
On the Effect of Atmospheric Turbulence in the Feature Space
of Deep Face Recognition

Wes Robbins∗ Terrance Boult*

University of Colorado, Colorado Springs
wrobbins@uccs.edu, tboult@vast.uccs.edu

Abstract

When captured over long distances, image quality is de-
graded by inconsistent refractive indexes in the atmosphere.
This effect, known as Atmospheric Turbulence (AT), leads to
lower performance for vision-based biometric systems such
as face recognition. To account for AT, the literature has
proposed methods to restore face-images from atmospheric
turbulence, but has limited success. There is still a need
to understand how atmospheric turbulence breaks recogni-
tion performance. We offer a first-look in this direction by
providing a study on the effect of atmospheric turbulence in
the feature space of deep-learning-based face recognition.
We present results on recognition performance and feature
space transformation caused by a wide range of AT levels.
In deep feature space, we find interesting phenomena such
as increasing feature magnitudes, which contradicts the ex-
pected result from the literature. From our results, we are
able to identify an effect that makes face recognition under
atmospheric turbulence uniquely difficult, which we call fea-
ture defection. In total, our findings suggest several areas of
available improvement which can be used as a guideline for
further progress in building models that are robust to AT.

1. Introduction

Face Recognition (FR) is used in critical applications and
can improve safety and security in many settings. However,
false classifications can be of high consequence and lead
to public mistrust in identification technology. Thus, it is
important that deployed recognition methods achieve both
high performance and awareness of classification uncertainty.

*This research is based upon work supported in part by the Office of
the Director of National Intelligence (ODNI), Intelligence Advanced Re-
search Projects Activity (IARPA), via [2022-21102100003]. The views and
conclusions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed
or implied, of ODNI, IARPA, or the U.S. Government. The U.S. Govern-
ment is authorized to reproduce and distribute reprints for governmental
purposes notwithstanding any copyright annotation therein.

Figure 1. This paper addresses magnitude-based quality assess-
ment on face-images perturbed with different levels of Gaussian
blur (GB) and Atmospheric Turbulence (AT). Current belief is that
magnitude is a quality measure that is positively correlated with
recognition rate. As expected, under increasing GB, feature mag-
nitude (i.e., quality) decreases monotonically. Surprisingly, under
increasing AT, feature magnitude increases at medium perturbation
levels, resulting in images with AT=1.0 and AT=4.0 to have equal
assessed “magnitude-based quality” (shown with blue samples),
despite having significantly different validation accuracy of 91.10%
and 61.97%. (See Section 3 for details on AT and GB generation.)

In good imaging conditions, current Face Recognition (FR)
methods can achieve the necessary performance. Significant
research in deep learning approaches has driven FR perfor-
mance to over 99% accuracy on benchmark datasets [4, 15].
However, low-quality imaging conditions have been show
shown to be more challenging [10]. Under low-quality condi-
tions, both recognition performance and quality assessment
accuracy is degraded.

Atmospheric Turbulence (AT) is one effect that creates
low-quality imaging conditions and degrades face recogni-
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Figure 2. Images with simulated atmospheric turbulence—strengths ranging from 0.25 (weak) to 5.0 (severe). It can be seen that at low
strengths identification features are retained. At high strengths, identities may be unrecognizable. Simulation details and settings can be
found in Section 3.1.

tion performance. AT image perturbations, which can be
severe in long-distance imaging systems, are caused by spa-
tially and temporally variable refractive indexes in the atmo-
sphere. The perturbations caused by AT can be modeled as a
composition of geometric deformation and blur [19]. More
formally, the effect of AT on unobserved clear image I at
frame k can be described as the composition of a temporally
varying deformation function Hk and point-spread-function
Dk, plus sensor noise nk:

Ik = Dk(Hk(I)) + nk. (1)

The terms in Equation 1 are known to be random and non-
linear [19], which has made handling AT a challenging prob-
lem in optics. While atmospheric turbulence can be partially
mitigated with adaptive optics techniques, these techniques
require large and expensive hardware. For this reason, there
is a significant utility for face recognition models that can 1)
maintain reasonable performance under AT and 2) classify
uncertainty caused by AT.

