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Abstract

Extensive research has demonstrated that deep neural
networks (DNNs) are prone to adversarial attacks. Al-
though various defense mechanisms have been proposed for
image classification networks, fewer approaches exist for
video-based models used in security-sensitive applications
like surveillance. In this paper, we propose a novel yet sim-
ple algorithm called Pseudo-Adversarial Training (PAT), to
detect the adversarial frames in a video without requiring
knowledge of the attack. Our approach generates ‘transi-
tion frames’ that capture critical deviation from the orig-
inal frames and eliminate the components insignificant to
the detection task. To avoid the necessity of knowing the
attack model, we produce ‘pseudo perturbations’ to train
our detection network. Adversarial video detection is then
achieved through the use of the detected frames. Experi-
mental results on UCF-101 and 20BN-Jester datasets show
that PAT can detect the adversarial video frames and videos
with a high detection rate. We also unveil the potential
reasons for the effectiveness of the transition frames and
pseudo perturbations through extensive experiments.

1. Introduction

Deep neural networks (DNNs) have proven to be ex-
cellent learners for various tasks like image classification
and video action recognition. Recent studies have also
shown the vulnerability of DNNs to adversarial attacks
[5,7,18,29]. A typical adversarial attack example is when
the input is altered subtly, leading to misclassification by
the DNN. This has drawn a lot of attention as DNNs are be-
ing used for applications like surveillance [28], autonomous
vehicles [20, 37], facial recognition [13, 23], etc., where re-
silience to adversarial attacks is of utmost importance.

While the current literature documents extensive re-
search related to adversarial learning in image-based appli-
cations, [1-3, 11, 18,27,36]. the adversarial vulnerability
of video-based DNNs remains a less explored area. This
poses a pressing practical challenge, as DNNs are widely
deployed in various video-analysis tasks [4,6,19,24,31,32].

Although the video-based DNNs are more difficult to attack
due to the additional temporal dimension, [33] showcased
the susceptibility of video action recognition models to ad-
versarial attacks.

An adversarial video is a video with one or more adver-
sarial frames. The attacks on video models can be catego-
rized into two types - 1) sparse attack where either mini-
mum number of frames are perturbed or minimum amount
of perturbations are added to each frame like [33], 2) dense
attack where perturbations are added to all the frames like
in[12].

There are plenty of defenses designed to defend image
attacks [15,17,21,25,30]. However, in general, they cannot
be directly applied to videos as they do not take temporal
information into account. Often, defenses for videos need to
be computationally efficient, in order to handle the volume
of data. The temporal redundancy present in videos can lead
to a significant waste of computation if one simply applies
an image-based approach on a frame-by-frame basis. To
overcome these challenges, we suggest that the detection of
adversarial videos will be a better alternative as compared to
techniques involving intensive training, changes to network
parameters or reconstructing the frames [14].

In this paper, we propose a novel defense strategy,
Pseudo-Adversarial Training (PAT), for video action recog-
nition networks that can detect the adversarial frames with-
out any prior knowledge of the perturbations. It is called
‘pseudo’ because the network is not trained on the actual
perturbations. The detection network is trained on transi-
tion frames and pseudo perturbations to detect the perturbed
frames. The transition frames, constructed from the neigh-
boring frames, make the otherwise finely blended perturba-
tions noticeable. The pseudo perturbations mimic the actual
perturbations without being generated by any actual attack
algorithm. They enable the network to learn about potential
deviations from authentic frames, without the need to know
specific attack models.

We summarize our contributions as follows:

e We propose a new technique, Pseudo-Adversarial
Training (PAT) to detect the adversarial frames in a
video. This strategy does not need prior knowledge of
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Figure 1. Overview of the Pseudo-Adversarial Training (PAT) approach. (a) shows the key components - transition frames generation,
pseudo-perturbation generation and training the detection network using the clean transition frames and pseudo-adversarial transition
frames. (b) shows transition frame generation. (c) shows the detection network architecture.

the attack scheme or the added perturbations and can
defend both the sparse as well as the dense attacks.

¢ We define and use the transition frames so that the
detection network can focus on perturbations that are
more relevant to the detection of the adversarial frames
rather than other elements in the frame.

* We also propose to generate pseudo perturbations and
use them to train our detection network. These pertur-
bations are generated such that the network can learn
to handle varying perturbations due to adversarials.

