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Abstract

The mature soybean plants are of complex architecture
with pods frequently touching each other, posing a chal-
lenge for in-situ segmentation of on-branch soybean pods.
Deep learning-based methods can achieve accurate train-
ing and strong generalization capabilities, but it demands
massive labeled data, which is often a limitation, especially
for agricultural applications. As lacking the labeled data
to train an in-situ segmentation model for on-branch soy-
bean pods, we propose a transfer learning from synthetic
in-vitro soybean pods. First, we present a novel automated
image generation method to rapidly generate a synthetic in-
vitro soybean pods dataset with plenty of annotated sam-
ples. The in-vitro soybean pods samples are overlapped
to simulate the frequently physically touching of on-branch
soybean pods. Then, we design a two-step transfer learn-
ing. In the first step, we finetune an instance segmenta-
tion network pretrained by a source domain (MS COCO
dataset) with a synthetic target domain (in-vitro soybean
pods dataset). In the second step, transferring from sim-
ulation to reality is performed by finetuning on a few real-
world mature soybean plant samples. The experimental re-
sults show the effectiveness of the proposed two-step trans-
fer learning method, such that AP50 was 0.80 for the real-
world mature soybean plant test dataset, which is higher
than that of direct adaptation and its AP50 was 0.77. Fur-
thermore, the visualizations of in-situ segmentation results
of on-branch soybean pods show that our method performs
better than other methods, especially when soybean pods
overlap densely.

Keywords:Deep learning; Transfer learning; Computer
vision; Instance segmentation; Plant phenotyping

1. Introduction

The crop yield of soybean (Glycine max L.) is heavily
influenced by three major factors: the number of pods per
plant, the number of seeds per pod and the seed size [9,27].
The most crucial parameter is hereby the number of pods
per plant, which is an important agronomic indicator [19].
Identifying and segmenting on-branch soybean pods is the
prerequisite for acquiring morphological phenotypic traits
of mature soybean plants. Traditionally, soybean pod count-
ing is performed manually. However, the soybean pods are
small with various shapes and the uncertain number of pods
per plant as well as random occlusion by branches and other
pods. This results in an error prone, time-consuming, and
labor-intensive manual phenotyping procedure [22]. There-
fore, it is infeasible for large-scale mature soybean plant
phenotype investigation.

Aided by the rapid gains in imaging technology, high
throughput phenotyping became possible when the crops
are sparsely or regularly placed with weakly physical con-
tact [1,31]. Some open-source image analysis methods have
been used in high throughput crop phenotyping. The main
idea of these methods is segmenting crops based on clas-
sic and ordinary image processing techniques, such as the
watershed algorithm [13, 16], morphological opening and
closing operation [24], and tailored algorithm with hand-
crafted features [11, 29], etc. Nevertheless, these methods
can realize high throughput crop instance segmentation, but
they are sensitive to changing illumination conditions and
texture features of object, and are also inadequate in robust-
ness and generalization ability. Additionally, the crops need
to be sparsely distributed with small overlap under a consis-
tent light condition to ease segmentation.

Deep learning has greatly improved the performance on
almost every computer vision task, and can achieve an ef-
fective segmentation by learning deep features from large
annotated image datasets to solve the above-mentioned
problems [18]. Some existing methods are used in high
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Figure 1. Overview of the proposed two-step transfer learning for in-situ segmentation of on-branch soybean pods

throughput crop phenotyping, including fruit counting, de-
tection, and instance segmentation [20,21,31,32], where the
changes in the shapes of fruits are relatively small. Deep
learning applied in plant phenotyping has grown exponen-
tially in the past few years [14]. However, training an ac-
curate deep learning algorithm with strong generalization
ability requires a large amount of labeled data which is one
of the disadvantages of deep learning. Compared with rela-
tively common tasks, such as classification in the ImageNet
dataset [6] and object detection in COCO dataset [17], the
demands for large annotated data for specialized tasks in
agricultural applications is even more pronounced [3,7,10].
However, manual annotation is expensive, especially for the
instance segmentation tasks in the plant phenotyping realm.
Although many techniques aim to decrease the cost of man-
ual labeling, such as domain adaptation [23] or active learn-
ing [3], without compromising performance, the tedious,
painful, labor-intensive, and time-consuming labeling pro-
cess is still needed to evaluate the algorithm. Especially in
high-throughput crop phenotyping, the annotation of crop
instance dataset poses a tremendous challenge.

