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Abstract

In the context of table grape cultivation there is rising
interest in robotic solutions for harvesting, pruning, preci-
sion spraying and other agronomic tasks. Perception algo-
rithms at the core of these systems require large amounts of
labelled data, which in this context is often not available.

In this work, we propose a semi-supervised solution to
reduce the data needed to get state-of-the-art detection and
segmentation of fruits in orchards. We present the case of
table grape vineyards in southern Lazio (Italy) since grapes
are a difficult fruit to segment due to occlusion, color and
general illumination conditions. We consider the concrete
scenario where the source labelled data is wine grape, while
the target data is table grape, with considerable covariate
shift. Starting from a simple video input, our method gen-
erates first bounding box labels, leveraging the structure
from motion information, then segmentation masks, using
the same weakly generated bounding box labels and a re-
fining step based on Grabcut.

This system is able to produce labels that considerably
reduce the covariate shift from source to target data and
that requires very limited data acquisition effort. Compar-
isons with State-of-the-art supervised solutions show how
our methods are able to train new models that achieve high
performances with few labelled images, with very simple
labelling.

1. Introduction

Robotic applications in agriculture target some critical
problems such as the lack of manpower for physically de-
manding tasks, or the reduction of chemicals in the envi-
ronment with precision spraying, to name a few examples.
Each of these applications relies on a perception system
able to detect or segment the objects in the scene with per-
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formances good enough to reliably accomplish the task at
hand. In the last decade, the main robotic perception ad-
vances are related to deep learning techniques (see for ex-
ample [5, 13]). However, the availability of labelled data is
one of the factors that limit the greater diffusion of these
approaches. In particular, the need for data is related to the
sources of variability that are commonly found in the field:
uneven distribution of vegetation, intra-species variability,
illumination, occlusion and clutter. From a technical point
of view, all these aspects translate to covariate shifts and a
lack of labelled samples. In this context, it is difficult to col-
lect a good amount of labelled images that catch the actual
distribution variability. For this reason, methods that help a
robotic system to collect field data and unsupervisedly use
them to bridge the covariate shift become desirable.

We explore methods that could help in training detec-
tion and instance segmentation algorithms with few labelled
data. We explicitly consider the case where a small amount
of labelled data from a similar cultivation has been collected
and labelled (the source dataset) but is not enough to get ac-
ceptable detection and segmentation performances on a dif-
ferent vineyard, with consistent covariate distribution shift
(target dataset). Our test target data are table grapes culti-
vated in Aprilia, southern Lazio, while our source dataset
is the wine grape dataset presented in [19]. Our contribu-
tion consists in a combination of weakly and semi super-
vised techniques to increase the performance of detection
and segmentation algorithms, while dealing with the lack of
labelled data and the covariate shift problem. We also com-
pare with the State-of-the-art on the example application of
yield estimation. In the following, we give an overview of
the work done in detection for yield estimation, and at the
end of the Section we summarize the contribution of this
work.

2. Related Works
In this work, we focus on the methods that rely on vision

sensors, such as simple RGB cameras, since they are readily
available and relatively cheap. In this context, a number of
studies are relevant to our discussion. Bellocchio et al. [2]
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present an olive counting solution that is explicitly trained
with weak labels and consistency losses. This work is close
to ours for the focus on working on data with minimal la-
belling, however, it is based on simple direct fruit counting,
which can lead to huge errors in cases where self occlu-
sion is typical. While many early works [12, 22], and some
recent ones [15], use handcrafted features, most of the re-
cent approaches use representation learning [1,2,24]. When
moving into these kinds of techniques, data availability is a
key issue to avoid overfitting. To have a general view of
this issue, Koirala et al. [8] present an overview of Deep
Learning methods applied to fruit detection, pointing out
the critical role of data availability, and recommending the
use of public data and benchmarks to compare results.