Mitigating the effect of AT on deep-learning-based face
recognition has only recently been studied. A few works
have proposed methods for image-restoration to compensate
for AT [11, 25]. As an alternative to image-restoration, we
are interested in asking: can the effect of atmospheric tur-
bulence on face recognition be mitigated directly in feature
space? In order to answer this is question, it is helpful to un-
derstand how atmospheric turbulence breaks face recognition
performance, which has not been studied in the literature. To
this end, we provide a study on the effects of atmospheric
turbulence on deep-learning-based face recognition. We per-
form analysis with a wide range of atmospheric turbulence
levels, previously unstudied for face recognition, which is
relevant in real-world applications where atmospheric tur-
bulence levels are variable. Additionally, we compare the
effects of atmospheric turbulence to Gaussian blur. Our
focus is on deep feature space, allowing for more detailed
observations than those attainable from only performance

metrics. Specifically, we look at two properties in feature
space: feature magnitude and feature trajectory.

Feature Magnitude In the literature, several works have
shown magnitude to representative of sample quality, where
lower magnitude implies lower quality [2, 5]. This includes
a state-of-the-art Face-Image-Quality-Assessment (FIQA)
method [15]. Surprisingly, we find magnitude does not de-
crease monotonically with increasing turbulence levels. That
is, lower quality images are being assessed to be higher qual-
ity under AT. This result is highlighted in Figure 1, where
we show that the samples at AT = 1.0 and AT = 4.0 have
similar magnitudes, despite much lower validation scores
at AT = 4.0, where AT is the strength of the AT perturba-
tion (details on AT strengths in Section 3.1). Additionally,
Figure 1 shows this effect does not occur under increasing
levels of Gaussian blur.

Feature Trajectory The feature of a sample affected by
atmospheric turbulence resides in a different section of fea-
ture space than the feature of a clean sample. For incremental
increases in atmospheric turbulence strength, we examine
feature trajectory vectors. We find that identity specific fea-
ture trajectories exist at low turbulence levels. However, at
medium to high turbulence levels, samples follow trajecto-
ries that merge and rotate, leading to a single subspace within
the feature space. In Section 5, we demonstrate this effect
with t-SNE plots of feature trajectories and with inter-class
and intra-class distance measurements.

From our results, we gain a better understanding of the
effect of atmospheric turbulence. We conclude that at ap-
proximately AT > 1.5, AT artifacts are misinterpreted by
the recognition model as salient features for recognition,
which does not occur from similar Gaussian blur degrada-
tions. We call this effect feature defection. Specifically, we
define feature defection as the result of image features that
are blurred, deformed, or magnified and then subsequently
misinterpreted as highly useful features for classification. In
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Figure 2, many affected face features can be seen at high
levels of turbulence.

We find feature defection to have two primary negative
effects on model behavior. First, as previously mentioned,
feature magnitude begins to increase at AT = 1.5, leading
to inaccurate quality assessment. Second, samples degraded
with AT have low inter-class distances, creating an AT super-
class, which severely degrades performance. Based on these
results, we identify the following problems for future work:

1. Magnitude-Accuracy Alignment While quality-aware
magnitude is a promising technique for assessing face-
image quality, more work is needed to increase the
correlation between magnitude and recognition perfor-
mance under atmospheric turbulence.

2. Inter-Class Separation At high levels of atmospheric
turbulence, AT samples cluster together. Future work
needs to improve inter-class separation.

Improvements in these directions can lead to more robust
models under atmospheric turbulence and, thus, more reli-
able in surveillance applications. In future work, we plan
to address these challenges with training procedures that
optimize for both recognition performance and the desired
feature space behavior.

In summary, the contributions of this work are as follows:
• Compare the effects of a wide range of atmospheric

turbulence levels to the effects of Gaussian blur for
both recognition performance and quality assessment.

• Identify feature defection as a cause of poor quality
assessment and lower recognition performance under
atmospheric turbulence.

• Demonstrate a state-of-the-art FIQA method performs
poorly under atmospheric turbulence.