An option to reduce the cost of manual annotation is
learning from synthetic data [8, 26]. Although the syn-
thetic data is not faithful compared with real-word images,
the critical characteristic of synthetic dataset is that ground
truth annotations can be automatically obtained [2]. Fur-
thermore, the synthesizing data approach is able to create
almost unlimited amount of labeled datasets [5]. Further-

more, synthetic data can represent changes in a variety of
conditions, which is usually difficult to achieve through ap-
plying image augmentation techniques on real world im-
ages [28]. Kuznichov et al. [15] proposed a method to
segment and count the leaves of Arabidopsis, avocado, and
banana by using synthetic leaf textures with different sizes
and angles to simulate images obtained in real agricultural
scenes. Toda et al. [25] proved that a synthetic dataset, ren-
dering the combination and direction of seeds, was suffi-
cient to train an instance segmentation network to segment
barley seeds from real-world images. Collectively, syn-
thetic datasets have great potential in the computer vision-
based plant phenotyping research field [30].

On-branch soybean pods segmentation and counting
pose a challenge, since they feature a complex architec-
ture and a high level of overlap with each other. As lacking
the labeled data for training an in-situ segmentation model
of on-branch soybean pods, we present a two-step transfer
learning method based on a synthetic high throughput in-
vitro soybean pods dataset which is prepared by our novel
automated image generation method. Figure 1 illustrates
the overview of our proposed two-step transfer learning for
in-situ segmentation of on-branch soybean pods.

The main contribution of this study are as follows:
(1) A novel synthetic image generation method is pro-

posed for automatically creating labeled high throughput
in-vitro soybean pods image sets.

(2) A new hybrid sim/real and in-vitro/on-branch dataset,
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Figure 2. Examples of scanned raw in-vitro soybean pods images
in which the soybean pods were picked from one plant sample
manually and randomly tiled upon the black-colored flannel

including synthetic in-vitro soybean pods and real-world
mature soybean plants, is designed for transferring from
simulation to reality and from in-vitro segmentation to on-
branch segmentation robustly.

(3) The proposed two-step transfer learning method with
a tiny Swin transformer-based instance segmentation net-
work achieves a decent performance for in-situ segmenta-
tion of on-branch soybean pods. To the best of our knowl-
edge, this is the first work utilizing synthetic high through-
put in-vitro soybean pods for simulating on-branch soybean
pods of mature soybean plants.

2. Methods
2.1. Synthetic in-vitro soybean pods image genera-

tion

In our proposed pipeline of computer vision-based high
throughput in-vitro soybean pods phenotype investigation,
the soybean pods are picked manually from a single plant
sample. They are then tiled upon a simple background like
black-colored flannel randomly [4]. After that, these pods
are scanned by the camera sensor of an iPhone 8 plus (Ap-
ple) mounted on a tripod and saved as an image with the
size of 3024 × 4032 shown in Figure 2. The working dis-
tance of the camera sensor was fixed at about 30 cm above
the background.

At the stage of dataset preparation, we randomly chose
6 samples for each soybean plant accession (total of 48; 6
samples for 8 cultivars). One sample of each soybean plant
accession (total of 8 soybean plants; one sample for 8 cul-
tivars) is chosen to create the synthetic image dataset. The
soybean pods picked from one sample manually are tiled
above the black flannel randomly, scanned by our camera
sensor, and saved as an individual image file. The rest sam-
ples of each accession (total of 40 soybean plants; 5 samples
for 8 cultivars) are used as real-world on-branch soybean
plants training dataset.

