
Privacy Leakage of Adversarial Training Models in Federated Learning Systems

Jingyang Zhang, Yiran Chen, Hai Li
Department of Electrical and Computer Engineering, Duke University

jingyang.zhang@duke.edu

Abstract

Adversarial Training (AT) is crucial for obtaining deep
neural networks that are robust to adversarial attacks, yet
recent works found that it could also make models more
vulnerable to privacy attacks. In this work, we further re-
veal this unsettling property of AT by designing a novel pri-
vacy attack that is practically applicable to the privacy-
sensitive Federated Learning (FL) systems. Using our
method, the attacker can exploit AT models in the FL sys-
tem to accurately reconstruct users’ private training im-
ages even when the training batch size is large. Code
is available at https://github.com/zjysteven/
PrivayAttack_AT_FL.

1. Introduction

Deep Neural Networks (DNNs) suffer from the notorious
adversarial perturbations [17]: These imperceptible noises
could easily fool DNNs to yield wildly wrong and malicious
decisions (e.g., misclassification with high confidence). Ad-
versarial Training (AT) [9] has been one of the most effec-
tive techniques that mitigate such vulnerability, which with-
stands adaptive attacks [18] and leads to the highest empir-
ical adversarial robustness to date [1]. It is without doubt
that AT is crucial for building robust intelligent systems.

Despite the desired robustness, recent works [12, 16] re-
vealed an unexpected and alarming property of AT: It can
make models more likely to leak the data privacy than the
ones that undergoes vanilla training (i.e., using the original
clean images instead of online-generated adversarial exam-
ples). Specifically, Song et al. [16] found that AT makes
it easier for membership inference attack [14] to succeed,
which aims to identify whether a certain sample was used
during the training. In another work [12], it is shown that
model inversion attack [4] is tractable on AT models, with
which the attacker can generate images that visually resem-
ble the actual training samples. In all, both papers indicated
that AT models exhibit a robustness-privacy trade-off.

In this work, we pursue this line of inquiry and further
demonstrate such trade-off by presenting a novel privacy
attack that exploits AT models. Our attack is practically ap-

Figure 1. An overview of the proposed privacy attack against FL
systems to “steal” the client’s training images. We formulate a
novel two-step procedure: 1) Feature restoration from gradients
(Sec. 4.2) and 2) Image reconstruction from features (Sec. 4.3).
Zoom in and also refer Fig. 5 to see image reconstruction quality.

plicable to Federated Learning (FL) systems [11]. The goal
is to compromise the privacy of FL clients by reconstruct-
ing their own training images (which may contain private
information) based on the weight gradients that are com-
municated between the clients and the central server.

Different from previous approaches that directly in-
vert gradients to reconstruct images [5, 19, 24], our attack
methodology forms a unique two-step procedure, where we
first restore the features (i.e., the outputs of the penultimate
layer) from the gradients, and then reconstruct the inputs
using the recovered features as supervision (see Fig. 1 for il-
lustration). The key insight behind our method is that while
the gradients of the samples within a batch are fused to-
gether and prohibit accurate reconstruction of each individ-
ual input, the features are less coupled and (once restored)
can provide more precise information for the reconstruction
than the batch-averaged gradients. Upon the general frame-
work, the proposed attack leverages AT models which en-
able the successful execution of both attack steps.

We conduct extensive experiments using high-resolution
images from ImageNet [2] to demonstrate how our privacy
attack can work with AT models to compromise the privacy
of FL clients. Specifically, we are able to accurately recon-
struct the clients’ training images at a large batch size (e.g.,
256), something that is not achieved by previous methods
with vanilla models [5, 19, 24]. The results suggest that AT
poses a risk to the expected-to-be-secure FL systems.
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2. Related Work