• Outline paths of future work to overcome challenges
identified in this work.

The remainder of the paper is organized into six sections.
In the following section, we review related work. In Sec-
tion 3 we describe our experimental setup. In Section 4 we
analyze feature magnitude under atmospheric turbulence,
which is followed by an analysis of feature space trajectory
in Section 5. In Section 6, we visualize the effects of atmo-
spheric turbulence with input activation maps. Finally, we
summarize our findings and discuss future work in Section 7.

2. Related Work
Previous work has studied the effect of blur and other

noise on face recognition. Lie et. al. [12] provided a nice
initial theory for hallucinating a high-resolution face image
from low-resolution data. Heflin et al. proposed an im-
proved technique for single-image deblurring [7] with fewer
assumptions and evaluated its impact on recognition perfor-
mance. Punnappurath et al. propose an algorithm for jointly
handling non-uniform blur and poor illumination [18]. In
contrast to these works, we focus on deep-learning-based

face recognition.

Another line of work has studied the general effects of
low quality images on deep learning models. Karahan et
al. studied the effect of Gaussian noise and occlusions on
early CNN architectures [9]. The UG2 challenge has been
proposed to advance image understanding in poor imag-
ing conditions [24]. Specifically addressing face-images,
Banerjee et al. proposed a GAN-based method for image
reconstruction [1]. Other deep-learning based approaches
have also been explored [3,21]. Their work differs from ours
as we focus on atmospheric turbulence rather than general
image blur and distortions.

Recently there has been work on restoring face-images
degraded by atmospheric turbulence. Lau et al. proposed
ATFaceGan, a method that uses two generators to handle
deformation and deblurring [11] respectively. In [25], they
developed a learning-based approach to restore images by es-
timating uncertainty maps which are prior for a combination
of both blur and geometric distortions in turbulence degraded
images. The estimated uncertainty maps are then used to
guide the network to obtain the restored image. Differing
from these works, rather than image quality restoration or
just learning maps, we focus on understanding the impacts
of turbulence on face recognition feature spaces and the
subsequent impact on recognition. The insights from this
paper could probably be combined with some of the above
restoration approaches, but that is left for future work.

3. Experimental Setup

3.1. Atmospheric Turbulence Simulation

In order to obtain sufficient data for experiments, we use
a simulator to generate atmospheric turbulence. Accelerating
Atmospheric Turbulence Simulation via Learned Phase-to-
Space Transform, published in ICCV 2021, is used [14].
Atmospheric turbulence strength is calculated by aperture
diameter D divided by fried parameter r0. Fried parameter
r0 is the net optical effect of atmospheric turbulence, which
is a function of varying refractive indexes (caused by air
motion) and distance. Readers can find detailed information
at [19].

The AT software accepts a ratio of D
r0

. We vary D
r0

from
0.25 to 5.00 at increments of 0.25 for a total of 20 different
AT strengths. D

r0
= 0.25 is minor turbulence and D

r0
= 5.0

is severe. Figure 2 shows sample images perturbed with
twelve different levels of AT. In Figure 2, it can be seen
that low perturbation levels appear as only slight blur, and
important identity features are retained. At high turbulence,
significant deformation and blur causes identifiable features
to be affected (e.g., distance between face landmarks) or lost
completely.
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Figure 3. The effect of two different perturbations on feature magnitude and model performance. Dashed lines represent Gaussian blur
(GB) perturbations and solid lines represent Atmospheric Turbulence (AT) perturbations, and each line color represents a different dataset.
The x-axis shows increasing perturbation strength (details on perturbation generation can be found in Section 3). Plot 1 shows feature
magnitude, which is a means for quality assessment; Plot 2 shows one-to-one face recognition performance; and Plot 3 shows correlation
between magnitude and recognition performance. In Plot 3, in can be seen that magnitude and accuracy have significantly lower—and even
negative—correlation under AT than GB.

3.2. Gaussian Blur Image Degradation

To better understand the effects of atmospheric turbulence
on face recognition, we compare them to the effects of Gaus-
sian blur (GB). Since we use a wide range of strengths of
AT (Section 3.1), we also generate images with a wide range
of strengths of GB—where greater strength implies greater
degradation.