2. Related Work

The fact that the video action recognition models are
vulnerable to adversarial attacks was first studied in [33].
A video action recognition model aims to predict the la-
bel for an input video. Several deep learning models are
used for this task like CNN+LSTM [4] etc. Such networks
learn spatial and temporal information from the video in-
put. [33] used l5 1 optimization loss to generate the pertur-
bations. They achieved temporal sparsity and a high fooling
ratio using a temporal mask and propagation of the pertur-
bations to the consecutive frames.

[22] makes use of a neural network to generate pertur-
bations that are rich in detail and sparse. As these perturba-
tions are highly specific, they are created for each video sep-
arately. [12] is a white-box attack that uses GAN structure
to generate ‘circular dual universal perturbations’, with the
discriminator being the target network. A post-processor is
added between the generator and discriminator to perform
a circular shift on the perturbations.

[10] is a black-box attack exploiting the pre-trained im-
age models and black-box optimization techniques to min-
imize the queries to the target model and the search space.
[34] is another black-box attack that takes a heuristic ap-
proach to key frames and regions to add the perturbations.

The focus on the spatial information of the images in
the image-based defenses makes them non-optimal for the
video-based models. [35] designed a defense for video-
based models, where the optical flow is used to generate
the current frame based on the previous. The video is then
passed through the target network to check for temporal
consistency.

[9] also uses the concept of temporal consistency to de-
termine the perturbed frames in a video. They use a well-
trained network to determine the labels of each frame and a
frame is considered adversarial if its label is different from
its adjacent frames. [14] presents a defense method that re-
places the batch normalization layers in the action recogni-
tion network with their module named MultiBN. They ad-
versarially train this modified network to defend against ad-
versarial attacks.

PAT avoids the complex tasks of frame reconstruction
and optical flow estimation by using the ‘transition frames’,
which are computed by a much simpler process. PAT nei-
ther introduces any hyperparameters for detection (like that
in [9]) nor requires retraining the target classifier (like that
in [14]) and hence reduces the overhead of learning.

3. Methodology
3.1. Problem Definition

Without loss of generality, we consider video action
recognition models in this work but it can be easily extended
to other video-related tasks. Let X;, Xo,...., X;, X;41 be
the image frames of a video with X, being the target frame.
Let D be the classifier model and the prediction output of
X be Y; (D(X:) = Y;). An attacker aims to generate an
adversarial frame X; by adding a small perturbation € to
the target frame X such that D(X}) = Y,*, where Y}* is
the adversarial target output. Our aim is to detect the ad-
versarial frame X; without any knowledge of the attacking
algorithm besides the two frames - X;_; and X; ;. Also,
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there is no definite knowledge if X;_; and Xy, are clean
or perturbed frames.

3.2. Pseudo-Adversarial Training (PAT)

The Pseudo-Adversarial Training (PAT) strategy con-
sists of three key components: transition frame generation,
pseudo perturbation generation and training our detection
network to detect the adversarial frames, which are elabo-
rated below and the overall framework is shown in Fig. 1.

3.2.1 Transition Frames Generation

A video is a sequence of frames depicting a (dynamic)
scene. The temporal component plays an important role
in video-related tasks. Assuming a reasonable frame rate
and small and continuous motion, an approximate recon-
struction of the frame is possible using the nearby frames.
PAT leverages these facts to compute ‘transition frames’,
which are used to capture the underlying dynamics across
the frames while ignoring portions non-relevant to this de-
tection task. Consider three consecutive frames X;_1, X;
and X, ;. We define ‘motion” M; between X;_; and X,
as M7 = X; — X;_1. The term ‘motion’ is used in this
narrow sense throughout this paper, and it is supposed to
capture underlying dynamics. Similarly, the motion M, be-
tween X; and X;41 is Mo = X1 — Xy. Now, the motion
between M, and M is given by -

My —My =X — Xy — Xy + Xy (D

Eq. 1 reduces to the transition frame equation (Eq. 2).
These equations show how the transition frame can capture
the motion from the three frames used to create it. It is
generated using two simple operations only - average and
difference, making it computationally inexpensive.

L (X4 X
Xir = (t = t“)—Xt @)

There are two special cases - the first and the last frame
of the video. The first frame does not have the previous
frame and the last frame does not have the next frame. Thus,
we replace the average frame for first and last frames by
the second frame and the second last frame in the video
respectively.