We now introduce our proposed method for generating
synthetic images. First, we prepare a background image

Figure 3. Examples of SPIP. each column represent a different
cultivars. (a) BJ103, (b) BJ125, (c) BJ218, (d) BJ226, (e) BJ264,
(f) BJ335, (g) BJ351, (h)BJ356

pool (BIP) and a soybean pod image pool (SPIP). The BIP
was consist of 10 images, which prepared by capturing the
actual black flannel background 10 times and cropped at the
fixed size of 1024×1024. The SPIP was constituted by seg-
menting each pod from raw in-vitro high throughput soy-
bean pods images and saved as an individual pod image pro-
cessed with Photoshop1, as shown in Figure 3. The images
of the SPIP are zero-padded, to prevent the pod from mov-
ing outside the image after rotation and shift. Last, generate
high-throughput in-vitro soybean pods images based on the
BIP and SPIP prepared in the previous step. Algorithm 1
depicts the detail of the above described last step, gener-
ating high-throughput in-vitro soybean pods image, using
pseudo code.

Note that, in Algorithm 1, (xi, yi) is coordinate of the ith

pod will be pasted on canvas, while (xj , yj) is coordinate of
0th ∼ jth pods has been pasted on canvas. w and h are the
width and height of canvas. The parameter threshold is
dynamic calculated related to the size of the soybean pod
bounding box, in detail, the width of ith and jth soybean
pod. The new coordinate (xi, yi) is generated randomly but
with two limitations, the boundary of the canvas as well as
the minimum Euclidean distance between the newly gen-
erated coordination (xi, yi) and the coordinates (xj , yj) of
the soybean pods pasted on the canvas before. These two re-
striction factors keep the pod within the canvas, and adjust
the degree of overlap respectively.

2.2. Real-world mature soybean plant dataset

As described in section 2.1, we generate the synthetic la-
beled high throughput in-vitro soybean pods images. Now
we are preparing a real-world mature soybean plant dataset
by capturing images of individual mature soybean plants us-
ing the camera sensor of an iPhone 8 plus (Apple) mounted
on a tripod, and saving them as an image with the size of
3024×4032 as shown in Figure 4. The working distance be-
tween the camera sensor and the black-colored flannel back-

1Adobe Photoshop CC 2020, Adobe Systems Incorporated, San Jose,
CA, USA; http://www.adobe.com/Photoshop

1668



Algorithm 1 Generation of fine-labeled high throughput in-
vitro soybean pods image

Input: BIP and SPIP
Output: a high-throughput in-vitro soybean pods image, a

fine-labeled mask image with different color
1: create a raw canvas, a mask canvas.
2: paste a background image chosen from the BIP ran-

domly onto the raw canvas.
3: fill the mask canvas with absolute black color.
4: while generate a satisfying coordinate or less than max

iteration do
5: select one pod image from SPIP randomly.
6: rotate, shift and zoom at random.
7: generate new pod position coordinate (xi, yi) ran-

domly.
8: if (0, 0) < (xi, yi) < (w, h) and overlap degree of

(xi, yi) and (xj , yj) satisfy threshold then
9: paste the selected pod image onto the generated

coordinate of canvas.
10: create the mask image with different color accord-

ing to the selected image.
11: paste the created mask image on the mask canvas’s

counterpart position.
12: end if
13: end while

ground is adjusted to about 1 m to capture the whole soy-
bean plant image. We randomly chose 60 specimens of ma-
ture soybean plants to constitute the real-world mature soy-
bean plant dataset. 40 of them are used for training and val-
idation mentioned in section 2.1, 20 for testing. In addition,
the mature soybean plants are not used in generating the
synthetic in-vitro soybean pods image dataset. After man-
ual annotation, the images are down-scaled since the size
of the image acquired by our came sensor is 3024 × 4032,
which is too large for the computing of the instance seg-
mentation network.

