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Abstract

When explaining a recognition approach that can be

used in facial analysis, e.g. face verification, face detection,

attribute recognition, etc., the task is to answer: how rele-

vant are the parts of a given image to establish the recog-

nition. In many cases, however, the trained models cannot

be manipulated and must be treated as “black-boxes”. In

this paper, we present a saliency map methodology, called

MinPlus, that can be used to explain any facial analysis

approach with no manipulation inside of the recognition

model, because it only needs the input-output function of

the black-box ‘fx’. The key idea of the method is based

on how the probability of recognition of the given image

changes when it is perturbed. Our method removes and

aggregates different parts of the image, and measures con-

tributions of these parts individually and in-collaboration

as well. We test and compare our method in four different

scenarios: face verification (with ArcFace), face expression

recognition (with Xception), face detection (with MTCNN)

and masked face detection (with YOLOv5s). We conclude

that MinPlus achieves saliency maps that are stable and

interpretable to humans. In addition, our method shows

promising results in comparison with other state-of-the-art

methods like AVG, LIME and RISE. This paper presents

good insights into any facial analysis approach. It can be

used to highlight the most relevant areas that an algorithm

takes into account to carry out the recognition process.

1. Introduction

Explainability can help us, humans, to interpret and vi-
sualize the models that are often considered as black-boxes.
Usually, these models are very effective, but it is not known
what they do internally, sacrificing interpretability for ac-
curacy [15, 22]. The explanation, generally represented
through a visualization of a saliency or attention map, can
be used to obtain a reliable tool that provides us with in-
formation on what a model has learned and what are the
possible failures of the model [28]. Thus, the explanation

Figure 1. Diagram of our method MinPlus. The key idea is to ana-
lyze how the score varies when add or remove a part of the original
image. The input-output function of the black-box is ‘fx’. In this
example, the saliency map corresponds to the most important parts
used by a face verification algorithm.

must be interpretable and accurate, in which the limits of
the model are known [21].

Explainable facial analysis arises from the need to have
an understanding of the facial analysis models. For explain-
able face recognition, the most relevant methods that have
been published are: a learnable module, xCos, that can be
added into the deep face verification model [14], an ex-
haustive analysis of VGGface [18] to understand the inner
work [33], a learned structured face representation that ac-
tivates relevant face parts based on a Siamese network [30],
a model trained on a controlled dataset to understand its be-
havior [29], and new evaluation protocols for explainable
face recognition based on triplets (probe, mate and non-
mate) and white-box saliency methods based on excitation
backprop among others [28]. Other approaches that analyze
the influence of perturbations in the output, can be used for
black-block explanation in face verification [16]. For ex-
planation of face attribute recognition, there are some few
works (e.g. in expression recognition [12]). All of these
methods, with the exception of [16], however, assume that
they can access to the layers of the deep learning architec-
ture used by the facial matcher. This is not always possible,
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especially in commercial software.
More in general, several saliency map approaches have

been proposed in the last years as explanations of deep
learning networks [3]. We distinguish the following ones:
a method that modifies the network with a feedback loop
to infer the activation status of hidden layers [5]; methods
based on the gradient of the class signal with respect to the
input image (Gradient-based attribution and Grad-CAM)
[1, 24–26, 34]; trained saliency models [7, 13]; a method
that prunes the neural network in order to keep those neu-
rons that contribute to the prediction [11]; methods based
on top-down and bottom-up information that estimates the
winning probability of each neuron of the model (Excita-
tion Backprop) [6, 31]. All of them, however, require the
intrinsic model structure to manipulate or observe the out-
puts of model layers. This is not always available, or often
needs specialized knowledge of how the network has been
designed. On the other hand, there are general methods that
do not require to manipulate the network architecture. In
this family of true black-box explanation approaches, we
find LIME [23] that uses a random selection of superpixels
and a linear decision model; RISE [19] and D-RISE [20]
that analyze the response of the model when the input is
sampled randomly with square patches; and methods based
on perturbed input images that maximally affect the out-
put [9, 10, 27]. These models have been tested mainly on
object detection problems.