Privacy risks of AT models. As discussed earlier, a few
prior works [12,16] also identified that AT could make mod-
els more vulnerable to privacy attacks. In comparison, our
work focuses on a considerably more strict and challenging
criterion of privacy leakage: We consider exact reconstruc-
tion of the training images owned by the victims, a scenario
which we believe poses more severe risks than the attacks
that synthesize human-recognizable images [12] or infer the
membership of data samples [16]. Besides, we put our-
selves in the realistic, privacy-sensitive FL setting, to which
our attack is practically applicable.
Privacy attacks against FL systems. There has been a line
of research trying to expose the privacy vulnerability of the
FL systems. Zhu et al. [24] developed the seminal DLG at-
tack which reconstructs input images by matching the gra-
dients computed using the reconstructed ones and the real
ones. Geiping et al. [5] made improvements by using a bet-
ter matching loss function and optimizer. They achieved
near-perfect recovery quality when the gradients are com-
puted using a single image (i.e., the batch size is 1). More
recently, Yin et al. [19] further incorporated advanced im-
age priors as regularization to enhance the recover quality.

All these works, however, can only unveil clear visual
information under a small batch size (e.g., when the batch
includes only a single or a few images), while a large batch
size (e.g., 128 or 256) is often required for effective and
efficient training of DNNs [6, 8]. As a result, whether the
privacy can really be compromised in realistic settings (i.e.,
with large batch size) remains unclear. In this paper, we
show that the privacy of FL clients is indeed at risk if they
are performing AT, as the attacker can leverage our attack
and exploit AT models to achieve accurate reconstruction
of users’ images even at a batch size of 256.
Inverting features to reconstruct images. Inverting the
features has been studied as a way to understand/interpret
what DNN models learn [3, 10]. In particular, Engstrom
et al. [3] discovered that AT models are more “invertible”
than vanilla models, as the reconstructed images from AT
models’ features look much more plausible. However, their
focus is on the interpretability perspective. In our work, we
take the security perspective and demonstrate how the good
“invertibility” of AT models can unexpectedly/undesirably
enable a privacy attack.

3. Problem Setting

We first formulate the problem setting and define the
threat model before delving into our proposed attack. In
a FL system, in each step the client will receive a copy of
the global model from the central server and perform local
training. Here, following prior works [5, 19, 24], we focus
on the case of single-step local training. Concretely, con-

sidering an image classification task, the gradients of loss
w.r.t. the model parameters are computed as follows during
the local training:

∆θ :=
1

N

N∑
i=1

∇θL(fθ(xi), yi), (1)

where fθ(·) is the mapping function of the DNN model pa-
rameterized by θ, N is the batch size, xi is i-th input im-
age of the batch, yi is the corresponding groundtruth label,
L(·, ·) computes the cross-entropy loss, and ∆θ is a simpli-
fied notion for the batch-averaged gradients. Note, if the
client is performing AT, the input xi will be the adversarial
example instead of the original clean sample.

After the local training, the server will collect the gra-
dients ∆θ from the clients and aggregate the updates into
the current global model fθ(·). Here, we assume that the
server is malicious or has been compromised by the at-
tacker. Therefore, the attacker can access the model fθ(·)
and the gradients ∆θ, which are the two essential compo-
nents in FL systems. Similar to [5], we do not pose any
further assumptions beyond this point which may allow the
attacker to better exploit the vulnerability, e.g., we do not
assume that the attacker can modify the model architecture
or send fake, malicious global parameters to the clients. As
a result, our attack can hardly be detected as it does not in-
terfere with the normal process of FL. The attack goal is
then to reconstruct the input images xi that are used during
the last local training step, given the available information
fθ(·) and ∆θ.

4. Methodology
4.1. Overview

To better motivate and describe our proposed method-
ology, we first give a brief overview of existing methods
[5, 19, 24] and discuss their shortcomings. Essentially, pre-
vious works all solve the following optimization problem:

argmin
z

Lgrad

(
1

N

N∑
i=1

∇θL(fθ(zi), ŷi),∆θ

)
+R(z).

