and the exact
ground-truth.

3.2. Contrastive Unpaired Translation (CUT)

The first step of our algorithm is to increase the resolu-
tion of drone images and to modify them to appear visu-
ally closer to the few ground-truthed images captured using
high resolution cameras on the ground. To do so, we use
Contrastive Unpaired Translation (CUT) [42]. CUT trains
an adversarial network (GAN) to perform unpaired image
style transfer using three principal components. G is the
generator part of the network, competing to fool D the dis-
criminator in an alternative adversarial optimization and F
the projection head is used to optimize the contrastive part

2opentopodata.org

of the algorithm, which promotes semantic similarities be-
tween the same image before and after the visual transfor-
mation. CUT minimizes a combination of three losses to
learn the parameters for G, D, and F . First the adversarial
loss [17]

Ladv(G,D,Xl,Xu) = Exl∼Xl
logD(xl)

+ Exu∼Xu(1− logD(G(xu))),
(1)

promotes the generator G to transform images from Xu (the
drone images) so that they become indistinguishable by the
discriminator D from the high resolution ground-level im-
ages in Xl. Second, once the image has been transformed
by the generator, a patch contrastive regularization objective
is applied where patches at the same location in the image
before and after the transformation are encouraged to have
similar features after projection through F while being dis-
similar to any other random patch from the image. This
results in a constrastive patch objective

Lpatch(G,F,X) = − 1

P

P∑
i=1

log

(
exp (ip(pi, p′i)/τ)∑P

k=1 exp (ip(pk, p
′
i)/τ)

)
,

(2)
where P = 64 random patches are cropped out from the
input image, their feature representations encoded through
G (stopping half way), projected through F and L2 normal-
ized. The process is repeated for the transformed version of
the image to form P pairs of random patches {(pi, p′i)}Pi=1

for a given image x ∈ Xu where pi is the representation be-
fore the domain shift and p′i after. The dot product between
the representations of corresponding pairs is encouraged
to be close to one and close to zero for different patches.
Lpatch can also be applied to images in Xl to enforce that G
will perform the identity operation, i.e. ∀x ∈ Xl, G(x) = x.
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CUT (Ψ)

2048x2048 drone crop

Semi-supervised 
regression (ɸ)

Original 5500 x 3600 drone image Labeled ground-truth (N=52)

Height adjusted random crop and 2048 x 2048 upscale

2048x2048 deblurred crop image (N=16400)

Figure 3. Overview of our up-sampling and knowledge transfer algorithm. We use an up-sampling and visual domain transfer network
Ψ and a semi-supervised network Φ that we use to learn jointly from few labeled ground-level examples (N = 54) and unlabeled drone
images.

τ = 0.07 is the contrastive temperature parameter. The fi-
nal objective minimized by CUT where λ1 = λ2 = 0.5 is

L = Ladv(G,D,Xl,Xu)

+ λ1Lpatch(G,F,Xu) + λ2Lpatch(G,F,Xl).
(3)

3.3. CUT for super resolution and style transfer

Cropping the drone images. We propose to crop squared
areas from the drone images to obtain similar amounts of
elements per image as ground level images. Because the
drone images were not all captured at the same altitude, we
adjust the area cropped out from the drone images depend-
ing on the altitude at which the image was captured. We
observe visually that at an altitude of 8 meters, a 256× 256
pixel crop of the drone data yields similar numbers of grass
elements and of similar size to the ground-level images.
Given the altitude of the drone at the time the picture was
taken, we multiply the edge of the crop by the ratio be-
tween the altitude and the standard value of 6 meters i.e.
for an altitude of 12 meters, the edge of the square crop will
be 6/12 × 256 = 128. Figure 2 illustrates the height ad-
justed cropping process. This process allows us to capture

the same area of land independently of the height of the
drone.

Deblurring the crops Although CUT is originally de-
signed to transfer styles between two unpaired visual do-
mains, we propose here to task the algorithm with improv-
ing the resolution of the drone images while at the same
time transferring their visual style to ground-level images.
Note that the super-resolution task is usually performed by
conditional GANs (e.g. [39]) but we propose here to use an
unpaired algorithm. For each image x ∈ Xu, we upscale
the image from the original resolution to 2048× 2048. Ψ is
then trained to transfer the visual style of the ground-level
high resolution images to the up-sampled crops, effectively
deblurring them to appear closer to the higher resolution
images (see Figure 1).

