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Abstract

In this study, we proposed a novel minutia patch embed-
ding network (MinNet) model for latent fingerprint recog-
nition task. Embedding vectors generated for a fixed-size
patch extracted around a minutia are used in the local sim-
ilarity assignment algorithm to produce a global similarity
match score. Unlike earlier minutia embedding models that
aim to discriminate between latent image and sensor im-
age minutia pair embeddings using (o distance between the
embedding vectors in the training process, MinNet model
Jjointly optimizes the spatial and angular distribution of
neighboring minutiae and ridge flows of the patches. Even
though the proposed model is trained using weakly labeled
training data, it produces state-of-the-art results thanks to
it ability to generate discriminative embeddings. Proposed
method has been evaluated on several public and private
datasets and compared to popular latent fingerprint recog-
nition methods presented in earlier studies. Our proposed
method significantly outperforms existing methods on all
three databases utilized in our study.

1. Introduction

Biometric security systems are used in the identifica-
tion or verification of an individual using his/her biological,
morphological or behavioral characteristics [4,9,23]. While
biological biometrics uses the genetic and molecular char-
acteristics of individuals (e.g. DNA), morphological biom-
etry is related to the person’s physical characteristics such
as fingerprint, palm print, iris and face, to name a few. Be-
havioral biometrics systems, on the other hand, utilize be-
havioral characteristics (person’s gait, voice etc.) specific to
each person. For the past several decades, fingerprint recog-
nition systems have been the most widely adopted biomet-
rics in the world due to the ease of data acquisition process
and the cost effectiveness of the overall system. Some of
the popular application domains of the fingerprint recogni-
tion systems include law enforcement & forensic agencies,

border control, social security, and national ID programs.

Fingerprint recognition task can be described as the re-
trieval of mate of a query fingerprint within a database of
reference prints. Fingerprint images can be broadly clas-
sified into 3 categories; rolled, slap/plain and latent [4, 9].
While rolled fingerprints are typically larger in size and
contain larger number of minutia, plain fingerprints are of-
ten less distorted and have clear ridges. Since rolled and
slap images are in general collected using digital fingerprint
scanners under the supervision of an enforcement officer,
they usually have high image quality. However, latent fin-
gerprint scans are collected from the crime scene through
a variety of means; from photographing the scene to more
complex dusting and chemical processing [9]. Therefore,
latent images generally have low image quality and con-
tain unclear ridge structure, deformations and artifacts that
would render the overall fingerprint recognition task more
difficult.

Many early research on fingerprint recognition subject
treated fingerprint matching as a 2D minutiae point cloud
matching task aimed at resolving a global alignment prob-
lem leading to an optimal minutia pairings [19,21]. How-
ever, these global matching methods were computation-
ally expensive and lacked robustness against distortions and
missing minutiae. To remedy these problems, local descrip-
tor based fingerprint matching methods were developed uti-
lizing only spatial coordinates and angle information as-
sociated with each minutiae in their analysis [3,4, 16]. In
these approaches, local descriptors extracted within a fixed
neighborhood of minutiae are used to measure similarity
of images corresponding to rolled and slap fingerprint im-
pressions. Even though, these methods were efficient and
worked well for datasets containing sensor images, their
performance was considerably lower for latent fingerprint
images. Several studies have proposed methods to improve
local descriptor based method’s performance in latent fin-
gerprint recognition using features beyond minutiae such as
ridge counts, orientation maps [18,27]. More recently, [17]
proposed a deformation tolerant extension of local descrip-
tor algorithms that can handle non-linear distortion present
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Figure 1. This figure illustrates an overview of the proposed minutia patch embedding network (MinNet) model for a single patch (shown
on the left) extracted around a minutiae (shown in red dot). MobileNet v3 large based backbone model extracts features that are used to
generate embedding vectors that would also preserve spatial and angular distributions of neighboring minutiae (compressed minutiae map
is shown in the right side of the figure). While the Minutia Segmentation branch aims to reconstruct neighboring minutiae’s positional and
angular information as described in section 2.1, Descriptor Generation branch creates a patch embedding vector to represent ridge flow

information of the patch.

in latent images. This algorithm performs clustering of
matching minutiae in an iterative process, in which algo-
rithm finds multiple overlapping clusters of matching minu-
tiae and the best clusters are merged to deal with the non-
linear distortion of the fingerprints.