When looking specifically at robotics in agriculture,
there are numerous contributions, both in single and multi
robot scenarios. Halstead et al. [5] present one of such sys-
tems where they detect red peppers with a camera mounted
on an AGV. The authors also estimate ripeness by con-
sidering ripeness stages as different classes. Among the
robotic solutions for yield estimation, there are a few that
use multi robot setup, in particular mixing different types
of robots, such as Unmanned Ground Vehicles (UGVs) and
Unmanned Aerial Vehicles (UAVs) as in [16]. A more re-
cent example of this kind of system is given in [14] by
Pretto et al., where the multi robot approach is explored
in depth together with the use of multi spectral cameras to
detect and monitor both crop and weeds. Since in these
works data collection is an issue, [4] extends data augmen-
tation by using GANs. In the specific case of wine and ta-
ble grape applications, an early approach to grape detec-
tion for yield estimation has been presented by Nuske et
al. [12]. In their work, a robotic solution able to work at
night with controlled lighting is presented. However, most
of the early approaches to the detection of grapes are based
on handcrafted features and geometrical considerations, as
for example in the work by Skrabanek and Mejerik in [22].
Here the authors use HOG descriptors together with a Sup-
port Vector Machine to build a white wine grape detector.
An approach that builds on these early results and data is
the one presented by Pérez-Zavala et al. [15]. The authors
use again handcrafted features (HOG, FRST and LBP) to
feed an SVM based detector, and use geometrical consid-
erations to separate self-occluding grape bunches that show
some robustness to color and illumination variability. The
yield estimation task is then a result of the computation of
the number of berries detected. Another approach to grape
yield estimation that is based on geometrical considerations
is the one by Liu et al. [11], where the detection is done
on the early stage buds that shoot from the branches in an
unsupervised fashion only by using Gaussian fitting. All
these approaches, while effective, are difficult to adapt to
other situations and cultures, since they would require some

context specific tuning and adaptation performed by and ex-
pert. A more modern approach to table grape detection and
segmentation is the work of Santos et al. [19], which uses
Mask R-CNN [6] trained on a custom dataset of a few hun-
dred images. While the dataset shows low variability, the
fact that the test set has the same distribution makes the ap-
proach effective. With regard to our work, we decided to
use this dataset as a source dataset to demonstrate the effec-
tiveness of our approach.

2.1. Contribution:

Supervised solutions to detection and tracking have been
proposed many times and work well, but the generality of
these solutions is naturally impaired by the limited data each
solution is trained on. Even if for the majority of the most
common fruits a supervised solution with a relative amount
of labelled data exists (e.g. apples [1], grapes [19], toma-
toes [10]), every time we want to train a new detection or
segmentation network for the same fruit in a different field,
there is considerable covariate shift due to different sensor
and environmental characteristics, illumination conditions
and fruit intra-species variability. We propose to tackle this
problem by using a pseudo-label generation system based
on existing source data and unlabelled data for target field
that can be used to train detection and segmentation algo-
rithms fine-tuned on the target dataset. We do this using
only an input as simple as a single video of the vineyard
and automatically extract both bounding boxes and segmen-
tation masks. We work on this problem using the case of
table grapes, for which there is some labelled data avail-
able (the wine grape dataset from Santos et al. [19]), but not
enough to work on different varieties (e.g. Pizzutello instead
of Cabernet), cultivated with slightly different techniques
(canopy structure instead of standard trellis structure). With
this in mind, the specific pseudo labelling strategies we pro-
pose are of two kinds:

• Automatic generation of bounding boxes for objects
contained in consecutive video frames, based on a
starting estimate and 3D structure geometrical consid-
erations. We show that, by leveraging a simple initial
labelling - which could be manual or automatic - and
information from feature matching and structure from
motion, we are able to generate new labelled data that
greatly increase the performance of the detector.

• Pseudo mask generation for instance segmentation:
we show how, starting from a simple bounding box -
which could be the one automatically generated in the
previous step - it is possible to use a segmentation net-
work together with a refining strategy to generate new
mask labels.
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Figure 1. This figure shows the complete system architecture. The inputs are a source dataset and a video collected on the field by the robot
or a farmer. The SDet and SSeg are the initial detection and segmentation networks trained only on the source dataset. All the intermediate
computing blocks are depicted in orange, while the intermediate outputs are in blue circles. Both the pseudo bounding boxes and pseudo
masks produced are depicted in yellow, while the detection and segmentation networks trained on these new labels (TDet and TSeg) are
depicted in green.

3. System Architecture

In this Section, we explain the general architecture of
the system, the implemented algorithms, and the data used.
Section 3.1 describes the global system architecture and
how the different components are interconnected. Section
3.2 briefly illustrates the datasets, while the following Sec-
tions go into more detail on each subsystem.