To make the GB to AT comparison useful, we generate
GB such that validation accuracy is equally low for both
the greatest strengths of GB and AT. To achieve this, GB
is generated with Gaussian kernel size 31x31 and standard
deviation σ ranging from 0 to 10 (larger σ is greater pertur-
bation). At σ = 10, validation accuracy matches AT = 5
on all three validation datasets.

In order to improve visual comparisons, we plot both AT
and GB on a perturbation strength axis ranging from 0 to
5 (where 0 is no perturbation). AT strength maps to this
axis unchanged, and GB maps to this axis with 1

2σ. The
perturbation strength axis is found in Figure 1 and Figure 3.

3.3. Recognition Model Parameters

A Resnet-50 is used as the backbone of our model, fol-
lowed by a fully connected layer to the embedding layer of
size 512. The model is trained for 25 epochs on MS1M-
arcface dataset [4]. For a loss function, we use arcface [4] +
Magface quality-aware margin and regularization term [15]
(discussed further in Section 4.1). Magface scaling factor λg

is set at 35.
SGD is used as an optimizer with momentum of 0.9 and

weight decay of 1e−5. Training batch size is 512, initial
learning rate is 0.1, and we use learning rate drop by a factor
of 0.1 at epochs 10, 18, and 22. In total, our training set-up
closely follows Meng et al., which achieves state-of-the-art
on recognition benchmarks [15].

3.4. Validation Datasets

Using MagFace model [15] pretrained on MS1M-
arcface [4], we perform our experiments on the following
validation datasets: Labeled-Faces-in-the-Wild (LFW) [8],
AgeDB [16], and Celebrities in Fronal-Profile (CFP) [20].
We do one-to-one recognition with 6,000 pairs from each
dataset. For the CFP dataset, we use the frontal-profile pro-
cedure, where validation pairs contain one camera-facing
image and one profile (side face) image. A copy of each
validation dataset is made for each level of atmospheric tur-
bulence and Gaussian blur.

4. Feature Magnitude Analysis

Deep feature magnitude is known to be strongly related
to misclassification rates [5]. Several papers have built on
feature magnitude results to develop losses to manage mag-
nitude to improve recognition and robustness [2, 5]. Feature
magnitude, which impacts recognition rates, has also been
suggested to be representative of face-image quality, where
lower magnitude implies lower quality. Meng et al. propose
Magface, a loss function that enforces quality-aware feature
magnitudes [15]. In a recent survey of Face-Image Quality
Assessment (FIQA), Magface is found to be a state-of-the-art
method [6].

These prior works motivate us to examine feature magni-
tude as an indication of the effect of atmospheric turbulence
and as a quality assessment method. First, in Section 4.1, we
review the common geometric interpretation of face recog-
nition feature space as a hypersphere (where hypersphere
radius is equivalent to feature magnitude), and the use of
feature magnitude as a quality assessment. In Section 4.2,
we present feature magnitude results under atmospheric tur-
bulence.
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Figure 4. t-SNE plot of the trajectories of ten different identities. Each color represents a separate identity, and each point represents a single
sample. There are 50 samples per identity. At low levels the identifies maintain unique trajectory clusters. At approximately AT = 1.5,
identities splint into multiple trajectory clusters and begin rotating. Then, at high AT, all identities follow similar trajectories. In the bottom
right corner, 2.50 → 2.75 is the last trajectory plot shown as levels greater than AT = 2.75 produce plots that are visually the same as
2.50 → 2.75 (i.e., a single central cluster).

4.1. Review of Hypersphere Feature Space

In open-set face recognition, recognition performance
depends on intra-class compactness and inter-class separa-
tion. While early works used euclidean distance to measure
feature space distances, recent approaches benefit from us-
ing geodesic distances. Many approaches have proposed
loss modifications to optimize for geodesic distances during
training [4,13,22]. Prominently, ArcFace loss Laf penalizes
both intra-class separation θyi and inter-class similarity θj :

Laf = − 1

N

N∑
i=1

log
es cos(θyi+m)

es cos(θyi+m) +
∑

j ̸=yi
es cos θj

. (2)

where a scaling factor s is used to scale normalized features
to a fixed-radius hypersphere.