For the past several years, we have seen a surge in the
automatic latent fingerprint recognition research using deep
learning techniques [1,2,7,24]. Many methods have been
proposed towards subtasks of latent fingerprint recognition
such as latent image minutia extraction, latent image qual-
ity assessment, orientation field estimation and minutia de-
scriptor generation tasks using various convolutional neural
network (CNN) based architectures [7,24]. For instance,
in a recent study [26], authors utilized deep learning tech-
niques for joint estimation of pose and singular points in
fingerprints. Another study [7] considers latent image qual-
ity assessment task using deep learning techniques. [1] uti-
lized CNNss to calculate ridge flow, extract minutia descrip-
tors and minutiae templates of sensor and latent images,
and used these descriptors and templates to produce match
scores. In another study, [2] proposed and end-to-end la-
tent fingerprint recognition system, which performs auto-
matic segmentation of latent print region, pre-processing,
features extraction and matching operations, sequentially.
Tang et al. [24] proposed a unified framework named Fin-
gerNet for minutiae extraction task along with orientation
field estimation, latent print segmentation, and latent print
enhancement. These earlier works show the great potential
of utilizing deep neural networks in the latent fingerprint
recognition task.

This paper presents a novel method for latent fingerprint
recognition task using a deep learning based local descrip-

tor generation model, MinNet. Unlike earlier approaches
presented in [1, 2], proposed local descriptor model learn
to represent local ridge flow and spatial/angular minutiae
distribution around a fixed neighborhood of a minutiae si-
multaneously through a novel cost function. Earlier local
descriptor generator methods were designed to discriminate
between fixed-size image patches extracted around minu-
tiae using an /5 difference between latent and sensor embed-
dings for these patches.Proposed method has been evaluated
on several datasets and compared to earlier latent fingerprint
recognition works presented in recent years [2, 3, 17].
The contributions of the paper are as follows:

* Proposed a novel local descriptor generation model
that not only captures the local ridge flow information
around each minutiae but it also captures the spatial
and angular distribution of neighboring minutiae.

* Proposed model is able to work very well for both
latent fingerprint and sensor fingerprint recognition
tasks, and it produces state-of-the-art results on both
sensor-to-sensor and latent-to-sensor image matches as
shown in our experiments.

* Weakly supervised minutiae pairings from different
impressions of the same finger are utilized to train a
model without any labor intensive minutiae labeling
process.

¢ Two novel latent datasets are created to evaluate the
proposed methods’ latent fingerprint recognition per-
formance.

We also want to emphasize that the proposed MinNet lo-
cal descriptor generator model is trained using only rolled

1628



Figure 2. a) Latent Fingerprint with overlaid minutiae in red, b)
Slap Fingerprint with overlaid minutiae in red, c-d) Enhancement
Maps with a single minutia in red, d-e) Local minutia patch with
and without rotation, g-h) Minutia segmentation maps.

and slap fingerprint images and tested on latent fingerprint
recognition task.

This paper is organized as follows. In section 2, we
explain the details of the proposed method. To evaluate
the effectiveness of the proposed technique on real-world
datasets, we conduct experimental analysis in section 3. Fi-
nally, section 4 presents the conclusions of this study.

2. Methods
2.1. Descriptor Generation

Local Patches: Local ridge flows, spatial and angular
distributions of neighboring minutiae provide the distinctive
information for a fixed size patch extracted around a minutia
of interest. In order to match minutiae in latent and sensor
fingerprints, encoding the information around the minutia
to descriptors is essential. We generate the minutia descrip-
tor with our network MinNet from a local patch cropped
around of the minutia as shown in Fig. 2e and 2f. However,
before cropping the patch, we enhance fingerprint image to
eliminate noise and to enhance local ridge flow. After the
enhancement operation, we segment fingerprint region from
the image to remove the unnecessary background. To this
end, we extract segmentation masks, enhancement maps
and minutiae using FingerNet [25] algorithm that is trained
for latent fingerprint minutiae extraction task. This allows
us to bring latent fingerprints and sensor fingerprints into
the same domain as illustrated in Fig. 2c and 2d. Last step
of minutia patch generation is rotating the patch with minu-
tia angle (counterclockwise) so that the minutia angle aligns
with horizontal +x axis, which is needed to make descrip-
tors rotation invariant.