3.1. System Overview

Figure (1) presents an overview of the proposed system.
The inputs are a source dataset available from a similar task
and a video collected on the target field. These data sources
are used to train the initial detection and segmentation mod-
els, namely the Source Detector Network (SDet) and the
Source Segmentation Network (SSeg). An initial prediction
is done on some keyframes to obtain bounding boxes using
a high confidence threshold to avoid false positives. For
simplicity, the keyframes are selected starting form the first
frame and then skipping two frames until the next keyframe.
The predictions on the remaining frames are made through
a Geometric Consistency block (GC block), exploiting fea-
ture extraction and association. The geometric information
is used to interpolate the position of the bounding boxes
on the remaining frames, generating new bounding boxes
(pseudo labels) that are used to re-train the detector (TDet)
in a more effective way for the target set, using only auto-

matically annotated data. TDet can then be used to refine
the bounding box labels of the input video.

The lower branch generates pseudo masks to train an in-
stance segmentation network. As mentioned earlier, SSeg is
trained only on the source data, and it is not able to produce
high-quality segmentation masks on the Target Data. The
mask estimates can be greatly improved by providing the
network with additional information. This is done by speci-
fying the bounding box region in which the instance should
be segmented. This cue can either come from the upper
branch of the architecture or other sources such as manual
labelling. The Pseudo-masks Refinement Module further
improves the initial pseudo-masks as will be described in
Section 3.4.2. Finally, the refined pseudo-masks are used to
train the TSeg Network, whose results are shown in Section
4.2.

The joint experiments of the whole system, trained using
only predictions given by the detector on images and videos,
and tested for instance segmentation performance are given
in Section 4.2.

3.2. Dataset

We used two kinds of data for this work. The target data
is represented by the Pizzutello table grape variety com-
monly cultivated in southern Lazio, Italy. The collected im-
ages are of two kinds: the first ones are videos recorded us-
ing a mid-range cellphone camera that simulates a data col-
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lection operation that could be easily performed by a robot
or a farmer. We collected videos moving along the vine-
yard (i.e. tangential to the rows), without any requirement
on distance from the fruits or height from the ground. In this
work, we use HD (1280x720) videos at 10Hz with a total of
1469 frames. We call this target video dataset TVid. In ad-
dition, we collected static images of Black Pizzutello. This
dataset consists of 134 images of 3000x4000 resolution col-
lected with the same cellphone camera used for the videos.
All the images have been labelled for detection (bounding
boxes), while a small subset (50 images) has also been la-
belled for instance segmentation and used for the validation
and test of the algorithms described in this Section. We call
this image dataset TImg. Together, these datasets (TVid and
TImg) constitute our Target Dataset (TD).

As mentioned earlier, we work under the hypothesis that
a small amount of labelled data of the same fruit exists, but
it has a considerable covariate shift with respect to the tar-
get distribution. In this work, our source data is the one
presented by Santos et al. [19].

3.2.1 Detection and Segmentation Network Architec-
tures

The generation of the pseudo labels is based on pre-trained
networks for detection and segmentation (SDet and SSeg).
Those are required to automatically provide pseudo labelled
data to train new networks that in the end will perform better
on the target dataset.

The initial bounding box estimate is computed by SDet
and we chose YOLOv5 [17] as the base detector for this
stage, for two reasons. The first is the computational speed
that allows for real-time detection. While for the pseudo la-
bel generation pipeline this is not a requirement, the final
detector TDet is meant to be used on a robot on the field in
real-time, and with limited computational resources. In ad-
dition, a two-stage detector could increase the performances
of the final TDet and TSeg networks, but the pipeline gives
very good performances even without using the best solu-
tion for each of the sub-modules. For the pseudo mask gen-
eration, we use the Mask R-CNN [6] architecture, since it
allows for having a bounding box input that can become a
cue for the segmentation mask as will be described in Sec-
tion 3.4.1.

3.3. Geometric Consistency Block

The strategy used to generate the pseudo bounding boxes
consists in the association of the grape instances across sub-
sequent frames. This is achieved by extracting geometrical
correspondences in the frames of a video stream exploiting
epipolar geometry. In particular, a Structure from Motion
(SfM) algorithm has been used through COLMAP [20, 21],
which is a self-contained software that extracts sparse fea-

tures from the frames and then operates a sequential search
through the whole video to match the features extracted.
The key point of this system is that the correspondences are
used to triangulate unique 3D points by minimizing the 3D
to 2D reprojection error. Hence, despite the sparse nature of
the problem, the computational cost increases exponentially
with the number of frames. To give an idea of the compu-
tational cost, to run COLMAP on videos composed of 600
full HD frames on a machine equipped with an Intel-Core i7
3.4 GHz, an Nvidia GTX 950m and 16 GB of RAM requires
about 5 hours of computation. While these computational
times could be reduced by implementing ad hoc solutions,
this is not relevant for our purposes, since the pseudo label
generation is a process intended to be run offline.