Fig. 2 shows the sample original frames, their average
and the transition frames for the current frames. It is clear
from the transition frame that it gets rid of most of the static
background. It only contains the main object and the mo-
tion around it. Elimination of the passive elements does not
hamper the detection process as they are not relevant to our
detection task. As a result, the perturbations become visible
prominently in the transition frames.

2

Figure 2. Sample original frames (first 3 columns), the average
frame (fourth column) and the transition frame (fifth column) from
UCF-101 (first row) and 20-BN Jester (second row) datasets.

3.2.2 Pseudo Perturbations Generation

For training the detection network, we need clean and ad-
versarial samples. As there is no prior knowledge of the per-
turbations being added or the attack algorithm, we propose
a way to generate on-the-go pseudo perturbations. These
perturbations are not actual perturbations as they are not
generated using an attack strategy. But, when added to the
transition frames, they are enough to let the network learn
about the actual perturbations in the video frames.

To generate the pseudo perturbations, we use a varying
magnitude of Gaussian noise by changing the standard devi-
ation ¢ of the Gaussian distribution. We generate Gaussian
noise mask X,, ~ N(0, o) where ¢ ~ 1/(0.0001, 0.05).
It is of the same shape as that of the transition frame (Eq.
3, where X ;Z ., represents the pseudo-adversarial transition
frame and X" represents the target transition frame).

We chose this particular range for the value of ¢ because
it covers a wide variety of magnitude. For the values below
0.0001, the noise does not make any significant impact on
the image. The values above 0.05 completely disrupt the
transition frame and turn it into complete noise. For every
transition frame, a different value of ¢ is picked randomly.
This varying noise mask added to the transition frames is es-
sential to train the detection network such that it can identify
a variety of perturbations.

Xiroo= X"+ X, 3)

Padv

3.2.3 Training the detection network

We use a convolutional neural network (architecture shown
in Fig.1 (c)) for binary classification as the detection net-
work. The transition frames for the clean class are obtained
from the original videos. For the adversarial class, the tran-
sition frames are obtained by adding the pseudo perturba-
tions to the clean transition frames. Our approach is sum-
marized in Algorithm 1. The adversarial video detection
can be done using the detected adversarial frames (details
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are in Section 4.2).

Algorithm 1: PAT: Pseudo-Adversarial Training

Input : Training Videos X, Labels y. and y44y,
Test Videos Xiest, Detection Network D

Output: Predicted Labels g

for each epoche = 1,2, ... do

while Training do

for each video frame X; = 1,2, ... do

Xfr _ (thl‘;XtJrl) — X

Generate o ~ U£/(0.0001, 0.05) ;
Generate X,, ~ N(0, 0);

X;:dv = X} + Xn;

Train D using cross-entropy loss;

end

end
while Testing do
for each video frame Xiesr, = 1,2, ... do

X +Xtes
tr _ testy 1 testyyq .
Xtestt - ( 2 ) - Xtestt’

.ﬁ = D(Xgerstt);

end
end

end

4. Experiments and Results

In this section, we start with a discussion of the experi-
mental settings and the metrics used for evaluation. We also
discuss the two attack baselines used to evaluate our tech-
nique. Lastly, we present the results of PAT on two datasets
- UCF-101 [26] and Jester [16] dataset.

4.1. Experimental Settings
4.1.1 Datasets and Target Networks

We chose UCF-101 [26] and Jester [16] dataset to show
that our approach works for both coarse-grained and fine-
grained action recognition data. We use split 1 of UCF-101
and validation set of 20BN-Jester for our experiments.

The target network for the UCF-101 dataset is the
CNN+LSTM classifier. The pre-trained ResNet152 is fol-
lowed by a layer of LSTM and three fully-connected layers
(final classification using SoftMax) and yields a test accu-
racy of 91.09%. The target network for the Jester dataset
is a C3D classifier. We fine-tune the model of depth 18
pre-trained on Kinetics dataset available on GitHub repos-
itory [8]. Validation accuracy is 90.33%. The input frame
resolution is 112 x 112 for both datasets. The sequence
length is 40 frames and 16 frames for UCF-101 and Jester
datasets respectively.

4.1.2 Attack Baselines

We consider two attacks to evaluate our approach. Sparse
Adversarial Perturbations [33] perturbs only a small per-
centage of frames from the entire video using an [ ; op-
timization loss and temporal mask. As the perturbations are
sparse, we refer to it as ‘sparse attack’ for the rest of the pa-
per. For our experiments, we perturb pre-determined 22.5%
(9 out of 40 frames) and 20% (4 out of 16 frames) of the
total frames for UCF-101 and Jester datasets respectively.
The other attack [12] perturbs all the frames in a video us-
ing a generative model. As all the frames are perturbed, we
refer to it as ‘dense attack’.