In this paper, we present a general approach to explain
facial analysis algorithms using a true black-box method
without accessing the internal structure of the recognition
model. This method can be used in any facial analysis
algorithm: face verification, face recognition, face detec-
tion, face attribute recognition (e.g. expressions, gender,
age, etc.) and others like masked face detection.

Our method takes into account the importance of selec-
tive face areas (that has been already studied in the past,
e.g. [4]). In our approach, we only need a score function
‘fx’ of the black-box, as shown in Figure 1, that gives the
probability that an input image X is (or contains) some-

thing. Thus, the method can be applied to any method, not
only CNNs.

Our proposed general approach is based on the ideas
of the methodology that was originally developed in [16]
for face verification only, where six different saliency maps
have been proposed for explaining face verification: S�

0 ,
S+
0 , S�

1 , S+
1 , SEQ (a sequential combination of the first two

ones) and AVG (an average of the first four ones). The key
idea of the first four saliency maps is to analyze what hap-
pens with the face comparison score when removing (meth-
ods with minus ‘-’: S�

0 or S�
1 ) or aggregating (methods with

minus ‘+’: S+
0 or S+

1 ) relevant parts of the image. The index
‘0’ (methods S�

0 or S+
0 ) means the operation is performed

in a grid manner by evaluating the perturbation when only

a single part of the image is removed or aggregated. The
index ‘1’ (methods S�

1 or S+
1 ) means the operation is per-

formed iteratively by removing or aggregating the most rel-
evant part in each iteration until a maximal number of it-
eration is achieved or the delta in the comparison score is
low enough. The authors in [16] reported that the best per-
formance has been achieved by saliency map AVG, i.e. an
average of the first four saliency maps S�

0 , S+
0 , S�

1 , S+
1 .

Our proposed method, called MinPlus, is based on the
same idea of AVG [16] that takes into account the removal
and aggregation of relevant parts of the image to analyze the
perturbations, however, the main differences between Min-
Plus and AVG are: i) the way the first four saliency maps
are computed, ii) the way they are combined, and iii) fi-
nally, our method MinPlus can be used to explain any facial
analysis tasks (on the contrary, AVG was developed for face
verification only). Details are given in Section 2.

The main contributions of the paper are the following
three:
• A general agnostic methodology that can be used to ex-
plain any facial analysis algorithm based on the definition
of a function ‘fx’ for verification, attribute recognition or
detection.
• Explanations of facial analysis algorithms in four scenar-
ios: face verification, face attribute recognition, face detec-
tion and masked face detection.
• An objective metric to explain face detection methods
that compares the saliency maps with the detected bound-
ing boxes. Thus, subjective evaluation can be avoided.

2. Our Method: MinPlus

Now, we present our general method that can be used
to explain any recognition approach. The only function we
need from the recognition approach is the black-box func-
tion:

fx(X) = s (1)

i.e. a function that computes a score ‘s’ of input image X.
Details of how to define this function are given in subsec-
tion 2.1. Using the key idea of how fx(X) changes when
replacing X by X

0 (see Figure 1), our general approach an-
alyzes what happens when we remove or aggregate a region
of the image X. In following subsections (2.2 and 2.3), we
explain, the removal and the aggregation strategies, and how
we can combine them (subsection 2.4). We call this method
MinPlus for a combination of removing (Minus) and adding
(Plus).

2.1. Score function fx of the Black-Box

The score function can be understood as a probability
that X is (or has) something. For instance, ‘fx’ can be de-
fined as:
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• the probability that the face in image X is the same
that the face in another image, e.g. Y,

• the probability that the expression of the face in image
X is happy,

• the probability that a face is detected in image X,

• the probability that the face in image X wears a mask.