2.3. Model training for two-step transfer learning

Swin Transformer, a hierarchical Transformer whose
representation is computed with shifted windows, per-
formed pretty well in dense prediction tasks [18]. To adapt
the tiny Swin Transformer to our in-situ segmentation of on-
branch soybean pods of mature soybean plants with compli-
cated structures and frequent physical overlap, we reduce
the number of classes to two. Each instance mask is clas-
sified as a foreground object or background, while only vi-
sualizing the foreground mask. We use our synthetic in-
vitro soybean pods dataset with large amounts of labeled
data and a real-world mature soybean plant dataset with a
few labeled samples for our two-step transfer learning in the
target domain. In the first step, we finetune the pre-trained

Figure 4. Examples of the captured mature soybean plant images
which the background is black-colored flannel

model weights trained by the MS-COCO dataset [17] on
our synthetic in-vitro soybean pods dataset. Then, in the
second step, transferring from simulation to reality is per-
formed by finetuning on the few real-world mature soybean
plant samples, as shown in Figure 5. To increase the diver-
sity of dataset, the up-down, rotation, brightness and Gaus-
sian blur image augmentations are used herein. The mean
pixel value is set as the average pixel value of the simulated
dataset. Tiny Swin Transformer is chosen as the backbone
to exact features. Two evaluation metrics included average
precision (AP) and recall, used to evaluate in the original
research [12], are also introduced herein as the evaluation
criteria. The comparative experiments of different instance
segmentation network with our two step transfer learning is
supplied in the supplemental material.

3. Experiments and results
3.1. Software libraries and hardware

The processing unit was a computer with an Intel Core
i5-10400F@2.90Hz CPU, 16GB RAM, and a single GPU
(8G, Geforce GTX2060 supper, NVIDIA). The synthetic
image generation-related processes operated on the environ-
ment, including Integration Develop Environment (IDE),
integrating Python 3.6, and OpenCV3 (ver. 3.4.2). The
manual annotation of real-world mature soybean plant im-
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Figure 5. Tiny Swin Transformer based on-branch soybean pods instance segmentation of mature soybean plant with two step transfer
learning

ages was implemented with the Photoshop program.

3.2. Preparation of pods instance segmenatation
dataset

We generated high throughput in-vitro soybean pods im-
ages with the size of 1024×1024. The pods were randomly
and densely located inside the canvas region by our proce-
dure, as mentioned in section 2.1.

We prepared a number of training datasets of syn-
thetic in-vitro soybean pods images to do transfer learn-
ing from the source domain (MS COCO dataset) to the
target domain (synthetic in-vitro soybean pods). The pre-
pared synthetic datasets include different amounts of (train-
ing/validation/testing) data with different overlapping de-
grees as shown in Table 1 and Table 2 to validate the ef-
ficiency of data mount and overlapping degrees of in-vitro
soybean pods for in-situ segmentation of on-branch soy-
bean pods. In other words, we investigated 40 datasets,
10 datasets for all 4 different overlap degrees. The visu-
alization of different overlapping degrees of soybean pods
is shown in Figure 6. We also prepared another new 200
sets of image pairs as a synthetic test dataset, and those
synthetic images were not used in the model training or
validation. The overlapping degree is a decisive coefficient
for the purpose of calculating the dynamic overlap thresh-
old as mentioned in section 2.1. When the overlapping de-
gree decreases, the overlap threshold also decreases, result-
ing in a dense overlap of soybean pods. The overlapping
degree is the key parameter to simulate the real world fre-
quently physically touching on-branch soybean pods in our
proposed synthetic dataset generation scheme.

An example of the real-world mature soybean plant
dataset is shown in Figure 7. The real-world mature soy-
bean plant dataset is labeled by Photoshop. The software is
used for pod matting, and each matting pod was saved as a
binary image. We found that there is a plethora of soybean
pods per image leading to more time intensive labeling. The
time of manual annotation process with LabelMe is about
90 min per image. The real-world mature soybean plant
dataset is constituted of 60 image pairs of raw soybean im-
ages and its mask images, 36 of those images for training, 4
for validation, and 20 for testing.

Overall, the prepared different amounts of datasets for
our two-step transfer learning consist of an in-vitro soybean
pods dataset (Dataset in-vitro) and a real-world mature soy-
bean plant dataset (Dataset on-branch) summarized in Ta-
ble 3. The Dataset in-vitro is constituted of synthetic in-
vitro soybean pods images and real-world in-vitro soybean
pods images.