Recently, the MagFace loss is proposed to create fea-
ture space structure to relate feature magnitude and sample
quality [15]. Prior work had demonstrated managing mag-
nitude to improve image classification [5], and MagFace
applies this notion to face recognition with loss modifica-
tions to enforce magnitudes representative of face-image
quality. Precisely, MagFace loss Lmf modifies the fixed an-
gular margin m from Equation 3 to dynamic margin m(ai),
where ai = ||F (xi)|| is feature magnitude for learned func-
tion F and input xi. Additionally, a regularizer g(ai) with
scaling factor λg is added:

Lmf =
1

N

N∑
i=1

Li, where

Li = − log
es cos(θyi+m(ai))

es cos(θyi+m(ai)) +
∑

j ̸=yi
es cos θj

+ λgg(ai).

(3)
MagFace demonstrates improved recognition performance,
and creates a feature space-based quality metric, where fea-
tures of lower quality samples lie on hyperspheres with

smaller radiuses. A recent survey on Face-Image Quality
Assessment (FIQA) finds MagFace to be a state-of-the-art
FIQA method [6].

The properties of Magface, and strong prior results, make
it advantageous for face recognition under atmospheric tur-
bulence, where feature space structure can be used for both
improved recognition performance and identifying samples
highly affected by turbulence. For this reasons, we adopt
Lmf when training the model used throughout this work.

4.2. Feature Magnitude Results

In this section, we present feature magnitude results under
a wide range of strengths of Gaussian blur and atmospheric
turbulence. The procedure for generating perturbations is
described in Section 3. We calculate magnitudes on images
perturbed with Gaussian blur for a baseline comparison with
atmospheric turbulence. Figure 3 Plot 1 shows average fea-
ture magnitudes for each of three datasets perturbed with
Gaussian blur. It can be seen that feature magnitude de-
creases monotonically with increasing Gaussian blur. This is
expected behavior as images under greater GB perturbations
are being assessed to be lower quality.

Figure 3 Plot 1 also shows feature magnitudes under
increasing atmospheric turbulence. It can be seen that under
atmospheric turbulence, feature magnitude initially drops,
and then increases from AT = 1.5 to AT = 3. This is an
unexpected result. Samples degraded by greater levels of
AT are being assessed to be of higher quality than samples
with weaker AT degradations. By referencing Figure 2, it
is clear that samples of higher AT have fewer identifiable
face features than samples perturbed by lower AT. Thus,
higher AT samples should have lower magnitude (i.e., quality
score).

In Figure 3 Plot 2, validation accuracy for each dataset
is shown. In Plot 2, it can be seen that under both atmo-
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Figure 5. Visualization of feature space-shift under increasing atmospheric turbulence. Each color represents a separate class, and each
circle represents the distribution of that class. A single point represents a single sample, and arrows represent feature trajectories. Vectors
from the origin W1..3 represent three class centers before AT transformations. In a, clean samples of the same identity cluster tightly—low
intra-class distance θi and large inter-class distance θj are observed. In diagram b, low AT causes a decrease in feature magnitudes and
overlapping class distributions, leading to a drop in performance. In c, high AT causes equal or increased magnitudes, and the formation of a
high-AT superclass. The observations represented in this diagram are based on results shown in Figure 3 (magnitude), Figure 4 (feature
trajectory), and Figure 7 (inter- and intra-class distance).

spheric turbulence and Gaussian blur, validation accuracy
decreases with increasing perturbation strength. The valida-
tion accuracy under AT perturbation and GB perturbations
are the same at perturbation strength equal to 5, despite
having vastly different magnitudes.

In Figure 3 Plot 3, we show the correlation between mag-
nitude and validation accuracy (the two previous plots). Plot
3 shows significantly lower correlation under AT than GB.
At some AT levels, there is negative correlation between
accuracy and quality assessment (the correlation coefficient
gets as low as -0.44). This is due to the magnitude increase
from AT = 1.5 to AT = 3, while accuracy is decreasing.
Comparatively, GB has high correlation at similar perturba-
tion levels.