We distinguish three kind of score functions that can be
used in facial analysis:

1. Verification: In face verification, the aim is to vali-
date the identification of a probe face image X against a
gallery face image Y. Using an embedding function ‘fe’,
i.e. from ArcFace [8], a unit vector is computed for each
image as x = fe(X) and y = fe(Y) respectively. The
score function is computed as the dot product of the embed-
dings: hx,yi. Thus, the score function, known as compari-
son score1, is defined by:

fx(X) = hfe(X), fe(Y)i. (2)

In this case, the larger the score the higher the probability
that faces X and Y belongs to the same person.

2. Attribute recognition: In attribute recognition, a unit
vector x is extracted from a face image X using function
‘fa’. Each element of x = fa(X) gives the probability
that a specific attribute (of a family of attributes) is present.
A typical example is the expression recognition, where a
7-element vector is given for the seven universal expres-
sions (angry, disgust, scared, happy, sad, surprised, neutral).
Thus, the fourth element, x4, gives the probability that the
face in image X is “happy”. The score function must be
computed for a specific attribute k, e.g. k = 4 for happiness
in expression recognition. Another example can be gender
recognition. Thus, the score function is computed as:

fx(X) = fa(X, k). (3)

In this case, the larger the score the higher the probability
that attribute k is present in face X.

3. Detection: For facial analysis, the detection can be used
to detect faces in an image, to detect some kind of specific
faces (e.g. people that are wearing masks), to detect some
parts of the face (e.g. detection of the nose), etc. In detec-
tion, for a given input image X the output is a list ‘L’ of
detected objects, computed as L = fd(X). Each detected
object is defined by:

1We use the standard vocabulary given by ISO/IEC 2382-37:2017:
“comparison score: measurement of similarity between biometric probe
and biometric reference”. See https://www.iso.org/obp/ui/
iso:std:iso-iec:2382:-37:ed-2:v1:en:term:3.5.7

• ‘loc’– its localization (typically a bounding box)

• ‘class’ – its category (a number that identifies its
class),

• ‘sc’ – its score that corresponds to the probability that
the detected obtect belongs to the detected category.

For example, for the third detected object in the list L of
image X, the score of that object is L(3,‘sc’). To establish
the score function we need i) a specific category and ii) a
given location. That means, we can say that function score
‘fx’ corresponds to

fx(X) = L(k̂, ‘sc’) (4)

where L = fd(X), and k̂ is the number of the detected
object that matches with the given category and the given
location. If there is no match, fx(X) = 0. To establish
if the location coincides, we can use the intersection over
union criterium.

In this case, the larger the score the higher the probabil-
ity that image X contains the defined object in the given
location.

2.2. Removal Strategy

In this subsection, we explain the removal strategy that
analyzes the relevance of each region of an image by re-
moving it. We define the modified face image as:

X
0
ij = X � (1�G(�, i, j)), (5)

that is a modified image, called X
0
ij of the same size of X,

that is computed as a pixel-wise multiplication of image X

and a mask of the same size with values between 0 and 1,
where the elements of the mask corresponds to an inverted
Gaussian kernel of width � centered in (i, j). In this oper-
ation, we remove a circular region of X centered in (i, j).
Examples of these images are illustrated in Figure 1 (see
‘Removal Images’).

In this strategy, the removal is performed for a set of co-
ordinates {(i, j)} distributed in a grid manner across the im-
age by steps of d pixels. For each modified image, we define
a saliency map value:

H
�
0 (i, j) = fx(X)� fx(X

0
ij), (6)

that means, the difference between the original score and
the modified score. In this saliency map, the larger this dif-
ference the more relevant is the removed part. Algorithm 1
shows this approach.
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Algorithm 1 :
– Single Removal Saliency Map (H�

0 )

1: Input:

2: X : Input image of N ⇥M pixels
3: � : Width of Gaussian mask
4: d : Steps
5: fx : Score function
6: ————————————————————————
7: H