3.3.1 Bounding Box Interpolation and Pseudo Label
Generation

Figure 2 shows how the bounding box interpolation process
works to generate the pseudo labels.

The process starts by predicting the bounding boxes at
frame i using the detector SDet, and then, using the GC
Block, associates the 2D features inside the prediction with
those contained in a subsequent frame i+n. Due to the cam-
era movement under the vineyard canopy, both the illumina-
tion conditions and the position of the grapes in frame i+n
will be different from frame i. Consequently, the number
of matched features and their position will be different. To
draw the new boxes in frame i+n, we exploited the hypoth-
esis that the camera is slowly moving and that the motion is
tangential to the direction of the vineyard. This allows us to
assume that the size (and shape) of the new bounding boxes
are the same as the predicted ones, and only their position
changed. Therefore, the position of the new bounding box
is updated by letting the center of the box coincide with the
center of gravity of the features matched in frame i+ n, as
shown in Figure 2a.

3.4. Pseudo Masks generation for Instance Segmen-
tation

After addressing the bounding box detection problem,
we focus on some field operations that need a more precise
detection, e.g. quantitative yield estimations, or harvesting.
Instance segmentation is better suited to address these prob-
lems, but it generally requires pixel-level labels. Ideally, we
would like to have pixel-perfect masks to train a segmen-
tation network, but Bellocchio et al. [2] demonstrated that
this is not necessary, since a minimal labelling signal (e.g.
presence or absence of an object in an image) is sufficient
for the task network to learn some representations that are
similar to masks of the object of interest. In this case, we
leverage both an external cue (the bounding box) and the
segmentation network itself to produce pseudo masks that
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(a) (b)

Figure 2. The bounding box interpolation process. a) Shows the updating principle: the bounding box (blue) predicted in frame i is moved
to frame i+ n; while the size remains the same, the position of the new bounding box (orange) is updated by computing the new center of
gravity of the features extracted and making it coincide with the box center. b) Pseudo-labels generated by means of the SfM algorithm:
the green boxes are the predictions produced by SDet at frame i transposed in the current one (i+ n), while the red boxes are interpolated
ones according to the features matched (represented as red points).

are able to greatly increase the TSeg performances. This is
achieved by giving the external bounding box to the Mask
R-CNN network at inference time, instead of using the one
produced by its own detector. In addition, following the
example of [7], we add the information of an external algo-
rithm (Grabcut) to refine the label. This mitigates the con-
firmation bias that TSeg could suffer from when learning
from its own generated masks.

3.4.1 Pretrained Segmentation Networks

For our SSeg network, we decided to use Mask R-CNN
[6] instead of a specific segmentation network architecture,
such as U-Net, since in the first case is possible to rewire the
segmentation sub-network in order to use external bound-
ing boxes as a cue. In particular, Mask R-CNN is wired
differently at inference time from training time, since the
bounding boxes predicted by the detection head are directly
fed to the mask head. We leverage this feature to integrate
the positional information coming from ground truth or es-
timated bounding boxes. As we mentioned, bounding box
labelling is much cheaper than segmentation labelling. In
addition, it is possible to automatically produce these labels
by using a system such as the one described before. By
doing so, we use the bounding boxes as a sort of attention
mechanism, guiding the network to where each instance is
actually present. An example of the difference of pseudo
masks produced by standard Mask R-CNN and the rewired
version is given in Figure 3

3.4.2 Pseudo Mask Refining Block

To refine the pseudo masks, an external source of infor-
mation is used. Some earlier works explored this aspect,
such as [7]. Our approach refines the initial masks by us-

Figure 3. Pseudo-masks generated without (left) and with (right)
the bounding box attention mechanism for the same grape cluster.

ing simple computer vision techniques that work on dif-
ferent principles from the convolutional filters contained
in SSeg. In particular, our strategy relies mainly on the
Grabcut algorithm, an iterative segmentation technique in-
troduced in [18]. It represents the image as a graph where
foreground and background pixels are modeled as Gaussian
Mixture Models and have to be separated iteratively by cuts
to the graph edges. We used the OpenCV [3] implementa-
tion where it is possible to initialize the algorithm with the
pseudo mask defining four pixel categories, i.e. sure fore-
ground, sure background, probable foreground and proba-
ble background. The pseudo mask is used as probable fore-
ground. Dilation is applied to the pseudo mask for a number
of iterations proportional to the smallest dimension of the
reference bounding box to obtain the probable background.
Erosion is applied for the same number of iterations to ob-
tain the sure foreground, while the rest is set to sure back-
ground. A sample of the effects of Grabcut is shown in
Figure 4.