Label Generation: We train the proposed MinNet

model using a private dataset composed of matching rolled
and slap fingerprint images. During the training stage,
matching minutia pairs from rolled and slap fingerprints of
the same finger are used to extract patches around the minu-
tiae. Since the annotation of matching minutia pairs is a
labor intensive task, we generated minutia pairs using our
own implementation of minutia cylinder coding (MCC) al-
gorithm [3]. In order to eliminate noisy ground truth pairs,
we utilized only images pairs with high global matching
score (note that this is MCC matching score) and selected
top 8 minutia pairs that have the highest local similarity
scores in the MCC algorithm.

Descriptor Generator: In the training stage, proposed
MinNet model aims to generate similar embedding vec-
tors for the patches of the same minutia from different fin-
gerprint impressions while increasing the dissimilarity of
embedding vectors corresponding to non-matching minutia
patches. To achieve this objective, we utilized additive an-
gular margin loss (AAM) [5] in our model training process
as discussed in the next paragraphs.
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Additive angular margin loss is built upon cross entropy
loss and softmax operations as shown in Eq. 1. This loss
function requires a linear layer at the end of the backbone
as shown in the lower branch of Fig. 1. That linear layer
contains weight vectors W; for each class. In training stage,
degree between a class vector x; and class weight W; de-
creases, while the degree between different class vector x;
and class weight IV} increases to a margin m at least. Since
the linear layer is not used after training, it is removed from
the model. We set the margin m parameter of the additive
margin loss of Eq. 1 as 28.6 degree, and scale parameter s
is chosen as 16 in the training stage.

Minutia Map: Relative positions and angles of neigh-
bouring minutiae with respect to a minutia of interest pro-
vides discriminative information for matching local minu-
tia patches. Since, this knowledge provides better matching
performance, we encode positions and angles of the minu-
tiae within the local patches. Instead of passing apriori
derived minutiae neighbourhood information directly into
the model, our model learns to reconstruct the neighboring
minutiae from the generated descriptor. In this way, Min-
Net model gains the ability to encode neighbour minutiae’s
positional and angular information explicitly.

Reconstruction of neighboring minutiae for a patch is
performed with Minutia Segmentation branch as illustrated
in 1. Segmentation branch of MinNet generates segmenta-
tion map by using the feature map produced by the back-
bone. Descriptor generation branch performs global aver-
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age pooling operation over the same feature map to obtain
minutia descriptor as in Fig. 1. Since any weight parame-
ter is not used in the pooling operation, the descriptor also
contains positional and angular information of neighboring
minutiae that is required by minutia segmentation branch.

In the training stage, we utilize a multi-channel minu-
tia segmentation maps M ™*"%6 ag target of minutia seg-
mentation branch. These minutia segmentation maps en-
code positional and angular information of the minutiae as
in [6]. Each minutia is represented with Gaussian distribu-
tion with variance o2 around the minutia center (z,y). In
order to take account angle of the minutia, the distribution
is weighted as in Eq. 3.

2km
Ww,y,k = |9 - T (2)

(z =)+ (y — 5)°
o2

Mzyk) (5.5 = exp (= )xWa g (3)

Equation 3 yields a minutia map value at position (%, j)
of k' channel for the minutia at (z,y) with 6 degree. o
value is chosen 5 as in [6].

Final Loss: Mean squared error (MSE) is used as the
loss function for Minutia Segmentation map while AAM
loss is used for Descriptor Generation branch of the pro-
posed MinNet model. Therefore, when combining Minu-
tia Segmentation and Descriptor Generation branches, we
used a weighted combination of AAM loss and MSE loss as
shown in Eq. 4 to train the model. We control the contribu-
tion of the losses with A; and A, values. In our experiments,
we set A1 and A value to 1 and 64, respectively.