�
0  zeros(N,M) B initialization of saliency map

8: s0  fx(X) B initial score
9: for i = 0 : d : N do

10: for j = 0 : d : M do

11: X
0
ij  X � (1�G(�, i, j)) B removal

12: s
0  fx(X

0
ij)

13: H
�
0 (i, j) s0 � s

0

————————————————————————
14: Output:

15: H
�
0 B saliency map

Algorithm 2 :
– Accumulated Removal Saliency Map (H�

1 )

1: Input:

2: X : Input image of N ⇥M pixels
3: � : Width of Gaussian mask
4: d : Steps
5: ✓ : Minimal incremente allowed
6: tmax : Maximal number of iterations
7: fx : Score function
8: ————————————————————————
9: H

�
1  zeros(N,M) B initialization of saliency map

10: X0  X B initial image
11: s0  fx(X0) B initial score
12: t 0 B initialization of iteration counter
13: �s 1 B initialization of difference of scores
14: while �s > ✓ and t < tmax do

15: t  t+ 1
16: st  1
17: for i = 0 : d : N do

18: for j = 0 : d : M do

19: X
0
ij  Xt�1 � (1�G(�, i, j)) B removal

20: s
0  fx(X

0
ij)

21: if s
0
< st then

22: st  s
0

23: (i⇤, j⇤) (i, j)
24: Xt  X

0
ij

25: �s st�1 � st

26: H
�
1 (i⇤, j⇤) �s

————————————————————————
27: Output:

28: H
�
1 B saliency map

Algorithm 3 :
– Single Aggregation Saliency Map (H+

0 )

1: Input:

2: X : Input image of N ⇥M pixels
3: � : Width of Gaussian mask
4: d : Steps
5: fx : Score function
6: ————————————————————————
7: H

+
0  zeros(N,M) B initialization of saliency map

8: X0  zeros(N,M, 3) B initial image
9: s0  fx(X0) B initial score

10: for i = 0 : d : N do

11: for j = 0 : d : M do

12: X
0
ij  X0 � (X �G(�, i, j)) B aggregation

13: s
0  fx(X

0
ij)

14: H
+
0 (i, j) s

0 � s0

————————————————————————
15: Output:

16: H
+
0 B saliency map

Algorithm 4 :
– Accumulated Aggregation Saliency Map (H+

1 )

1: Input:

2: X : Input image of N ⇥M pixels
3: � : Width of Gaussian mask
4: d : Steps
5: ✓ : Minimal incremente allowed
6: tmax : Maximal number of iterations
7: fx : Score function
8: ————————————————————————
9: H

+
1  zeros(N,M) B initialization of saliency map

10: X0  zeros(N,M, 3) B initial image
11: s0  fx(X0) B initial score
12: t 0 B initialization of iteration counter
13: �s 1 B initialization of difference of scores
14: while �s > ✓ and t < tmax do

15: t  t+ 1
16: st  0
17: for i = 0 : d : N do

18: for j = 0 : d : M do

19: X
0
ij  Xt�1 � (X �G(�, i, j)) B aggregation

20: s
0  fx(X

0
ij)

21: if s
0
> st then

22: st  s
0

23: (i⇤, j⇤) (i, j)
24: Xt  X

0
ij

25: �s st � st�1

26: H
+
1 (i⇤, j⇤) �s

————————————————————————
27: Output:

28: H
+
1 B saliency map
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Now, we can define a new saliency map by computing
(6) iteratively as follows: In each iteration, the most rel-
evant part of image X is removed. Thus, image X is re-
placed by X

0
ij where (i, j) is (i⇤, j⇤), the coordinates that

maximize (6). In this approach, we start with X0 = X, and
after each iteration we obtain image Xt in which the most
relevant part of image Xt�1 is removed. The saliency map
is defined in the pixels (i⇤, j⇤) where the part is removed,
and the saliency map value is the difference of the new com-
parison score with the previous one.