1690



Figure 4. Examples of image refined with Grabcut. The color of the overlay defines the pixel as sure foreground (blue), probable foreground
(yellow), probable background (green) or sure background (purple).

In Section 4.2 we show how this refinement method per-
forms compared to the baseline.

4. Experimental Results

4.0.1 Training details

Detector networks: Training were performed on the
Nvidia DGX-1 Station since it offers an appropriate com-
putational power. All the training runs had 300 epochs
with a batch size of 4 and the patience parameter for early
stopping set at 30 epochs. The learning rate (lr) strategy
used was ”one cycle” [23], with initial lr = 0.01 and fi-
nal lr = 0.001. The optimizer is SGD, with momentum
0.937 and weight decay 5× 10−4. The training required
about 3 hours. All the detection models were pre-trained on
the MS COCO dataset [9] and then fine-tuned on the source
and target datasets. In order for the detector to generalize
towards different scenarios, the 242 training images of the
source set provided by [19] were augmented using random
crop, random contrast, Gaussian blur, Gaussian noise and
horizontal flip. During the experiments, the augmentations
were applied offline randomly four times, generating 726
augmented images.

Segmentation networks: The implementation of Mask
R-CNN we chose is Detectron2 [25], using ResNet 101
as backbone network. Again, the experiments were per-
formed on the NVidia DGX cluster. The training started
from the MS COCO weights, then was fine-tuned on the
source and target dataset. For all the training, common data
augmentation was performed, by applying Gaussian blur,
Gaussian noise, random changes in brightness and contrast,
pixel dropout, random flip, and random crop. In addition,
the trainings were executed using a learning rate of 0.001,
weight decay of 0.0001 and a momentum of 0.9. Each train-
ing proceeded for a maximum of 100 epochs, but early stop-

ping was used while monitoring the segmentation AP on
the validation set of the table grape dataset, with a patience
value of 20.

4.0.2 Covariate shift experiments

To appreciate the covariate shift between the source dataset
WGISD and the target dataset, we tested both SDet and
SSeg on the source and target dataset. Table 1 shows a
comparison of the results for the detection tasks obtained
by SDet on the WGISD test split and on our TImg, using
the MS COCO metrics [9]. The results draw attention to a
severe case of covariate shift between the two datasets, es-
pecially in the spatial distribution of the instances present.
This is shown by the fact that the precision remains almost
the same, while the recall decreases.

Dataset Precision Recall mAP0.5 mAP0.5:0.95

WGISD 89.10 83.18 89.68 62.50
Timg 83.20 55.60 68.30 42.70

Table 1. Results obtained by the detector trained using only the
source dataset, on WGISD dataset and Timg .

In the same way, we give an idea of the initial perfor-
mance gap of SSeg in Table 2. We performed data augmen-
tation on the WGISD dataset, in particular crop and resize
to mitigate the difference in scale with the TD, nonetheless
in all metrics there is a marked difference in performance.

4.1. Pseudo bounding boxes generation experiments

In this section we describe the results of using the gener-
ated bounding boxes to train TDet. We performed prelimi-
nary experiments to identify which YOLOv5 variant to use,
and the results showed that the models with a large num-
ber of parameters offer a minimal performance increase on
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Dataset Task AP AP50 AP75

WGISD Detection 53.40 87.02 57.36
Segmentation 53.60 89.44 55.41

TSeg Detection 32.65 60.40 30.37
Segmentation 32.88 65.40 34.77

Table 2. Evaluation of a Mask R-CNN model on the masked test
set of the WGISD (27 images) and TSeg dataset (20 images) using
some of the COCO metrics.

detection, compared with the lightweight versions. This is
due to the small quantity of training data provided by the
source dataset, reinforcing the need for a semi-supervised
approach to labelling.

Table 3 shows the difference in performance on the target
set (TImg) between the detector trained only on the source
data (SDet) and on the pseudo labels generated from the
videos (TVid). It is possible to see that the mAP0.5 in-
creased by 8% even though the frames of the videos have a
different distribution compared with the target images, due
to the different process followed to collect them.