3.4. Semi-supervised regression on drone data

By up-sampling and visually transforming drone images
to appear closer to the ground-level visual domain, we are
now able to learn jointly from Xl and Xu. Since it is only
practical to obtain labels for ground-level camera images,
we propose to optimize a semi-supervised regression objec-
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tive using Xl as the labeled set and Xu as the unlabeled data.
After an initial pretraining of Φ on Xl, we start guessing
biomass labels for Xu using a consistency regularization
approach [8]. Using two data augmented views x′

u and x′′
u

(vertical and horizontal random flipping), we use an expo-
nential moving average (EMA) on the weights of Φ to guess
two approximate biomass labels y′u and y′′u for xu. Rather
than averaging the two approximate labels with equal im-
portance like consistency regularization algorithms for im-
age classification [7, 8], we draw a random mixing param-
eter λ from a uniform distribution to improve the regular-
ization of the predictions and avoid confirmation bias [5].
We obtain an approximate label ỹ = λy′u + (1 − λ)y′′u
for every unlabeled images. We enforce the distribution of
the predictions on unlabeled samples to match the observed
ground-truth distribution on the labeled data (distribution
alignment) by multiplying the label prediction by the ratio
between a sliding window average (50 mini-batches in prac-
tice) of ỹ and the observed distribution on the labeled data.
EMAs and distribution alignment are common principles of
consistency regularization algorithms for semi-supervised
learning [7, 24]. Finally, we normalize the biomass com-
position to sum to 1 in the approximate label ỹ. Figure 3
presents an overview of the proposed semi-supervised train-
ing algorithm

3.5. Regression from images

We predict biomass labels from images in Xl and Xu us-
ing Φ to extract visual features. For the Irish dataset [19],
we use three different linear heads, separating the predic-
tions of the herbage mass, herbage height, and biomass
composition. We normalize the herbage mass and herbage
height values between 0 and 1 using fixed normalization
values (4000 kg DM/ha for the herbage mass and 20cm for
the height) and offset them by +0.2 to improve the pre-
diction for low values originally too close to 0. To obtain
values between zero and one for each target prediction and
ensure that the sum of the biomass percentages equals one,
we apply a softmax function on the three outputs from the
biomass head and a sigmoid function for each of the other
two values. For the GrassClover dataset [47], we use a sin-
gle linear head, predicting the biomass percentages (grass,
white clover, red clover, weeds) and sum the predictions
for white and red clover to obtain the total clover content.
These configurations follow the work of Albert et al. [2].
We use the root mean squared error (RMSE) as the training
objective.

4. Experiments
4.1. Experimental setup

We conduct experiments on two biomass prediction
datasets from canopy images. For the GrassClover dataset,

Var: 4.66 Var: 1406.77

Ψ

Blurriness 
estimation 

Figure 4. Overview of the deblurring effect of Ψ on drone data. A
high variance indicates a sharper image.

we use 100 labeled and 1, 000 unlabeled images for training
and 57 images for validation. We report the test accuracy
results on the evaluation server for the GrassClover dataset.
For the Irish dataset, we use 52 labeled and 595 unlabeled
images for training and 104 images for validation. For the
drone images, we extract 50 random crops from each of the
328 images to create a dataset of 16, 400 unlabeled images.
We train using stochastic gradient descend at a resolution
of 512 × 512 with a batch size of 32 and a fixed learning
rate of 0.03. We update the EMA with a multiplication pa-
rameter of 0.99 at every mini-batch. The training augmen-
tations are resize, random crop, random horizontal and ver-
tical flipping, and normalization. When we perform semi-
supervised learning, we create each mini-batch by aggregat-
ing 4 labeled samples with unlabeled images as in Albert et
al. [2]. For the neural networks, we use a ResNet18 [27]
pretrained on ImageNet [28] for the regression network Φ
and the 9 ResNet blocks version of the CUT model Ψ.