(2)
Specifically, the optimization variable here is a randomly-
initialized batch of inputs z. The first term in Eq. (2) en-
forces the gradients of loss computed using z to match the
ground-truth gradients ∆θ according to a certain distance
metric Lgrad(·, ·) (e.g., cosine distance is used in [5] and
ℓ2 distance is used in [24] and [19]). Note, an estimation
of the ground-truth labels ŷi is used here to compute the
loss [5, 19, 23]. The underlying idea of the first term is that
the synthesized images z will resemble the original inputs
if the gradients computed on them are similar. Meanwhile,
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to encourage the generation of realistic and natural images,
the second term in Eq. (2) incorporates image priors R(·)
as regularization (e.g., the Total Variation loss [10] and the
Group Consistency loss [19]).

While the idea of Eq. (2) is natural and straightfor-
ward, one can identify an obvious limitation. Note from
Eq. (1) that the gradients contributed by each individual
sample, i.e., ∇θL(fθ(xi), yi), are fused together in the
batch-averaged gradients ∆θ. Therefore, ∆θ does not pro-
vide precise supervision for each individual image espe-
cially under a large batch size, making it much difficult to
achieve accurate reconstruction (in a similar sense to how
exactly knowing the value of a and b is hard given the value
of a + b). As a result, Eq. (2) only works well when the
batch size is extremely small (e.g., when the batch has only
a single or a few samples). When the batch size is large, the
restored images lack clear visual details and do not resem-
ble the real images anymore [5, 19].

To mitigate this problem, we propose a unique two-step
attack procedure. In the first step, we decouple the fused
information of each individual image by restoring their fea-
tures from the gradients which are less coupled. Here, we
define the feature vector of a sample as the output of the
penultimate layer when that sample is passed through the
DNN model. Once we restore the feature vectors, each cor-
responding to one input image, we can use them as more
accurate supervision to reconstruct the images. Next, we
will explain each of the two steps in detail and discuss how
AT models kick in and benefit the attack.

4.2. Feature restoration from gradients

We first introduce some notions to facilitate the descrip-
tion. A DNN model f(·) deployed for image classification
tasks can always be decomposed as f(·) = h(r(·)), where
r(·) typically comprises convolutional layers and extracts
high-level representations/features of the inputs, and h(·)
is the linear layer that performs classification on top of the
features and outputs activation scores for each class (i.e.,
logits). For simplicity, we denote the feature of an input x
as r, i.e., r := r(x). Note that r ∈ RD is a D-dimensional
column vector.

Our key insight here is that the features can be restored
from the gradients w.r.t. the linear layer’s weights, which
are directly accessible to the attacker. To see this, let us first
delve into the computation of the weight gradients of h(·).
Denote the linear layer’s weight matrix as W ∈ RD×K ,
wherein the k-th column Wk ∈ RD is a weight vector cor-
responding to the k-th class, and K is the total number of
classes. Then, the class activations/logits are a = W⊤r,
and the class probabilities are p = softmax(a), where the
probability on k-th class pk is eak∑K

j=1 eaj
. Here, ak = W⊤

:,kr

is the k-th element of the vector a, with W:,k being the k-th
column of W . Finally, the cross-entropy loss computed on

an input pair (x, y) is l = − log py . Accordingly, one can
derive the gradients of loss w.r.t. each weight vector W:,k

in the linear layer:

∂l

∂W:,k
=

∂l

∂py
·

K∑
j=1

∂py

∂aj
· ∂aj

W:,k

=

{
−(1− py)r, k = y

pkr, k ̸= y
. (3)

Based on the derivation in Eq. (3), we now discuss how
one can restore the features from the batch-averaged gradi-
ents w.r.t. the linear layer’s weights. We consider a batch
of N inputs xi, each with a corresponding feature vector
ri. Note, following [5, 19], here we assume that there are
no samples sharing the same label within the batch. This
assumption generally holds for the randomly constructed
batch when the size N is (much) smaller than the number of
classes K (e.g., on ImageNet K = 1000 while N typically
takes 256 [6]). Then, suppose that we want to restore the
feature vector ri whose corresponding label is yi, we can
directly take the gradients w.r.t. the weight vector W:,yi :

r̂i := ∆W:,yi
=

1

N

N∑
j=1

∂lj
∂W:,yi

∝ −(1− pi,yi
)ri +

N∑
j=1,j ̸=i

pj,yi
rj

≈ −(1− pi,yi
)ri. (4)

Here, we denote the restored feature vector as r̂i. lj is the
loss computed on the j-th image, and pi,yi

represents the
probability of the i-th sample belonging to class yi.