We chose these two baselines as they are strong attacks
and represent two very different types of attacks - videos
with only one or a few frames perturbed and videos with all
the frames perturbed. With these attacks, we show that our
method can detect adversarial frames containing a variety
of perturbations.

4.1.3 Evaluation metrics

Two evaluation metrics are used in our experiments: 1)
Frame Detection Rate -

Zz‘l\;o D(X;) =Y,

FDR = N

“)

where X is the input frame, Y; € {0, 1} is the ground truth
for frame detection, D is Detection network and N is the
total number of frames; 2) Video Detection Rate -

Zgo (H;’V:O D(Xz‘j)) =Y,
M

VDR = 5)
where X; is the j' frame in i’ video, Y; € {0,1} is the
ground truth for video detection, D is Detection network, N
is the number of frames and M is the number of videos.

We also calculate Area under Receiver Operating Char-
acteristic (ROC), shortly known as AUC on UCF-101
dataset for comparison purposes. Higher the Area under
Curve (AUQ), better is the capability of the model to distin-
guish between the two classes.

4.2. Adversarial Detection Results

Table | summarizes our results for adversarial detection
on both the datasets. From the FDR column, it is clear that
PAT detects adversarial frames from both types of attacks
with high accuracy. This demonstrates that PAT can detect
different types and magnitude of perturbations without hav-
ing any prior knowledge about them. Also, PAT works well
for both datasets showing that it can handle coarse-grained
and fine-grained classification data. This makes it a very
promising approach for detecting adversarial frames. Based
on the detected adversarial frames, the adversarial videos
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can be detected. The frame detection rate obtained by PAT
is enough to detect most of the adversarial videos with ease.

Table 1. Adversarial Frame detection rate (FDR) and video detec-
tion rate (VDR) for PAT on UCF-101 and 20BN-Jester datasets for
different attacks.

Attack Algorithm | FDR | VDR
UCF-101

| 83.62% | 92.86%

| 83.46% | 88.25%

20BN-Jester

| 75.9% | 80.7%

Sparse Attack

Dense Attack

Sparse Attack

The sparse attack showed that even if one frame is per-
turbed, a success rate of 60% is achieved. So, even if one
adversarial frame is detected in the entire video sequence,
the video can be categorized as an adversarial one. How-
ever, to accommodate the scenario of having false positives,
we use a threshold of 3 adversarial frames i.e we consider a
video to be adversarial when atleast 3 frames are classified
as adversarial by the detection network. See Table 1 for the
adversarial VDR results for PAT.
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Figure 3. Confusion matrix of PAT for the adversarial video detec-
tion when the adversarial videos are generated by both sparse and
dense attack.

We tried different values of this threshold to determine
an adversarial video. We found empirically that a value of
3 for the threshold maintained a balance between false pos-
itives and false negatives. Higher values of threshold led to
a higher number of adversarial videos being misclassified
as clean which can pose a threat to the network. On the
other hand, lower values of threshold led to a higher num-
ber of clean videos being classified as adversarial, which is
not desirable too.

Fig. 3 shows the confusion matrix for detecting adver-
sarial video using PAT on UCF-101 dataset. The adver-
sarial videos contain a mix of videos generated by sparse
and dense attacks. The high true positives and true neg-
atives along with low misclassification of videos for both
the classes indicate the ability of PAT to detect adversarial
videos without any prior knowledge of perturbations.

Table 2. Comparison of PAT with other defenses (AUC) on UCF-
101 dataset. The 1% column denotes the defense mechanism. The
last 3 columns denote different adversarial attacks. The second-
last row corresponds to training the detection network on clean
and adversarial videos generated by both the attacks.

\ Defense | Sparse | Dense | Sparse+Dense |
‘ Temporal+Spatial [9] ‘ - ‘ - ‘ 77% ‘
| AdVIT [35] | 97% | - | - \
| PAT (Adversarial data) | 93.4% | 99.8% | 99.8% |
| PAT | 97.6% | 941% |  942% |

We also evaluate PAT using Area under Receiver Oper-
ating Characteristic curve (AUC) for comparing with other
baselines. Table 2 shows the AUC results and the ROC
curve for PAT is displayed in Fig. 4. This curve indicates
that our approach has a high capability of differentiating be-
tween clean and adversarial videos. PAT achieves an AUC
of 94.2% on clean and adversarial (contains both sparse and
dense attacks) videos.