3.3. Efficiency of different amounts of data with
different overlapping degree

To investigate the impact of different amounts of data
with different overlapping degrees, we explicitly present a
set of two-step transfer learning experiments on the pre-
pared dataset as mentioned in section 3.2. We use our real
world mature soybean plant test dataset to evaluate the tiny
Swin transformer-based two-step transfer learning model
trained on the different amounts of data with different over-
lapping degree datasets. The variation in AP50 of different
datasets is shown in Figure 8. We found that the best perfor-
mance is transfer learning the dataset which includes 1600
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Figure 6. The synthetic in-vitro high throughput soybean pods im-
age with different overlapping degrees. (a) the overlapping coeffi-
cient is 0.4 (b) the overlapping coefficient is 0.3 (c) the overlapping
coefficient is 0.2 (d) the overlapping coefficient is 0.1

Table 1. Synthetic in-vitro soybean pods datasets of one overlap
degree with different amounts of (training/validation/testing) data.

Dataset ID Training Validation Testing

1 200 20

200

2 400 40
3 600 60
4 800 80
5 1000 100
6 1200 120
7 1400 140
8 1600 160
9 1800 180

10 2000 200

Table 2. Synthetic in-vitro soybean pods datasets with different
overlapping coefficients.

Overlapping
coefficient

Image
size

Pod
count

Processing
time per image/s

0.1

1024 * 1024

212 28
0.2 192 25
0.3 156 22
0.4 112 18

synthetic in-vitro soybean pods images and its overlapping
degree is 0.1. And we can witness that increasing the over-
lapping degree can increase the performance dramatically.
We also learned that increasing the training data amount is
not significant.

3.4. Effectiveness of two-step transfer learning

We investigate the effectiveness of our two-step transfer
learning from the synthetic in-vitro high throughput soy-
bean pods dataset for in-situ segmentation of on-branch

Figure 7. One labeled image data of real-world soybean pods test
dataset annotated by Adobe Photoshop software. (a) raw image,
(b) instance masks, bounding boxes, class names

soybean pods. As mentioned in section 3.2, the prepared
dataset for our two-step transfer learning consists of an in-
vitro soybean pods dataset (Dataset in-vitro) and a real-
world mature soybean plant dataset (Dataset on-branch).
The Dataset in-vitro was constituted of synthetic in-vitro
soybean pods images and real-world in-vitro soybean pods
images.

(1) COCO, Dataset in-vitro. The backbone network pa-
rameters were initialized with the parameters trained by
COCO dataset. Then the network is finetuned by our syn-
thetic in-vitro soybean pods dataset (Dataset in-vitro) in the
target domain.

(2) COCO, Dataset on-branch. The backbone network
parameters were initialized with the parameters trained by
COCO dataset. Then the network is finetuned by real-
world mature soybean plant dataset with fewer samples
(Dataset on-branch) in the target domain which is one-step
transfer learning.

(3) COCO, Dataset in-vitro, Dataset on-branch. This
is the proposed approach, named ”Ours”. The backbone
network parameters were initialized with the parameters
trained by COCO dataset. Then the network is finetuned
by our synthetic in-vitro soybean pods dataset (Dataset in-
vitro). We then apply transfer learning from Dataset in-
vitro to Dataset on-branch.

The quantitative and qualitative results of in-situ instance
segmentation of on-branch soybean pods with different in-
stance segmentation network and different transfer learning
strategies are shown in Table 4 and Figure 9 respectively.
As shown in Table 4, our proposed method outperforms the
baseline methods, which is in line with the results shown
in Figure 9, where the proposed two-step transfer learning
method achieves more accurate segmentation results. Thus,
the results demonstrate that the synthetic in-vitro soybean
pods dataset can be the supplement of mature soybean plant
dataset for in-situ segmentation of on-branch soybean pods.
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Table 3. The detail of the prepared dataset for our two-step transfer learning

Synthetic in-vitro soybean pods dataset
Dataset in-vitro

Real-world mature soybean plant dataset
(Dataset on-branch)

Training validation Testing Training validation Testing

Different amount of (training/validation) data
as Table 1 illustrated 200 36 4 20

Figure 8. The heat map of evaluation metric (AP50) instance segmentation results on real world mature tiny Swin transformer based
two-step transfer learning model trained with different amounts of data with different overlapping coefficient.

