
 

Abstract 

 
Organ level instance segmentation (e.g., individual 

leaves) based on computer vision techniques is a key step 
in the measurement of plant phenotypes. Since plant 
organs, especially leaves, are self-occluded and emerged-
occluded, single-view images affect the acquisition of some 
effective information. However, 3D global images contain 
much more plant morphological information than single-
view images, and it is of great significance for plant 
phenotype research. In this paper, lettuce was taken as the 
research object, its 3D point cloud images were obtained 
and instance segmentation was carried out based on the 
deep learning method. The result showed that the 3D point 
cloud of each leaf was segmented and identified accurately. 
Specifically, we constructed a lettuce point cloud dataset 
consisting of 620 real and synthetic point clouds and fused 
them together to train a 3D instance segmentation 
network—PartNet, which directly takes 3D point clouds as 

input and its output is the instance segmentation results of 
leaves. The experimental results showed that, when tested 
with 40 point clouds in the validation set, the metric 
Average Precision (%) with IoU threshold being 0.25 
reached 97.2%, and with IoU threshold being 0.5 reached 
92.4% respectively, indicating that the constructed 
PartNet network has the potential to accurately segment 
the 3D point cloud leaf instances for lettuce. 

 

1. Introduction 

People identify, classify, and organize objects based on 
what they know about their parts [1]. Fine-grained 
segmentation of different parts of plant organs that belong 
to the same semantics is very meaningful for plant 
phenotype research, growth monitoring, and management, 
such as pruning tree branches and picking specific fruits on 
fruit trees. Therefore, teaching machines to analyze 
instance parts belonging to the same semantics is crucial 
for computer vision, graphics and robotics applications, 
such as predicting object functions, human-object 
interaction, shape editing and shape generation [2]. 
Traditional machine learning methods cannot handle 

instance segmentation tasks well. With the rise of deep 
neural network technology in recent years, there have been 
many pioneering research results in the field of image 
instance segmentation. Since plants are non-rigid objects 
with more severe self-obscuration, the items of plant 
phenotypes that can be obtained based on 2D image 
instance segmentation methods are limited, so that research 
on 3D plant phenotype processing methods is needed. 
PointNet [3] and PointNet++ [4] are regarded as milestones 
in 3D deep learning models, providing efficient and 
flexible methods for 3D data classification and 
segmentation tasks. They have well solved the 
computational and memory costly problems of directly 
applying 2D convolutional neural network to 3D 
volumetric data [5]. 3D instance segmentation networks 
using PointNet++ as a feature extraction module have 
emerged in recent years. The proposal of these networks 
provides new opportunities for 3D plant phenotyping 
studies [6, 7] and motivates novel work in 3D instance 
segmentation processing of plants.  

One of the main factors hindering the application of 3D 
deep learning techniques to plant phenotypes is the lack of 
large annotated 3D plant datasets, which can be used to 
provide sufficient training data for machine learning 
frameworks through the strategy of creating synthetic 3D 
plant models [8]. Instance segmentation dataset requires 
that each point cloud image contains the complete 3D 
morphology and requires point cloud with high accuracy 
so that better results can be obtained during data annotation 
and network training. Current 3D reconstruction methods 
based on 2D images include Structure from Motion (SfM) 
and Multi-View Stereo (MVS) techniques, but they all 
require the acquisition of a large number of multi-view 
images and the reconstruction process is slow. At the same 
time, real plant point cloud images taken based on 
consumer-grade depth cameras have low accuracy after 
reconstruction, the results are distorted, and the 
reconstruction process is also labor-intensive. Although the 
reconstructed point cloud images based on LiDAR, TLS 
scanner, X-ray and other methods have high accuracy, the 
cost of camera equipment is high, and the scanning process 
is slow, which leads to the small amount of data contained 
in the dataset and cannot meet the training requirements of 
deep neural network. Since the 3D instance segmentation 
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dataset needs to label different instances of the same 
semantic part of each object separately, it needs to consume 
a lot of manpower and material resources. At present, the 
most representative, fine-grained and instance-level 
dataset called PartNet, which belongs to the synthetic 
dataset, contains 573, 585 part instances over 26, 671 3D 
models covering 24 object categories. This also provides a 
new idea to construct a dataset for plant instance 
segmentation. It should be noted that this dataset has the 
same name as the PartNet network structure, but belongs 
to a different work. 