L=MLs+ XLysk “4)

Data Augmentation: To further increase matching per-
formance of model descriptors, we increase intra-class vari-
ance of training minutia patch pairs by using augmenta-
tion techniques. The augmentations are applied randomly
with %25 probability while the rest of the enhanced minu-
tia patches are not augmented with any augmentation tech-
nique. Applied augmentations are: (i) rotation: After ro-
tating the enhanced minutia patches with angle of the minu-
tiae, we rotate the patches with randomly selected degree
within [-10, 10] range. (ii) scaling: We scale the patch with
randomly selected ratio from (0.8, 0.9, 1.1, 1.2) ratio val-
ues. We apply the augmentation before cropping the patch
from the enhanced fingerprint to avoid information loss in
edges of the patches. We apply same augmentations to the
segmentation maps of the augmented patches.

Implementation Details: We utilized MobileNet v3
[10] large version as backbone in our proposed MinNet
model. Rotated and cropped local patches are normalized
with instance normalization before passing to the network.

We used Adam [11] optimizer with batch size of 512. We
trained the model for 200 epochs using a learning rate of
le-3.

2.2. Matching Algorithm

Once the embedding vectors are generated for each
minutia of latent and sensor fingerprints, we measure the
local similarity between latent minutia embedding (v;) and
sensor minutia embedding (v;) using cosine similarity mea-
sure shown in Eq. 5.

T .
vy U5

®)

2
0] = o g

Therefore, for a given sensor and latent minutia em-
bedding templates A = {aj,a2,...,ap} and B =
{b1,ba,...,bn}, respectively;

e s(a,b) denote the local similarity between minutia
a€ Aandb € B, with s(-) : Ax B— [-1,1],

e € [0,1]*4*"5 denote the similarity matrix corre-
sponding to embedding templates A and B containing the
local similarity between minutia embeddings with I'[r, ¢] =
s(ar, be).

When comparing two minutiae embedding templates
(corresponding to latent image and sensor image), a global
score value denoting the overall similarity needs to be ob-
tained from these local similarities. In this study, we uti-
lized local similarity assignment (LSA) algorithm to gener-
ate global similarity score value. Hungarian algorithm [12]
is used to solve the linear assignment problem on matrix I"
to find the set of np pairs P = (r;,¢;) that would max-
imize global score without considering the same minutiae
more than once. Global score, also known as match score,
is computed as in Eq. 6. In our experiments, we set np
parameter equal to min(12, min(N, M)), where N and M
corresponds to template size of A and B, respectively. Note
that in our matching algorithm we intentionally not added
a global relationship checking approach for paired minutiae
such as Local Similarity Sort with Relaxation (LSS-R) pre-
sented in [3]. Due to distortions present in latent images,
compatability among minutiae relationships tends to low,
hence, degrades the performance of the local similarity ob-
tained using minutiae embedding vectors.

(A, B) = e

(6)

3. Experiments

In this section, we first describe the datasets used in the
training and test stages of the proposed algorithm. Next,
we report the performance results of the proposed method
on test datasets and compare it with the performance of the
existing methods on these datasets.
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3.1. Datasets

In this study, several public and private fingerprint
databases are utilized in the training and test stages of the
proposed method. Since NIST SD27 [8] latent test set is not
accessible, we utilized 2 new test databases that are gener-
ated by applying a CycleGAN based latent emulation model
on selected images from 2 public datasets (FVC 2000-2004
Dataset [13—15] and Tsinghua Distorted Fingerprint Dataset
[22]) in addition to a large private database (EGM Test
Dataset) consisting of 5560 latent and rolled image pairs.
While these new databases are significantly smaller in size
compared to EGM Test dataset, they are comparable in size
to popular databases such as NIST SD27 [8] and IIIT-D La-
tent Fingerprint dataset [20]. Table 1 presents an overview
of the datasets used in this study and in earlier studies.
These emulated datasets will be made publicly available in
the link'.