More evaluation results can be seen in the supplemental ma-
terial. The comparative experiments reveal that the model
which was fine-tuned on the synthetic in-vitro soybean pod
dataset only can learn the pods region roughly. However,
if the model transfer learning from synthetic in-vitro soy-
bean pod dataset in the first step, and then fine-tuning on the
real-world soybean plant dataset, the performance will be
improved compared with directly finetuned on real-world
soybean plant dataset.

4. Conclusion

The proposed method can be employed in automatic
pods counting after instance segmentation of on-branch
soybean pods. It solves the high cost and low efficiency
problems of traditional artificial pods counting such as poor
accuracy, and provides a richer and more accurate pheno-
typic parameter reference for breeding experts to carry out
the breeding design. Moreover, farmers can utilize it to es-
timate yields of soybean quickly.

The major contribution and advantages of our method
are: (1) A novel synthetic image generation method is pro-
posed for automatically creating labeled high throughput in-
vitro soybean pods image set. (2) A new hybrid sim/real
and in-vitro/on-branch dataset, including synthetic invitro
soybean pods dataset and real-world mature soybean plant
dataset, designed for transferring from simulation to real-
ity and from in-vitro segmentation to on-branch segmenta-

tion robustly. (3) The proposed two-step transfer learning
method on a tiny Swin transformer based instance segmen-
tation network achieves a decent performance for in-situ
segmentation of on-branch soybean pods, which is the first
work utilizing a synthetic high throughput in-vitro soybean
pods images dataset for mimicking on-branch soybean pods
of the mature soybean plant which are of complex architec-
ture with pods frequently touching each other.

However, the 2D image based method does not carry the
depth (range) information about the plant leading a poor
segmentation performance for badly occluded pods.

In the future, we plan to similarly analyze in-situ seg-
mentation and seed-per-pod estimation of on-branch soy-
bean pod for mature soybean plant phenotype investigation.
Another avenue for future work is incorporating spatial in-
formation into the analysis to improve segmentation accu-
racy.
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Table 4. Evaluation on mature soybean plant test dataset with different instance segmentation models and transfer learning strategies.

Transfer learning strategy Recall@[.5:.95] AP50 AP75 AP@[.5:.95]

Yolact+(COCO,Dataset in-vitro) 0.042 0.043 0.019 0.021
Yolact+(COCO,Dataset on-branch) 0.319 0.474 0.079 0.168

Yolact+ours 0.419 0.579 0.219 0.269
Mask RCNN+(COCO,Dataset in-vitro) 0.052 0.043 0.021 0.022

Mask RCNN+(COCO,Dataset on-branch) 0.547 0.687 0.379 0.392
Mask RCNN+ours 0.555 0.694 0.423 0.398

Blendmask+(COCO,Dataset in-vitro) 0.260 0.037 0.009 0.015
Blendmask+(COCO,Dataset on-branch) 0.543 0.656 0.345 0.352

Blendmask+ours 0.556 0.686 0.345 0.352
Swin transformer+(COCO,Dataset in-vitro) 0.125 0.100 0.037 0.045

Swin transformer+(COCO,Dataset on-branch) 0.535 0.773 0.519 0.477
Swin transformer+ours 0.575 0.80 0.579 0.522

Figure 9. One example of visualized output results of real-world mature soybean plant dataset with different transfer learning strategies.
The network is tiny Swin Transformer based instance segmentation network. The first column is the result of the pre-trained model purely
retrained by our synthetic in-vitro soybean pods dataset. The second column is the result of the pre-trained model only retrained by our
real world mature soybean plant. The third column is the result of the pre-trained model first retrained by our synthetic in-vitro soybean
pods dataset and finetuned on our real world mature soybean plant dataset.
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