The main contributions of this paper are: 
(1) Real cultivated lettuce point cloud images are 

collected and reconstructed to obtain the complete plant 
point cloud models for dataset construction. 

(2) Synthetic point cloud data of leafy plants are 
generated using Blender software and fused with real data 
as the training dataset of neural network, and based on this, 
the point cloud leaves were recombined to enhance the 
dataset. 

(3) In this study, a 3D instance segmentation network 
model was constructed, using the whole 3D point cloud  
directly as the input  and  plant leaves as the output, which 
reduces the intermediate steps of image processing. 

 

2. Related Work 

2.1. Methods based on geometric features and 
machine learning 

Methods based on geometric interpretation and 
mathematical models, such as model fitting, DBSCAN, K-
means [13], region growing [14], most of these methods 
perform well on man-made objects with fully uniform 
shapes [9]. When used in plant organ identification, these 
methods mainly utilize the geometric features of plant 
images such as RGB color features and morphological 
features for segmentation, which can achieve semantic 
segmentation and instance segmentation. Bashar Elnashef 
et al. [10] provided a new tensor-based (first-order and 
second-order) segmentation algorithm for 3D plant models, 
which divided the point cloud into points related to leaves 
and stems and implemented instance segmentation of 
leaves using DBSCAN. Roberto Ferrara et al. [11] used a 
TLS-based sensor to collect tree point clouds, partitioned 
them in a cubic voxel manner, and achieved the 
identification of wood and non-wood voxels by the point 
density algorithm DBSCAN clustering. Anthony Paproki 
et al. [12] used a morphology-based approach to segment 
3D grid images of cotton and estimated phenotypic 
parameters. Stefan Paulus et al. [13] used laser scanning to 
obtain 3D images of barley and separated organs by a 
classification algorithm based on histograms of surface 
features, with 96% accuracy in the separation of leaves and 

stems. 
Machine learning methods based on feature descriptors, 

such as surface feature histogram (SFH), point feature 
histogram (PFH) and fast point feature histogram FPFH 
[10], etc., to distinguish various categories of objects and 
classify the data based on the resulting model. Helin 
Dutagaci used Ilastik software to extract local features 
(intensity, edge and texture features) on rosebush volume 
data and trained a random forest classifier with ground 
truth labels to achieve organ-level semantic segmentation 
of plants, and showed good performance [14]. Paloma 
Sodhi et al. [15] combined local feature descriptors FPFH 
and global features of point cloud images to train a support 
vector machine (SVM) classifier to assign a stem and leaf 
class label to each 3D point to achieve semantic 
segmentation of sorghum. Paulus et al. [10] proposed a 
plant segmentation method based on point feature 
histogram descriptors and this new descriptor was used as 
a support vector machine (SVM) classification of features 
for segmentation of leaves and stems. 

2.2. Deep learning based methods 

There are two main ideas of 3D segmentation methods 
based on deep learning: a multi-view approach that 
segments 2D and 3D images separately and fuses the 
results to obtain instances; and a direct segmentation of 3D 
images that outputs the instance results. Weinan Shi 
proposed a plant organ segmentation method based on deep 
learning and a multi-view camera system, which 
segmented 2D images and integrated information from 
multiple viewpoints into a 3D point cloud representation of 
plants [16]. Helin Dutagaci used a 3D U-Net network based 
on 3D CNN to segment the ROSE-X dataset in voxel form 
[14], but the results showed that the segmentation accuracy 
was lower than that of the random forest method. 