Essentially, Eq. (4) indicates that the restored feature r̂i
is approximately proportional to the true feature ri. The

Figure 2. A toy example showcasing how the features can be re-
stored from the linear layer’s weight gradients on an AT model.
Here we suppose the batch size N = 2 and the number of classes
K = 5. Without loss of generality, assume r1 and r2 have label
1 and 2, respectively. The numbers in the brackets are the soft-
max probabilities. Adversarial examples result in small p1,1 and
p2,2. According to Eq. (4), ∆W:,1 ∝ −(1− 0.3)r1 +0.2r2. The
attacker can take ∆W:,1 as the restored feature r̂1.
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approximation in the last row of Eq. (4) holds because the
probabilities assigned to the wrong class pj,yi (recall that
yj ̸= yi when j ̸= i) are becoming smaller and smaller as
the training proceeds, therefore they may contribute much
less to the summation than −(1 − pi,yi

)ri, especially if
pi,yi is not too large. In fact, this is exactly the case for
an AT model. During each iteration, AT uses adversarial
examples as inputs, which are generated by maximizing the
cross-entropy loss. Equivalently, adversarial examples min-
imize the probability assigned to the ground-truth class, i.e.,
pi,yi

. As a result, AT models can lead to a more tight ap-
proximation of Eq. (4) and better restoration of the features.
We present a toy example of the feature restoration process
in Fig. 2. Note, although in the case of AT the attacker is
actually reconstructing the adversarial example, the privacy
can still be compromised because the adversarial image is
visually very similar to the clean image since their distance
is bounded by a small value.

We finally discuss how to recover the batch labels yi,
which is necessary for knowing which columns of the gra-
dient matrix of W should be taken for feature restora-
tion. Here we adopt the common practice of existing works
[5, 19, 23], which is to look at the sign of the gradient el-
ements of W . For the ease of illustration, without loss of
generality, assume that the batch of N samples are with the
labels 1, 2, ..., N , i.e., the k-th sample is from the k-th class.
Then according to Eq. (4), the gradients w.r.t. the k-th col-
umn of W are:

1

N

N∑
j=1

∂lj
∂W:,k

∝{
−(1− pk,k)rk +

∑N
j=1,j ̸=k pj,krj , 1 ≤ k ≤ N∑N

j=1 pj,krj , N < k ≤ K
.

(5)

Note that modern DNN architectures (e.g., ResNet [6] and
VGG [15]) typically use ReLU as the activation function,
which makes the elements of the feature vector r always
non-negative. With this in mind, the takeaway of Eq. (5) is
that in the gradient matrix of W , only the columns that cor-
respond to the appeared labels may have negative elements,
while the other columns will have all positive values. There-
fore, we can determine the batch labels by checking the sign
of the smallest value of each column. If the smallest value
of k-th column is positive, then k is very unlikely to be one
of the batch labels. In practice, one can pick the top-N
columns that have the smallest elements, and take their in-
dices as the batch labels.

4.3. Image reconstruction from features

Once we obtain the restored feature r̂i, the attacker can
reconstruct each input image by solving the following opti-

mization objective:

argmin
zi

Lfeat (rθ(zi), r̂i) +R(zi). (6)

The idea here is to optimize the input zi such that its fea-
ture rθ(zi) is close to the restored feature r̂i (which in turn
is similar to the ground-truth feature ri) according to a cer-
tain metric Lfeat(·, ·). Here we opt to use the scale-invariant
cosine distance as Lfeat since r̂i approximates ri by a factor
of −(1 − pi,yi) (Eq. (4)). Again, image prior R(·) is in-
corporated to improve the fidelity of the generated images.
In this work, we apply the Total Variation [10] as the reg-
ularization, while using more sophisticated/complex image
priors is likely to further enhance the reconstruction quality.