No. of Latents Type
NIST SD27 [8] 258 Latent-Rolled
IIIT-D Latent [20] 1046 Latent-Slap
EGM Test Dataset 5560 Latent-Rolled
FVC Latent 316 Latent-Slap
Tsinghua Latent 168 Latent-Latent

Table 1. An overview of the datasets used in this study and other
private datasets used in the literature. Note that all the datasets
listed above has 1-to-1 pairing images.

Figure 3. Pairs of rolled (left) and latent (right) images from EGM
dataset; (a)-(b) and (c)-(d)

Training Dataset (Private): This is a private dataset
obtained from General Directorate of Citizenship Affairs
(NVI) in Ankara, Turkey. Dataset consists of 10-print im-
ages belonging to 4716 individuals, and contains 34814 dis-
tinct rolled and slap fingerprint images of the same finger
collected with digital optical scanners. We want to empha-
size that proposed methods’ training process utilized only
images from this sensor dataset, hence, no latent fingerprint

'https://github.com/FingerGeneration/Generated_
Latent_Fingerprint_Dataset

is used in the training stage of the MinNet model. As men-
tioned in section 2, a custom implementation of MCC al-
gorithm is used to determine the matching minutiae pairs
(with only 8 minutia pairs with high local similarity scores
in MCC) for rolled and slap impressions.

EGM Test Dataset (Private): This is a private dataset
obtained from General Directorate of Police (EGM) in
Ankara, Turkey. Dataset consists of 5560 latent fingerprint
images along with their corresponding rolled image for the
same finger. These rolled images are collected using inkpad
and optical scanners. Fig. 3 presents sample latent-rolled
image pairs from this dataset.

FVC-Latent Test Dataset (Public): FVC is a multi-
dataset collected using various sensor technologies such as
optical, thermal and capacitive [13—-15]. These datasets
have been provided for benchmarking purposes in algo-
rithm performance evaluation. To extend these datasets for
the latent fingerprint recognition study, we generate latent
like images of some images of these public datasets using
a deep learning based general adversarial network model.
To this end, we trained a CycleGAN [28] model and ap-
plied random distortion, random rotation and selection op-
erations, sequentially, on the sensor image to emulate latent
images.

CycleGAN is generally used for transferring character-
istics from one image to another without paired examples
of transformation in between source and target domain.
We trained CycleGAN on our private dataset (consisting
of 2200 latent images that are not included in EGM Test
dataset) to transfer characteristics of latent fingerprints such
as noise and deformation to slap and roll fingerprints. In
order to generate a latent dataset, firstly, the images in the
FVC dataset are given to input of the CycleGAN and the fin-
gerprint image is synthesized with the latent characteristics
extracted from the output of the CycleGAN. After trans-
ferring image characteristic from latent to slap fingerprint
images, random rotation and distortion are applied to the
image to change minutiae spatial position between gener-
ated latent fingerprint and slap fingerprint images. Finger-
prints were selected based on the difference in the number
of minutiae between the original slap fingerprint and the
generated latent fingerprint. After the minutiae based se-
lection, the one-to-one dataset is randomly selected with re-
spect to different impressions from the FVC dataset. Fig. 4
presents several samples from this emulated dataset. We
have utilized databases from 2000 to 2004 to generate a
FVC-Latent test dataset comprising of 316 images.

Tsinghua-Latent Test Dataset (Public): This dataset
is an extension of the Tsinghua Distorted Fingerprint
Database images provided in [22]. Similar to the FVC-
Latent test dataset, we applied CycleGAN model on the
original and distorted images to generate corresponding
synthetic latent images. Original dataset provides 320 pairs
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(b)

Figure 4. FVC Latent Test Dataset Examples a-c) Slap Fingerprint
b-d) Fake Latent Fingerprint

of normal fingerprints and distorted fingerprints from 185
different fingers, but we discovered that there are only 168
unique fingers in this database. Therefore, our generated
database consists of one to one latent image pairs for 168
unique fingers. Fig. 5 presents several samples from this
emulated dataset.