PointNet++ is a hierarchical network that captures fine 
geometry from the neighborhood of each point. As the core 
of the PointNet++ hierarchy, its ensemble abstraction layer 
consists of three sub-layers: a sampling layer, a grouping 
layer, and a PointNet-based learning layer. By stacking 
several ensemble abstraction layers, PointNet++ learns 
features from local geometric structures and abstracts local 
features layer by layer. Due to its simplicity and powerful 
representation, many networks have been developed based 
on PointNet++ as a backbone network [2, 5, 17], and a 
large number of subsequent 3D segmentation studies have 
been based on this network. Jules Morel [18], inspired by 
PointNet++, proposed a new segmentation method for 
handling unbalanced and inhomogeneous point clouds of 
trees, which can directly consume 3D point clouds, and 
implemented a validation on a large synthetic 3D scan 
dataset of trees, showing that the method outperforms the 
existing classifiers on simulated data. Kaya Turgut et. al [6] 
applied 6 state-of-the-art 3D deep learning network 
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structures: the PointNet, PointNet++, DGCNN, PointCNN, 
ShellNet and RIConv, and trained and tested the network 
with a mixture of synthetic images generated by the L-
studio software and real images from the ROSE-X dataset, 
and showed that PointNet++ obtained the best 
segmentation results. 

On the other hand, Yu et. al [17] proposed a top-down 
recursive decomposition network, PartNet, for fine-grained 
segmentation of 3D point clouds. With a hierarchical 
decomposition scheme, the model can obtain fine-grained 
and accurate segmentation even for highly complex shapes, 
which provides a new idea for partial instance 
segmentation of plant point clouds, and in this paper we 
investigated instance segmentation of lettuce based on the 
PartNet network. 

2.3. 3D dataset 

The sources about 3D plant datasets can be mainly 
divided into real 3D data and synthetic data, based on 
which real and synthetic datasets can be produced 
respectively, as well as datasets that mix the two to achieve 
data augmentation. 3D datasets based on real images are 
expensive to produce, but since images are captured in the 
real world, taking into account the effects of lighting and 
camera acquisition, it is more likely to get better results 
when testing the trained model on real plant images. H. 
Dutagaci produced the ROSE-X dataset with 11 3D voxel 
models of real rosebush plants obtained by X-ray imaging, 
where each voxel stored the corresponding organ class 
label [14]. Kaya Turgut et. al [6] also conducted 
experiments in which the networks were pre-trained using 
synthetic rosebush models generated by L-studio software 
and then updated with ROSE-X, and the results show that 
pre-training with synthetic data can improve the 
performance of some of the neural networks. 

In order to obtain a large number of high-precision 3D 
images at a low cost, many works have been carried out on 
the production of synthetic plant dataset. ShapeNet [19] is 
a richly annotated, large-scale shape repository represented 
by 3D CAD models of objects. ShapeNet contains 3D 
models from multiple semantic classes and organizes them 
according to the Word-Net taxonomy, and provides a 
large-scale quantitative benchmark for computer graphics 
and vision research. PartNet [2] is a large-scale 3D dataset 
with fine-grained, hierarchical, instance-level part 
annotations. It is selected from ShapeNetCore for the most 
common categories in indoor scenes. The dataset contains 
24 object classes, which also include synthetic data for 
plants and vases. Ayan Chaudhury took advantage of the 
classical procedural approach (L-system) to generate plant 
synthetic model data with annotations that can be used to 
produce datasets for semantic segmentation and organ-
level instance segmentation [8]. Jules Morel et. al [18] used 
the grove plugin on Blender software to produce a large 

synthetic dataset of trees and this dataset was expanded by 
collecting models on the Internet, and point clouds were 
generated using a simulator in order to mimic the results of 
images taken in realistic STL. 

3. Materials and Methods 

3.1. Real data acquisition and 3D reconstruction 

The research site was located in the plant factory of the 
College of Information and Electrical Engineering, China 
Agricultural University, as shown in Figure 1(a). The 
variety of lettuce was JingYan lettuce (Lactuca sativa L. 
var. youmaicai); the temperature of the cultivation 
environment was controlled at 25~28℃; the purple light 

was irradiated regularly every day to provide a light source 

for their growth. The Hoagland culture solution was used 
as the nutrient solution. The cultivation time was 30 days, 
and the plant height range was 40~188mm. 