4.2. Drone image deblurring and style transfer

We evaluate the deblurring capacity of Ψ by comput-
ing the variance of the Laplacian on the grayscale view
of an image. Computing the Laplacian of the image al-
lows us to extract edges in the image and the variance of
the resulting value quantifies the sharpness of the edges:
sharpness = var(∇2(grayscale(image))) [43] with ∇2

the Laplacian operator. A higher variance indicates a bet-
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HRMSE RMSE

Total Grass Clover Weeds Avg. HRE Grass Clover Weeds Avg. HE

Albert et al. [2] 230.10 220.84 34.86 27.13 94.28 1.14 4.81 4.75 3.42 4.33 2.15
Albert et al. [3] 229.12 218.02 37.65 29.21 94.96 1.09 4.58 4.22 3.44 4.08 2.03

Labeled only 229.23 268.90 107.39 39.82 138.71 1.08 17.15 14.08 4.74 11.99 2.28
Semi-sup 234.50 224.10 43.03 26.74 97.96 1.04 5.85 5.51 3.19 4.85 2.24
+ distribution alignment 220.79 215.88 40.00 26.78 94.22 1.08 5.53 5.51 3.25 4.76 2.09
+ EMA 217.28 208.96 34.16 26.50 89.88 1.08 4.86 4.73 3.26 4.28 2.09
+ Self-sup [30] 211.57 202.18 28.93 26.80 85.97 1.09 4.54 4.50 3.21 4.08 2.09
drone unlabeled 209.69 199.61 33.59 27.13 86.78 1.02 4.74 4.65 3.33 4.24 2.18

Table 1. Ablation study and comparison against state-of-the-art algorithms on the Irish dataset. The last row denotes replacing the ground-
level unlabeled camera images with deblurred drone images. The best results are in bold.

HRMSE HRE

Against harvested ground-truth

Labeled only 1094.18 0.43
Semi-sup. 566.68 0.81
Semi-sup. drone 219.15 0.97

Human expert 170.03 1.04

Table 2. Results on drone images. Errors are computed against the
absolute harvested ground-truth.

500 1000 1500 2000
GT herbage mass

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

HR
E

HRE vs herbage mass gt
Average prediction
95% Confidence interval
Validation samples

Figure 5. Visualization of the HRE on the validation set of the
Irish dataset with 95% confidence intervals.

ter defined (sharper) image. The sharpness estimation pro-
cess is illustrated in Figure 4. We observe that the variance
averaged over all the crops changes from 5.32 when crop-
ping directly from the drone images to 1261.05 for the same
images deblurred by Ψ.

4.3. Semi-supervised biomass, herbage height and
herbage mass prediction

We evaluate the capacity of our algorithm to predict the
biomass composition of herbage (%) together with an esti-
mation of the dry herbage mass (kg DM/ha) and the grass

height (cm) in a semi-supervised manner. We run experi-
ments on the Irish dataset with the original unlabeled im-
ages but also study replacing them with an equal num-
ber (N = 596) of deblurred drone images. This is to
evaluate the capacity for drones to capture unlabeled data
that can be used to improve the prediction at the ground-
level. For evaluation purposes, we compute the Herbage
Root Mean Square Error (HRMSE) which is the RMSE be-
tween predicted and ground-truth herbage mass for grass,
clover, weeds and for the total mass and the Herbage Rel-
ative Error (HRE) which is the ratio between the ground-
truth value of the total herbage mass and the prediction:
HRE =

predherbage

gtherbage
. The HRE measure is typically used

to compare human visual estimation against the collected
ground-truth [15]. We additionally compute the RMSE
over the predicted percentages of grass, clover, weeds in the
herbage and the Height Error (HE) which is the RMSE be-
tween the predicted herbage height and ground-truth height.
We compare against state-of-the-art results on the Irish
dataset where the validation images are ground-level images
in Table 1. We study the importance of the different ele-
ments of the semi-supervised algorithm on the validation er-
ror, including enforcing distribution alignment for the label
guesses and using an exponential moving average (EMA)
on the weights of the semi-supervised network. We also re-
port results when initializing the weights of the network us-
ing an unsupervised representation learning algorithm [30]
on the unlabeled data as in Albert et al. [3]. We finally point
out that using an equal number of deblurred drone images
produces comparable results to using the original unlabeled
images (last two rows in Table 1). This result motivates
the use of drone images to easily capture large amounts of
unlabeled images. Figure 5 shows a line plot of the HRE
compared against the ground-truth herbage mass where we
observe that the algorithm struggles the most on high or low
herbage mass outliers (< 500 to > 2000 kg DM/ha). This
is most likely due to the low amount of high or low herbage
mass examples seen during training.
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HRMSE

1 5 20 50 100 all

252.71± 51.24 227.18± 20.15 222.97± 12.56 219.15± 6.93 220.09± 4.14 219.53

Table 3. RMSE errors on drone image for varying amounts of random crops per image for the best performing model. Averaged over 5
random sets of crops.