(b) ()

Figure 5. Pairs of latent images from generated Tsinghua latent
dataset; (a)-(b) and (c)-(d)

3.2. Results

This section reports the performance of the proposed al-
gorithm for 3 test datasets discussed in section 3.1. When
comparing the proposed approach with existing methods
presented in [2] and [17], we utilized either the executable
or SDK provided by the authors. Since the windows exe-
cutable of the deformable minutia clustering (DMC) algo-
rithm provided by [17] took approximately 0.55 second to
finish one latent-to-sensor image comparison, we ran DMC
only for 100 random sensor images (inclusive of corre-
sponding sensor image) per each latent image in EGM test
dataset. Therefore, DMC algorithm results are expected to
be lower than our reported results for EGM test dataset. For
the other test sets, we ran DMC on the whole set. In terms
of the MCC algorithm [3], we utilized our in-house devel-
oped MCC variant that has some modifications to the origi-
nal MCC algorithm, which also performs better than author
provided SDK on these datasets. In our experiments, we
utilized minutiae extracted using FingerNet [25] algorithm
when evaluating the performance of MCC [3], DMC [17]
and the proposed method.

EGM Test Dataset
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Figure 6. Cumulative Match Characteristic (CMC) curves for
EGM Test dataset of methods listed in Table 2.

3.2.1 EGM Test Dataset Results:

For this dataset, we generated a match score for each la-
tent image by comparing it to 5560 sensor images in our
database. Table 2 presents a comparison of rank-1, rank-5
and rank-10 accuracy values of our proposed method along
with methods of [2], [17] and [3]. Rank-1 performance of
the proposed method is considerably higher than that of the
existing methods. Table also shows the result of MinNet
model without the Minutiae Segmentation Maps (MinNet
w/o Seg.), which has a rank-1 value lower than the original
MinNet model. This shows the positive impact of encoding
positional and angular local minutiae information when cre-
ating the patch embedding vector. Fig. 6 shows the cumu-
lative match characteristic curve (CMC) for methods listed
in Table 2.

EGM Test Dataset
Methods Rank-1 | Rank-5 | Rank-10
DMC [17] 4443 | 5935 | 66.11
MCC [3] 80.59 | 8498 | 86.66
2] 8588 | 8891 | 89.92
MinNet w/o Seg. | 89.87 | 9239 | 93.15
MinNet w Seg. | 9239 | 9471 | 9530

Table 2. Rank-1, rank-5 and rank-10 identification accuracy val-
ues for EGM Test Dataset using the proposed method and earlier
methods in the literature.
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3.2.2 FVC-Latent Test Dataset Results:

A match score is generated for each latent image in the
FVC-Latent Test dataset by comparing it to 316 sensor im-
ages within the database. Table 3 presents a comparison of
rank-1, rank-5 and rank-10 accuracy values of our proposed
method along with methods of [2], [17] and [3]. Fig. 7.(a)
illustrates top 15 minutia matches corresponding to latent
and sensor image. Fig. 7.(b) shows the similarity rankings
for several query patches of latent image. Green color and
blue color indicates that patch is a genuine matching and
impostor matching patch of the sensor image, respectively.
As shown in the figure, genuine matching patches achieve
the highest similarity scores. Fig. 8 shows the cumulative
match characteristic curve (CMC) for methods listed in Ta-
ble 3.

FVC Latent
Methods Rank-1 | Rank-5 | Rank-10
DMC [17] 20.90 31.33 38.92
MCC [3] 72.23 80.13 83.28
[2] 65.61 74.44 7791
MinNet w/o Seg. 93.98 96.83 97.15
MinNet w Seg. 95.57 97.15 97.47

Table 3. Rank-1, rank-5 and rank-10 identification accuracy val-
ues for FVC-Latent Test Dataset using the proposed method and
earlier methods in the literature.

Proposed methods outperforms earlier proposed meth-
ods by a large margin. This is due to the ability of the
proposed method to generate discriminative embeddings
of patches around each minutia. We noticed a signifi-
cant performance drop in the method of [2] due to auto-
encoders (AEC) poor performance on minutia extraction.
Even though FingerNet algorithm was able to extract minu-
tias for this dataset without any problems, AEC performed
poorly in minutia extraction for some images.

FVC Latent
Embedding
Size Rank-1 Rank-5 | Rank-10
32d 87.34 90.51 92.09
64d 91.72 93.67 95.24
128d 94.30 96.20 96.20
256d 95.57 97.15 97.47

Table 4. MinNet algorithm performance on FVC-Latent dataset
for various embedding sizes.