In this study, an Azure Kinect DK camera (Microsoft 
Corporation) based on the ToF principle was used to 
acquire real 3D point cloud data, and the camera 
parameters are shown in Table 1. 

Figure 1(b) is the data collection system: the camera was 
calibrated in advance; the lettuce was placed on the 
electric-driven turntable and the turntable was controlled to 
rotate at an interval of 45°; a single-view picture was taken 
when the turntable and the plant were in a static state and a 
total of 8 perspective images were taken for each lettuce 
plant.  

The types of collected images included RGB images and 
synthesized point cloud images, as shown in Figure 2. The 

Figure 1: (a) Growing environment of lettuces. (b) Data collection 
system. 

  
(a)                                              (b) 

Table1: Key parameters of Azure Kinect DK camera. 

Feature item Parameter 
Color camera resolution 2048 × 1536 pixels 
Depth camera resolution 1024 × 1024 pixels 

Points of the raw point cloud 3145728 points 
Frame rates 15 FPS 
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pre-processing procedure of the original point cloud image 
is shown in Figure 2(a), using the pass-through filter, color 
threshold filter, and radius outlier filter to remove 
background and noise points and obtaining a single-view 
point cloud image of the lettuce plant. Specifically, 
according to the shooting distance and lettuce size, pass-
through filter parameters were set to �(-0.1, 0.1), �(-0.1, 
0.1), � (0, 0.2); the black flowerpot point cloud was 
removed according to the color filtering method; when 
using the radius outlier removal algorithm, the minimum 
amount of points that the sphere should contain was set to 
5, the radius of the sphere that would be used for counting 
the neighbors was set to 0.001. The global point cloud 
image was obtained by aligning the reconstruction of 4 or 
8 viewpoint point clouds according to the RANSAC and 
ICP algorithms. For lettuce with smaller shape in the early 
stage of growth, we cropped and combined leaf instances 
in multiple single-view point clouds to replace 
reconstruction. 

Data acquisition, processing, reconstruction, and neural 
network modeling were performed on computers 
configured with Ubuntu 18.04 operating system, AMD 
Ryzen5 3600 processor, 16GB RAM, NVIDIA GeForce 
RTX 3060 GPU, and installed with Open3D[20], OpenCV, 

PCL[21] image processing library and CloudCompare [22], 
MeshLab open-source software. 

3.2. Creating synthetic dataset 

Considering that the acquisition of real lettuce 3D point 
cloud data is a time-consuming and labor-intensive work, 
including the cultivation of lettuce in the early stage and 
data acquisition, processing, and 3D reconstruction in the 
later stage, and that deep learning has high demand for data 
number, quality and diversity, we introduced synthetic 
plant point clouds as augmented data to increase the 
number, quality and diversity of the dataset. 

We first used Blender software and its plugin Graswald 
to produce 100 synthetic complete morphological models 
similar to lettuce plants [23]. The plugin serves as a 
framework to design accurate plant models thanks to its 
intelligent management of leaf arrangement on plant stems. 
It also presents several presets for handling various leaf 
characters, allowing us to generate a wide range of plant 
mesh models and to simulate different plant morphologies 
by adjusting the random seeds, growth stages, size, and 
other parameters of the plant model. To increase the 
number of training data samples, we generated three 
growth stages, and adjusted the morphological parameters 

Figure 2: Lettuce point clouds instance segmentation pipeline. The solid arrows point to the flow of point cloud data, and the dashed 
arrows point to the detailed processing steps of specific sessions. 
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of the plant for each stage.  Each generated point cloud 
contained about 30,000 points. The synthetic data 
examples are shown in Figure 3. 