H
�
1 (i⇤, j⇤) = fx(Xt)� fx(Xt�1), (7)

The iteration stops when a maximal number of iterations is
achieved or the difference of the scores is low enough. The
details of this approach are given in Algorithm 2.

2.3. Aggregation Strategy

Instead of removing parts, we can analyze now what hap-
pens when we add them. In this strategy, we define the mod-
ified face image by considering a circular region of X in
(i, j):

X
0
ij = X �G(�, i, j), (8)

That is, a pixel-wise multiplication of image X and a mask
of the same size with values between 0 and 1, where the
elements of the mask corresponds to a Gaussian kernel of
width � centered in (i, j). This operation corresponds to
aggregate a circular region of X to a black image. An ex-
ample is illustrated in Figure 1 (see ‘Aggregation Images’).
In this strategy, the aggregation is performed for a set of
coordinates {(i, j)} distributed in a grid manner across the
image by steps of d pixels. For each modified image, we
define a saliency map value:

H
+
0 (i, j) = fx(X

0
ij) (9)

That means, the larger this value the more relevant is the
aggregated part. The algorithm is shown in Algorithm 3.

Similar to previous section, we repeat this procedure sev-
eral times to aggregate in each iteration the most relevant
part of image X. In this iterative process, we start with
X0 = Z, a black image, and after each iteration we obtain
image Xt in which the most relevant part of image X is ag-
gregated to Xt�1. The saliency map is defined in the pixels
(i⇤, j⇤) where the part is aggregated, and the saliency map
value is the difference of the new comparison score with the
previous one:

H
+
1 (i⇤, j⇤) = fx(Xt)� fx(Xt�1), (10)

The iteration stops when a maximal number of iterations is
achieved or the difference of the scores is low enough. The
details of this approach are given in Algorithm 4.

2.4. Combining Removal and Aggregation

In Section 2.2, we compute two saliency maps: H�
0 that

gives information about the relevance of removing a sin-
gle region in the input image, and H

�
1 that gives informa-

tion about the relevance of removing regions in combina-
tions using an iterative approach. Similarly, In Section 2.3,
we compute two saliency maps: H+

0 that gives information
about the relevance of adding a single region in the input im-
age, and H

+
1 that gives information about the relevance of

adding regions in combinations using an iterative approach.
In our experiments, we observe that all four saliency maps
are important. A simple way to consider all of them, giving
them equal relevance, is to calculate the average of all of
them:

H̄ =
H

�
0 +H

�
1 +H

+
0 +H

+
1

4
. (11)

The saliency map H̄ has been sparsely computed, that
means, H̄ is given only in pixels {(i, j)} that belong to the
grid defined in steps of d pixels. For this reason, we smooth
the obtained saliency map using a convolutional Gaussian
kernel of width �. This operation can fill the elements of
matrix H̄ that were not considered in the grid evaluation.
Additionally, we scale the smoothed saliency map between
0 and 1 using the min-max normalization.

Then, the saliency map is computed by i) averaging the
individual saliency maps using (11), ii) smoothing using a
Gaussian mask as low pass filtering:

D = conv(H̄, G(�)), (12)

and iii) scaling between zero and one:

MinPlus =
D�Dmin

Dmax �Dmin
. (13)

This strategy preserves the original relevance of each
saliency map. It differs from the original one, called AVG,
proposed in [16], where the saliency map was computed (in
reverse) by i) smoothing and ii) scaling each one of the four
individual saliency maps and iii) averaging the four scaled
maps.

The normalization used by MinPlus gives each map the
same importance without weighting them, keeping the orig-
inal values. In the experiments, we will see this advantage
when comparing AVG with MinPlus.