Clover

Grass Total White Red Weeds Avg.

Skovsen et al. [47] 9.05 9.91 9.51 6.68 6.50 8.33
Naranayan et al. [36] 8.64 8.73 8.16 10.11 6.95 8.52
Albert et al. [2] 8.78 8.35 7.72 7.35 7.17 7.87

Labeled only 9.81 8.49 7.99 8.58 7.25 8.57
Semi-sup. 6.68 7.76 8.08 8.66 6.72 7.58

Table 4. Results on the GrassClover test set (RMSE). Lowest er-
rors are in bold.

4.4. Prediction on drone images

Table 2 reports the Herbage Root Mean Square Error
(HRMSE) when predicting on drone data without the need
to gather additional labels. First, we evaluate the accuracy
of a CNN model learned on ground-level data only to pre-
dict on deblurred drone patches using Ψ. We then evaluate
the accuracy benefits of training on deblurred drone patches
in a semi-supervised manner for the herbage mass predic-
tion and compare the error rate of our algorithm against hu-
man experts. We observe a significant reduction in error
rates when the drone images are used in the semi-supervised
objective (semi-sup. drone row) over using only the ground-
level data (labeled only or semi-sup. with the unlabeled
ground-level images). The performance proposed by our
low supervision algorithm is close to be on par with human
experts at the paddock level.

Table 3 reports on how augmenting the number of ran-
dom crops improves the prediction of the best performing
model. We report the average herbage mass error and stan-
dard deviation over 5 random sets of crops. “All” denotes
cropping the image in a checkerboard fashion and using all
crops (from 250 to 1, 000 crops per image depending on the
altitude). Although 1 random crop per image yield interest-
ingly good results, we validate our choice of 50 crops per
images for more stable predictions.

4.5. Semi-supervised biomass prediction on the
GrassClover dataset

We compare our semi-supervised approach against state-
of-the-art algorithms on the publicly available GrassClover
dataset in Table 4 where we report RMSE errors for the
biomass percentage prediction on the held out test set3

3https://competitions.codalab.org/competitions/21122

where we perform on par with existing approaches.

5. Conclusion

This paper investigates how to extend the biomass esti-
mation and herbage mass prediction problem from ground-
level to drone images. By its nature, the herbage biomass in-
formation of drone images is hard to annotate finely because
of the huge areas covered. Ground-level data, however, has
the advantage of providing easier to acquire, finely anno-
tated, and high resolution images of the herbage but would
not be a good solution to generalize to targeted fertilization
on entire herbage fields. To successfully transfer knowledge
from the ground-truth images to the drone data, we propose
to train an unpaired style transfer algorithm to deblur height
adjusted crops of drone images, increase resolution by a fac-
tor of 8 and to transfer the visual style of ground-level im-
ages, captured using different cameras, to look more similar
to their ground-level counterparts. The large set of trans-
formed unlabeled drone images is used together with the
finely annotated ground-level images to learn unsupervised
initialization weights and to train a semi-supervised regres-
sion algorithm. The neural network trained on the partially
labeled set largely improves the regression accuracy on the
ground-level data and the herbage mass prediction on drone
images. We significantly reduce the prediction gap com-
pared to a human expert, achieving error rates close to ex-
perienced technicians familiar with the land with little extra
annotation cost than few ground-level images. This chal-
lenge prompts further research in the field of low supervi-
sion computer vision for herbage biomass prediction from
drone images. Future work would involve using the approx-
imate predictions made by the human experts to improve the
results and a smart algorithm capable of sampling areas of
interest in the drone images to be predicting upon by the
herbage biomass algorithm.
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René Gislum, and Rasmus N Jørgensen. Preliminary results
of clover and grass coverage and total dry matter estimation
in clover-grass crops using image analysis. Journal of Imag-
ing, 2017. 2
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