3.3. Dataset annotation 

The reconstructed point clouds of lettuce were manually 
segmented into different leaf instances using 
CloudCompare software, and the segmented point cloud of 
each instance was down-sampled to 2048 points. For those 
leaves with less than 2048 points, the Ball pivoting 
algorithm was used to reconstruct the surface as a mesh 
model first, and then down-sampled to 2048 points. Then 
the normal of each point cloud was calculated, so that each 
point had 6 dimension features with X, Y, and Z coordinate 
values and a total of 3 directional normals of X, Y, and Z. 
Each point cloud of a leaf was marked with a unique label 
serial number. By randomly combining the segmented 
leaves to generate a new plant model, we achieved further 
expansion of the dataset. 

3.4. Instance segmentation based on PartNet 

The architecture of PartNet [2] is shown in Figure 4(a), 

Figure 4: PartNet model pipeline. We used the same network structure as the original PartNet model, with the feature extraction module 
of PointNet or PointNet++ chosen for the point cloud feature learning network. (a) An overview of the data in the dataset, consisting of 
a binomial tree of point cloud nodes. (b) The architecture of PartNet. (c) Node decoding module and node classification module. (d) 
Node segmentation module. 

 
(b) 

 
(c) 

 
(a) 

 
(d) 

3D point cloud 
model input 

     

     

    
(a)           (b) 

Figure 3: Synthetic dataset (a) Mesh model. (b) Down-sampled 
point cloud. 
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which belongs to a recursive neural network that takes a 
whole point cloud of 3D shape as input, performs top-down 
decomposition, and outputs the segmented point cloud at 
the part instance level. During the segmentation process, 
each point cloud block can be considered as each node in a 
binary tree traversed using the depth-first search method. 

On each point cloud node, three modules were designed: 
a node of decoding module for context propagation, a node 
of classification module for hierarchy construction, and a 
node of segmentation module for point cloud segmentation. 
As a recursive network, these modules were shared by all 
nodes in the hierarchy. 

The node of decoding module, shown in Figure 4(b), 
was used to pass global contextual information from a 
parent node to its child nodes, in which we chose 
PointNet++ to extract the point cloud feature information. 

The node of classification module took the node of a 
point cloud binary tree as input and predicted the result as 
either adjacency, symmetry, or leaf types. 

The node of segmentation module is shown in Figure 
4(c). It concatenated the recursive contextual feature and 
the part shape feature extracted by PointNet++ and fed the 
result into the point cloud classification network to achieve 
two-classification. For comparison with PointNet++, we 
also used PointNet as the feature extraction network to test 
its performance in the PartNet recursive network. 

3.5. Loss function 

The loss function of PartNet consists of the average node 
label loss (classification loss) and average node 
segmentation loss, see equation (1). 

�������� =
1

|ℋ|
� ������(�) +

1

|�|
� ����(�)

�∈��∈ℋ

      (1) 

Where ������ , ���� are both the cross-entropy loss. ℋ  is 

the set of all nodes in the hierarchy, and � is the set of all 
non-leaf nodes. 

3.6. Training hyperparameters 

We did not change the hyperparameters of the original 
network. PointNet++ for node classification (Figure 4(b)) 
used 6 point convolutional layers with 64, 128, 128, 256, 
256, and 128 filters, respectively, and PointNet++ for node 
segmentation (Fig. 4(c)) used 4 point convolutional layers 
with 64, 64, 128 and 128 filters, respectively. In the last 
three layers of all these networks, 20% random feature 
dropout was used in every two layers. The Adam optimizer 
was used for training; the batch size was 10; the initial 
learning rate was 0.001; the size of the input point cloud 

Figure 5: Instance segmentation results on dataset with PartNet. Different colors represent different instances. The color of the same 
object in ground truth and prediction are not necessarily the same. 

   

       

Ground truth 
 
 
 
 
 
 
PartNet 

 
 
 

 

Figure 6: Visualization of different leaf point clouds of lettuce.
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was 2048 × 6; and the epoch was set to 500. 