Inverting features to reconstruct input images is more
feasible on AT models than on vanilla models. This obser-
vation is first made in the work of [3], where it is found that
inverting the features of AT models can yield meaningful
images that share a great amount of semantic similarity with
the real inputs, while doing so on vanilla non-robust models
only lead to meaningless noisy patterns. Back then, the re-
searchers focused on the interpretability aspect of such phe-
nomenon without discussing its security implications. In
this work, we show how AT models’ good “invertibility”
can actually be exploited to conduct privacy attack.

5. Experiments
5.1. Setup

Dataset. We target the reconstruction of 224 × 224 high-
resolution images from ImageNet [2], which is more chal-
lenging than restoring low-resolution images (e.g., 32× 32
CIFAR images) [5].
Models. We consider various DNN architectures to
comprehensively demonstrate the effectiveness of our at-
tack and to evaluate how the architecture affects the at-
tack performance. Specifically, we consider VGG-16
(VGG16) [15], ResNet-18/50 (RN18/50) [6], WideResNet-
50x4 (WRN50x4) [20], and DenseNet-161 (DN161) [7].
Training. We evaluate both vanilla training (i.e., minimiz-
ing the loss on clean inputs) and AT (i.e., minimizing the
loss on adversarial examples) to demonstrate how AT makes
it more easier for the privacy attack to succeed. Specifi-
cally, in this work we consider Madry’s AT [9] with ℓ2 norm
bound, although our attack can work with other types of AT
(e.g., TRADES [21], or with ℓ∞ norm bound) as both attack
steps only rely on AT’s general properties. We also vary the
perturbation strength of the AT to see its effect on the at-
tack. We leverage the pre-trained models provided by [13]
to conduct all the experiments.
Attack process. We simulate an attack process by first cre-
ating a set of anchor images. Specifically, we randomly
sample 5 images from each of the 1,000 categories from
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Figure 3. Feature restoration quality (in terms of cosine similarity)
of the 5,000 anchor images on various AT and vanilla models and
under various batch size. The samples are sorted by the recover
quality in each plot. The closer the curve is to the upper left cor-
ner, the better feature restoration is achieved. Clearly, AT models
enable more accurate restoration of the features.

the validation set of ImageNet, resulting in a total of 5,000
anchors. Then, for each anchor, we construct 5 random
batches which include that anchor. Finally, we play as an
attacker who tries to reconstruct each anchor given the 5
groups of batch-averaged gradients corresponding to the 5
random batches. Note, here we focus on the best-case per-
formance out of the 5 batches, which equivalently exposes
the worst-case scenario for the victim/defender. We explic-
itly focus on the reconstruction of the anchor images be-
cause it allows easier analysis.

Evaluation metric. We measure the cosine similarity be-
tween the restored features and the ground-truth features to
evaluate the performance of our first attack step, i.e., the
quality of feature restoration. When evaluating the second
step, namely image reconstruction from features, we will
both use LPIPS [22] as the quantitative metric and quali-
tatively demonstrate the performance by visualizing the re-
constructed images.

Figure 4. Left: Feature restoration quality v.s. the perturbation
strength ε of AT. RN18 is used here. Right: Feature restoration
quality v.s. the model architecture. ε = 3.0 is used here.

5.2. Feature restoration from gradients

We first evaluate our first attack step, namely feature
restoration, for which the results are shown in Fig. 3. There
are several key observations made from the results.
AT models enable better restoration of the features.
Comparing the first and second column of Fig. 3, it is ob-
vious that the feature restoration is much more successful
on AT models than on vanilla models. For example, with
RN18 architecture and a batch size of 256, there are around
3,500 out of 5,000 samples whose features can be restored
nearly perfectly (i.e., with ∼ 1.0 cosine similarity) on the
AT model, while less than 1,000 samples’ features are re-
stored that well on the vanilla model. This observation
aligns with our analysis in Sec. 4.2.