Table 3. Comparison of the detector trained only with source
data (SDet) and with the pseudo labels generated from the videos
(TDet) and tested on the target data (TImg).

Model Precision Recall mAP@0.5 mAP@0.5 : 0.95

SDet 0.90 0.56 0.69 0.46
TDet 0.98 0.68 0.77 0.47

A qualitative example of how the detection improves us-
ing the pseudo labels mechanism is given in Figure 5, where
the same image is shown but with the detection performed
by SDet (on the right), and by TDet (on the left) which is
trained using the pseudo labels. It is possible to see that not
only the bounding boxes are generally tighter around the in-
stances but also that more grapes are detected, meaning that
the proposed method improves both precision and general-
ization.

Since TImg and TVid does not have the same distribu-
tion, we also applied the TDet on the test data from TVid.
The results are shown in Table 4, where it is possible to see
that the network trained with the pseudo labels gained 10%
in mAP0.5 compared to the one trained without them. In
this case the increase is higher due to the minimal covariate
shift between TVid test and training data.

4.2. Pseudo masks generation experiments

The first experiment presented compares SSeg as our
baseline with the TSeg, which was trained on both the
source and the static images of the target data (TImg) la-
belled with pseudo masks. Table 5 shows that the additional
pseudo masks are able to considerably improve the perfor-

Figure 5. Examples of how the detection improves on the same
image when the model is trained without the pseudo labels (left),
and with the pseudo labels (right).

Table 4. Comparison of the detector trained only with source
data (SDet) and with the pseudo labels generated from the videos
(TDet) and tested on the target data (TVid).

Model Precision Recall mAP@0.5 mAP@0.5 : 0.95

SDet 0.62 0.59 0.55 0.21
TDet 0.74 0.60 0.65 0.23

mance on the TD in terms of AP, with an improvement of
over 50% on the baseline performance. In the same table we
show the results obtained by TSeg trained with and without
the Refining Block. The additional refinement increases the
mAP0.5:0.95 by 1.13% and the the mAP0.75 by 4.58% with
respect to TSeg trained without refinement, but decreases
in mAP0.75, showing that the refinement process is more
effective at higher IoU levels, i.e. when the initial pseudo
mask is well centred on the object.

Table 5. Comparison of the results obtained by TSeg (Mask R-
CNN) on the TImg test set, trained with different datasets and
pseudo-mask processing methods.

Model mAP0.5:0.95 mAP0.5 mAP0.75

Baseline 32.88 65.40 34.77
TSeg (w/o Refinement) 48.43 83.06 53.12

TSeg 49.56 81.03 57.70

The second experiment tests the effectiveness of the
pseudo mask generation process when the target samples
come from the videos of TVid and the labels are the pseudo
bounding boxes generated by TDet, as described in Section
3.1. The test data for this experiment is the TImg test set,
so the training and test ditributions, although being target
data, are different. Table 6 again shows the comparison of
TSeg with and without the Refining Block. Despite the fact
that the video frames present many differences with respect
to the target dataset, the TSeg still manages to increase the
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performance by 42% with respect to the baseline. In this
case the Refinement block gives only a minimal advantage.
From the values of mAP0.50 and mAP0.75 we deduce that
the increase is due mainly to the IoU higher than 0.75.

Table 6. Comparison of the results obtained by Mask R-CNN
(TSeg) on the target dataset test set, trained with the bounding
boxes produced by the refined YOLO (TDet).

Model mAP0.5:0.95 mAP0.5 mAP0.75

Baseline 32.88 65.40 34.77
TSeg (w/o Refinement) 45.99 78.30 52.59

TSeg 46.66 77.38 52.22

5. Conclusions
We presented a semi-supervised pipeline to generate la-

belled data for detection and segmentation starting from
a simple video input and leveraging geometrical consider-
ations and the availability some source data with covari-
ate shift with respect to the target data. We tested this
method on the case of a table grape vineyard, where the
source dataset is wine grape and presents considerable co-
variate shift with respect to the table grape. The experi-
ments showed that the proposed system is able to remark-
ably increase the performances of the detection and seg-
mentation networks on the target dataset. We stress here
that we used only one video to produce the pseudo labels,
but the number of videos collected could be increased to
improve the accuracy of the detector. How this system can
be improved in this sense will be the object of future work.
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