3.7. Evaluation metrics 

Given a shape point cloud as input, the task of part 
instance segmentation is to provide several disjoint masks 
over the entire point cloud, each of which corresponds to 
an individual part instance on the object. The IoU between 
each prediction mask and the closest ground-truth mask 
was calculated and the prediction mask was considered a 
true positive if the IoU is greater than a certain threshold 
(e.g., 0.25) [2]. And the average precision (AP) score was 
used as a measure of the instance segmentation of the point 
cloud model (with the IoU against ground-truth greater 
than a threshold) [17]. 

4. Result and discussion 

The instance segmentation results were shown in Figure 
5, where the first row was the ground truth point cloud 
segmentation results, and the second row was the PartNet 
prediction results. Each point in the segmented lettuce 
point cloud was assigned a label belonging to a particular 
leaf instance, and according to the label we extracted 
different leaf point clouds, and the visualization results of 
each point cloud are shown in Figure 6. 

4.1. Multi-layered leaves of the reconstructed 
model 

Since the accuracy of the consumer-grade depth camera 
was not high, the collected data had fluctuations, and the 
point cloud shape of the same leaf of lettuce was not 
exactly the same when they were collected under multiple 

 
(a) 

 
(b) 

 

Figure 8: Network training on 500 epoches with labelloss and 
segloss respectively. (a) PointNet as a feature extraction 
network. (b) PointNet++ as a feature extraction network. 

Figure 9: The relationship between segmentation accuracy and 
epoch in training. 

 

Table 2: AP (%) is measured with IoU threshold being 0.25 and 
0.5, respectively. 

 AP 

IoU > 0.25 
PointNet 

PointNet++ 
89.0 
97.2 

IoU > 0.5 
PointNet 

PointNet++ 
81.9 
92.4 

 

Figure 7: 3D reconstruction of the data with leaf stratification. (a) 
Visualization of leaf layering. (b) Data segmentation results.  

 
(a) 

   
(b) 
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views, so there was a phenomenon of leaf layering in the 
registration, as shown in Figure 7(a). We reduced the 
influence of the leaf morphological distortion problem by 
down-sampling and adding the processed data to the 
dataset. The comparison of the data before and after 
segmentation was shown in Figure 7(b), and the results 
showed that the point cloud of lettuce with multi-layer 
leaves after reconstruction could still be used as a valid 
training set data.  

4.2. Network performance and accuracy 

The relationship between epoch and label loss function, 
epoch and segmentation loss function were shown in 
Figure 8. During the training process, the loss function 
gradually became flat and convergent, indicating that the 
PartNet network had a relatively stable performance on the 
lettuce dataset. 

The segmentation accuracy of PartNet on the training set 
versus epoch was shown in Figure 9. The highest accuracy 
achieved after training 500 epochs is 0.98. We tested the 
network on 40 untrained images of the test set, and the 
results were shown in Table 2: When using PointNet++ as 
the feature extraction network, the Average Precision (AP) 
of instance segmentation reached 97.2% with an IoU 
threshold of 0.25, and 92.4% with an IoU threshold of 0.5, 
respectively. And when using PointNet as the feature 
extraction network, the AP reached 89.0% and 81.9%, 
respectively. To some extent, it showed that PointNet ++ 
learned the local features of the point cloud better than 
PointNet. 

5. Conclusion 

In this study, we explored a pipeline to achieve organ-
level 3D instance segmentation for lettuce, with the 
expectation that the trained neural network could segment 
point clouds of different leaves of plants into separate 
instances.  

(1) A multi-view reconstruction method was used to 
construct the real lettuce dataset, and although leaf 
stratification appeared, after down-sampling and adding 
the processed data to the dataset, the experimental results 
showed that the dataset could be used for instance 
segmentation to a certain extent. 

(2) Using Blender software to make a synthetic lettuce-
like dataset, this method implemented dataset enhancement 
and ensured that the network was fully trained. 

(3) We trained the 3D instance segmentation model 
PartNet on our 3D plant dataset consisting of a mixture of 
real and synthetic data and validated the performance of the 
model on the held-out test set after training for 500 epochs, 
showing that the AP reached 97.2% when IoU < 0.25 and 
92.4% when IoU < 0.5. 
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