In the left plot of Fig. 4, we also observe that the feature
restoration quality (averaged over 5,000 samples) becomes
better as the AT’s perturbation strength ε increases, which
further demonstrates that AT makes the model more vulner-
able to the feature restoration attack step.
Feature restoration works even under large batch size.
As discussed earlier, the motivation of the feature restora-
tion step is to decouple the fused information of each in-
dividual input from the batch-averaged gradients. Indeed,
we find this strategy effective even under a large batch size.
Specifically, under the batch size of 256, the attack applied
to an AT model can perfectly restore the features of at least
1,000 samples (with WRN50x4) and up to 4,000 samples
(with VGG16), out of the total 5,000 samples. Not surpris-
ingly, the restoration quality better when the batch size is
smaller.
Models with smaller capacity are more vulnerable. In
the right plot of Fig. 4, we visualize the feature restoration
quality (averaged over 5,000 anchor samples) w.r.t. the test
accuracy of various model architectures on the clean data.
The trend is that models with lower clean accuracy are more
vulnerable to the feature restoration attack step. We suspect
that this is because the models with a smaller learning ca-
pacity (in terms of the clean accuracy) do not resist adver-
sarial examples very well, and the probability pi,yi assigned
to the ground-truth class of the adversarial input would be
lower, resulting in a tighter approximation in Eq. (4).
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Figure 5. Visualization of reconstructed images on AT models
(first row in each pair) and ground-truth ones (second row). The
numbers are the LPIPS score (↓). AT models enable accurate re-
construction of various images.

Figure 6. Visualization of reconstructed images on vanilla models
(first row in each pair) and ground-truth ones (second row).

5.3. Image reconstruction from features

We next invert the restored features to recontruct input
images according to Eq. (6). Specifically, we use Adam op-
timizer with a learning rate of 0.1 and perform 5,000 steps
of optimization. The weight for the Total Variation loss R
is 1e−6. Image generation is often sensitive to the initial-
ization, and we find that using multiple random starts (and
picking the best result according to the loss) can improve
the image quality. Here we use 5 random starts.

We present the results obtained on AT models and vanilla
models in Fig. 5 and Fig. 6, respectively. The takeaway here
is twofold. First, AT models obviously enable much better
reconstruction than vanilla models. Many of the generated
images from AT models clearly unveil the object identity,
often with accurate restoration of the visual details (e.g., the
branches in the bird image obtained on WRN50x4). In com-
parison, vanilla models only yield absurd, hard-to-interpret
patterns which hardly reveal useful information about the
original images. Second, we find that the models with larger
learning capacity are more suitable for the feature inversion.
Recall that RN50, WRN50x4, and DN161 achieve higher
clean accuracy than RN18 and VGG16 according to Fig. 4.
In Fig. 5, the latter two models more often have distortions
or unnatural patterns in their reconstructed images than the
first three models. We suspect that this is because the large-
capacity models can learn more semantic-meaningful fea-
tures [3] during AT, which is essential for recovering the
semantics of the original input images.

Finally, we remark that with AT models, our attack
can better compromise the clients’ privacy than prior arts.
Specifically, our method achieves an averaged LPIPS score
of 0.4424 on RN50 under a batch size of 256, while the
current state-of-the-art method [19] obtained 0.4840 under
a batch size of 8 with the same model architecture. In ad-
dition, to our knowledge we are the first to report success
of reconstructing ImageNet samples under the batch size of
256 among the privacy attacks against FL systems.

6. Conclusion
We develop a novel privacy attack against Adversarial

Training models to break the privacy of Federated Learning
systems. Evaluation demonstrates that our attack can accu-
rately reconstruct the clients’ training images even when the
batch size is large (up to 256). Thus, the clients that perform
AT in the pursuit of robustness are in the same time putting
their privacy at risk. By further exposing such robustness-
privacy trade-off of AT models with a practical attack, we
hope to motivate future studies to address this issue and de-
velop some kind of privacy-aware AT.
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