3. Experimental Results

In this Section we present the results obtained in four
scenarios: face verification, facial expression recognition,
face detection and masked face detection. All of them use
the strategy based on the definition of the black-box func-
tion ‘fx’ explained in Section 2.1 for verification, attribute
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Original MinPlus AVG LIME RISEgauss RISE

Figure 2. Explainability for face verification using ArcFace. In
this case, the verification is performed for each original face image
(called X) against the first original face (called Y).

recognition or detection. The experiments have been imple-
mented in Python using Google Colab2.

As other state-of-the-art methods, we tested AVG for
face verification [16]; and LIME [23] (adaption of original
algorithm that shows the relevant parts of the face image),
LIME-map (saliency map of LIME), RISE [19] (adaption of
original algorithm using square masks), RISEgauss (adap-
tion of RISE algorithm with Gaussian masks)3 in all exper-
iments.

3.1. Face Verification

In these experiments, we show how are the saliency maps
in face verification using ArcFace [8] for different kind of
faces (with different expressions and occlusions). The re-
sults are shown in Figure 2. We can observe that MinPlus
achieves stable saliency maps focused on relevant parts of
the faces. It is worthwhile to mention that visually, MinPlus
shows better results than AVG, because the saliency maps
covers the relevant part of the face more homogeneously. In

2Code and images are available on https://domingomery.ing.
puc.cl/material/.

3We create LIME-map (random selection of superpixels with a saliency
map using RISE strategy) and RISEgauss (that replaces squares by Gaus-
sian masks) as simple modifications of the original algorithms.

Original MinPlus LIME RISEgauss RISE

Figure 3. Explainability for recognition of expressions using
Xception. The figure shows the performance on four expressions
(one per row): happiness, surprise, angry and neutral respectively.

Run-1 Run-2 Run-3 Run-4 Run-5

Figure 4. Five different runs of LIME, RISEgauss, RISE for the
explanation of the recognition of one expression (see original face
in the row that corresponds to ‘angry’ in Figure 3). Since the ran-
dom nature of these procedures, the result of each run is very dif-
ferent. In these experiments, each run is the average of 500 random
masks.

the next experiments, we decided not to include AVG be-
cause it was originally developed for face verification, and
because MinPlus achieves a better performance.

3.2. Recognition of Facial Expressions

In this experiments, we tested the face expression recog-
nition model based on Xception architecture [2] that is able
to recognize the seven universal face expressions: angry,
disgust, scared, happy, sad, surprised and neutral. For this
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Original MinPlus LIME RISEgauss RISE

Figure 5. Explainability for face detection using MTCNN.

task we selected some images of FER-2013 dataset4. The
results are shown in Figure 3. We present the saliency
maps for five expressions: happy, surprise, angry and neu-
tral. We observe the most important regions of the face
are that highlighted by each method. MinPlus offers stable
saliency maps because it is not random in nature like the
other ones as shown in Figure 4. We could avoid this ran-
dom problem by averaging the saliency maps of multiple
executions, however, that would substantially increase the
execution time of each algorithm. In our experiments, the
execution time of each of these methods is approximately 3
minutes. A satisfactory result would bring the run to more
than 30 minutes. On the other hand, MinPlus requires 4:30
minutes. In this comparison, the unstable response of LIME
and RISE is a disadvantage.

3.3. Face Detection

We evaluate the MTCNN5 approach for face detection
[32]. In the experiments, we tested the performance of the
saliency methods in several face images in different scenar-
ios, poses and expressions. The results are shown in Figure
5. We observe how compact is the result of MinPlus, where
the saliency map are focused on the faces only.

3.4. Masked Face Detection

With the COVID-19 pandemic, the performance in face
detection and face localization has decreased due to the use
of face masks [17]. We consider in this Section, how our
approach can be used to evaluate a face detection algorithm

4See https://www.kaggle.com/msambare/fer2013.
5See https://github.com/kpzhang93/MTCNN_face_

detection_alignment.