In order to analyze the effect of embbedding size on
the overall recognition performance, we added linear layer
at the end of the pre-trained MinNet to decrease embed-
ding size. Freezing pre-trained MinNet prevents decreasing
contribution of neighboring minutiae information over the
minutia descriptor. For this reason, we froze pre-trained
MinNet model while training the initialized linear layer
with new weights. Table 4 presents rank-1, rank-5 and rank-
10 accuracy results over FVC Latent dataset. Fig. 9 shows
the cumulative match characteristic curve (CMC) for meth-
ods listed in Table 4. As evident from these results, reducing
the embedding size from original value of 256 negatively
impacts the overall recognition accuracy.

3.2.3 Tsinghua Latent Dataset Results:

Similar to the earlier results, we evaluated the performance
of the proposed method using the emulated latent images for
Tsinghua Distorted fingerprint database. Table 5 presents
the latent fingerprint identification accuracy for various al-
gorithms. While the overall performance of the algorithms
are higher on this dataset than the performances on earlier
datasets, proposed algorithm achieves superior results com-
pared to the others. Due to the poor minutia extraction of
AEC in [2], we have not reported performance results for
the method of [2] on this dataset.

Tsinghua Latent

Methods Rank-1 Rank-5 Rank-10

DMC [17] 85.71 92.86 96.43

MCC [3] 94.64 95.60 97.02

MinNet 99.40 99.98 99.99

Table 5. Rank-1, rank-5 and rank-10 identification accuracy values
for Tsinghua Latent Test Dataset using the proposed method and
earlier methods in the literature.

3.2.4 FVC 2004 Sensor Dataset Results:

FvC 2004 DB1 A

MinNet(Ours)  DeepPrint [6]  Verifinger  Innovatrics

98.46 % 97.53%* 96.75%* 96.57%*

Table 6. TAR@FAR of 0.1% values for FVC 2004 DB1 A Dataset
using the proposed method and earlier methods in the literature. *
Results are taken from [6].

In order to compare performance of MinNet in sensor
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(a)

Figure 7. (a) Top 15 minutia matches of FVC 2002 Db1 104 1.fingerprint and 7.fingerprint. (b) In order to show best minutia matches we
collected minutia descriptors in gallery. Green color indicates the matched minutia is from ground truth peer fingerprint.
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Figure 8. Cumulative Match Characteristic (CMC) curves for FVC
Latent Test dataset of methods listed in Table 3.

fingerprint recognition task, we generated a match score for
each sensor image by comparing it to images in FVC2004
DBI1-A dataset similar to [6], resulting in 2800 genuine
matches and 4950 impostor matches. Table 6 presents
TAR@FAR of 0.1% performance for various algorithms
(including [6] which is current considered state-of-the art).

The results show that MinNet outperforms earlier pro-
posed methods as well. This shows that proposed method
works well for sensor recognition tasks in addition to latent
recognition tasks.

4. Conclusion

In this study, we proposed a novel local minutia embed-
ding model for latent fingerprint recognition problem. Lo-
cal embedding vectors generated for a fixed neighborhood
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Figure 9. Cumulative Match Characteristic (CMC) curves for FVC
dataset of MinNet with different descriptor sizes listed in Table 4.

around a minutia are used in the local similarity assignment
algorithm to produce a global similarity match score. Pro-
posed method has been evaluated on several public and pri-
vate datasets as shown in Tables 2, 3, 5 and 6. For EGM Test
dataset consisting of 5560 latent and rolled image pairs, pro-
posed method achieved a rank-1 accuracy of % 92.39 while
the best performing method of existing studies achieved a
ran-1 accuracy of % 85.88. As part of this study, we have
also created two new databases for latent image recognition
studies using CycleGAN latent image emulation model. As
show in Table 3 and 5, proposed method achieved the best
performance for these databases as well; yielding a rank-1
accuracy of % 95.57 and % 99.40 , respectively. As shown
in our experiments, MinNet produces state-of-the-art results
not only for latent recognition task but in sensor recognition
task as well.
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