AUC=0.942

0.8 1
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Figure 4. ROC Curve under different thresholds for performance
of proposed method, PAT on clean and adversarial videos.

In Table 2, the first row determines the performance
of PAT when it is trained using the clean and adversarial
videos. It is not surprising that the performance on both
the attacks is high in this case as the network is aware of
the perturbations. PAT can achieve almost as good perfor-
mance (94.2% AUC which is just ~ 5% lower) as the first
case in Table 2, without actually knowing the real pertur-
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bations. Our method also outperforms [9] and [35] with an
improvement of approximately 17% and 0.6% respectively.

5. Ablation Study

In this section, we analyze the effect of the two ma-
jor components of the PAT - the transition frames and the
pseudo perturbations and present the run-time analysis of
PAT on the UCF-101 dataset.

5.1. Input Frames

F

(@) (b)

Figure 5. (a) An adversarial frame from a UCF-101 dataset video
(b) its corresponding transition frame.

Factors like color, texture and background add complex-
ity to a frame. The attackers take advantage of such com-
ponents to blend in the added perturbations. This is where
the transition frames play a major role in bringing the per-
turbations into the light. The transition frames, calculated
using Eq. 2, eliminate the passive components in a frame
and focus on the objects and their motion only. As a result,
the perturbations have no way to blend in and therefore are
clearly visible.

In Fig. 5 (a), the perturbations do not stand out while
being prominently visible in the transition frame (b). As in-
significant components (for our detection task) are removed
in transition frames, the perturbations are easily visible and
processed by the network. This also helps in keeping the
detection network architecture small, reducing the training
& inference time.

The 1% row of Table 3 shows the detection rate when
original frames are used to train the detection network in-
stead of the transition frames. The detection rate is almost
equal to a random guess for both attacks. This is because
the original frames have a lot of information irrelevant for
the detection task which acts as a perfect disguise for the
perturbations. On the contrary, the transition frame keeps
only relevant elements and has a higher adversarial frame
detection rate.

5.2. Pseudo Perturbations

In PAT, the pseudo adversarial transition frames are gen-
erated using the Eq. 3. The standard deviation o is drawn

from a uniform distribution and is different for every frame
for each training epoch. This is crucial so that PAT can learn
to handle adversarial input with different perturbations.

Table 3. Adversarial FDR showing the importance of key compo-
nents of PAT using UCF-101. Sparse and Dense are the two attack
baselines. *¢ varies between 0.0001-0.05.

Frame Type | o | Sparse | Dense
Original | Varying* | 52.31% | 51.12%

| |
| |
| Transition | 0.0001 | 63.98% | 49.6% |
| |
| |

Transition | 0.01 | 80.12% | 64.65%

Transition ‘ Varying* ‘ 83.62% ‘ 83.46%

With varying standard deviation, the network learns from
a different version of the same transition frame during every
epoch. We observed in some cases of fixed o, the network
overfits at some point of time. For example, for ¢ = 0.01,
the performance on the sparse attack is close to the best case
FDR but the performance on the dense attack is poor. Thus,
to achieve good performance on both the attacks, the transi-
tion frames and the varying standard deviation of Gaussian
noise are both essential.

5.3. Run-time Analysis

To showcase that PAT is computationally inexpensive,
we empirically measure the running time for our detection
process using Nvidia Titan XP GPU. We use a mix of both
clean and adversarial (sparse and dense attacks) videos to
determine the average detection time for PAT. Our approach
takes 0.01 seconds on average to determine whether a video
is adversarial, which is extremely low overhead to the exist-
ing action recognition systems.

5.4. Conclusion

We proposed a novel approach, PAT to detect the ad-
versarial frames in a video efficiently and keep the video-
based networks secure from different types of attacks. We
achieve good detection rate without having any access to
the attack or the perturbations, which is generally the case
in real-world applications. Our experiments on UCF-101
and Jester datasets demonstrate that the approach is highly
accurate in detecting the adversarial input produced by dif-
ferent attacks. We also show the detection of adversarial
video based on the PAT detected frames. Furthermore, we
demonstrated the importance of transition frames and the
varying Gaussian noise to generate pseudo perturbations in
achieving a good frame detection rate.
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