Original MinPlus LIME RISEgauss RISE

Figure 6. Explainability for detection of faces with masks using
YOLOv5s.

in faces with and without masks. We trained a YOLOv5s6

model, to detect three classes of faces: with no-mask, with
mask (correctly worn) and , with mask (incorrectly worn)7.
In this experiment, we evaluated the detection of the second
class defining ‘fx’ as a detection function (see Section 2.1).
Some results are shown in Figure 6.

In order to evaluate objectively the performance of the
saliency maps, we developed a new strategy (as shown in
the right figure in Figure 7). We compare the binary image
defined by the detected bounding box (blue rectangle) with
the binary image defined by thresholding the saliency map
(orange shape). Thus, for different thresholds we have dif-
ferent precision-recall values that can be computed from the
true positive, false positive and false negative pixels. The
area under the precision-recall curve (AP) is presented in
Table 1 for the twenty images of this class in the testing
subset. The higher the AP value the better the compactness
of the saliency map. This is achieved by our method Min-
Plus.

3.5. Discussion

MinPlus achieves saliency maps that are stable, very
focused and interpretable to humans. Our method shows
promising results in comparison with other state-of-the-art
methods because it is not random in nature like the others.
To illustrate the random effect in LIME and RISE, we run
the methods five times and show the variation of the results
in Figure 4. This phenomenon is not present in MinPlus,
because there is no random component. The experiments

6See https://github.com/ultralytics/yolov5.
7The dataset was exported via roboflow.ai. It includes 2033 im-

ages: 87.5% for training, 8.5% for validation and 4% for testing.
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Figure 7. Definition of false negative, false positive and true posi-
tive using YOLOv5s.

Table 1. AP in masked face detection using YOLOv5s

Image MinPlus LIME-map RISEgauss RISE

01 0.93 0.77 0.84 0.92
02 0.94 0.85 0.94 0.92
03 0.93 0.74 0.93 0.93
04 0.92 0.76 0.77 0.52
05 0.80 0.50 0.79 0.74
06 0.90 0.44 0.92 0.83
07 0.86 0.64 0.82 0.88
08 0.95 0.56 0.95 0.82
09 0.91 0.59 0.88 0.83
10 0.78 0.69 0.73 0.83
11 0.91 0.59 0.85 0.84
12 0.97 0.55 0.95 0.72
13 0.90 0.87 0.85 0.85
14 0.84 0.81 0.91 0.94
15 0.97 0.84 0.92 0.93
16 0.88 0.71 0.86 0.82
17 0.90 0.43 0.83 0.88
18 0.91 0.75 0.85 0.85
19 0.85 0.69 0.87 0.85
20 0.83 0.64 0.82 0.77

Mean 0.90 0.67 0.86 0.83

show that MinPlus can be used to evaluate any facial analy-
sis approach as a black-box with a known recognition func-
tion ‘fx’.

4. Conclusions

We presented MinPlus, a saliency map that can be used
to explain any facial analysis algorithm. In this method,
we only need the input-output function of the black-box
‘fx’. The key idea is based on how the probability of
recognition of a given image changes when it is perturbed.
MinPlus removes and aggregates different parts of the im-
age, and measure contributions of these parts individually
and in-collaboration as well. We tested and compared our
method in four different scenarios: face verification, expres-
sion recognition, face detection, and masked face recogni-
tion. The results show saliency maps focused on relevant
parts. This paper presents a qualitative explanation of any
facial analysis approach, in which it can be clearly appre-
ciated which are the most relevant areas that an algorithm
takes into account to carry out the recognition. We believe
that our approach can be used to evaluate commercial off-
the-shelf recognition systems as well. We conclude that
MinPlus achieves saliency maps that are stable and inter-
pretable to humans. In addition, our method shows promis-
ing results in comparison with other state-of-the-art meth-
ods like AVG, LIME and RISE. This paper presents good
insights into any facial analysis approach. It can be used
to highlight the most relevant areas that an algorithm takes
into account to carry out the recognition process.
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