The negative correlation between accuracy and quality
assessment is a surprising result with several implications.
Work on “biometric completeness” [17], shows that solving
face image quality is equivalent to solving the face recogni-
tion problem. Thus, if magnitudes are a direct measure of
quality, they should be positively correlated with recognition
rates, at least for the algorithm that uses that feature space.
Given that magnitude and accuracy are not strictly positively
correlated, two conclusions follow:

1. MagFace quality assessment performs poorly under
certain levels of atmospheric turbulence.

2. Artifacts from atmospheric turbulence have a unique
effect on face recognition.

In the following section we further explore the implications
of conclusion 2.

5. Feature Trajectory Analysis

In Section 4, it is found that at low turbulence levels,
features move closer to the origin. That is, they have trajec-
tories generally towards the origin. At increments between

higher levels of atmospheric turbulence, it is found that fea-
ture trajectories do not decrease distance from the origin. In
this section, we obtain a more fine-grained understanding of
feature trajectories under increasing AT.

5.1. Identity-Specific Trajectories

The relationship between trajectories of different samples
is of interest for understanding how feature space reacts un-
der increasing turbulence. If trajectories of all samples are
unrelated, it suggests the feature space responds randomly
to AT. If trajectories from all samples are similar, it suggests
all samples are affected similarly—and moving to a single
subspace of the feature space. Lastly, if intra-class trajecto-
ries are similar, but inter-class trajectories are dissimilar, it
suggests identities are uniquely affected by the increasing
perturbations.

To visualize the relationship between trajectories, we plot
a 2D projection of the trajectories of 50 samples for each
of 10 identities using a t-Distributed Stochastic Neighbour
Embedding (t-SNE) plot. In the t-SNE plot, trajectory vector
x⃗i,j is calculated as follows:

x⃗i,j = (xj − xi)− xi (4)

where xi, xj are feature vectors and i < j are turbulence
levels (shown above each t-SNE plot). Subtracting xi the
second time has the effect of moving the trajectory vector to
the origin. We note that without moving the trajectory vector
to the origin, the vectors do not cluster as well. The t-SNE
plot of trajectory vectors is shown in Figure 4.

In Figure 4, we show that at low turbulence levels, tra-
jectories have identity-specific trajectories. However, as
turbulence levels increase, feature trajectories become more
similar, eventually to the point that feature trajectories from
all identities form a single central cluster. This result implies
that at low turbulence levels, identity-specific face features
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Figure 6. Input activation maps from the recognition model—generated with Score-CAM [23] and averaged over 1,000 images. Five
perturbation strengths are shown for Atmospheric Turbulence and Gaussian blur. Activations are from Block 2 out of 4 in our ResNet, which
allow us to visualize lower level features extracted by the model. A surprisingly stark difference can be seen between AT and GB, at higher
perturbations. We attribute this to feature defection. While blurring removes feature activation, AT can perturb feature locations resulting in
moderate activations in the map, which impact identity matching.

Figure 7. Inter- and intra-class angular distances. Blue lines repre-
sent distances between AT samples and clean samples, and orange
lines represent distances between samples of matching AT levels.
Distances shown are averages over the three datasets listed in Sec-
tion 3.4.

(e.g., pupils, eyebrows) are lost, causing each identity to
follow a unique path from the original class position to the
origin (decreasing low-AT magnitudes shown in Section 4.2).

Comparatively, at higher turbulence levels, Figure 4 t-
SNE plots show that all feature vectors, regardless of class,
begin to follow the same feature space trajectory. It can be
observed that identity-specific trajectories end at the same
AT levels that feature magnitude begins to increase (Figure 3
Plot 1). This point is approximately AT = 1.5.

5.2. Inter- and Intra-Class Distance

In Section 5.1, we show that at low turbulence levels there
are identity specific trajectories, and at high-turbulence lev-
els all samples have similar trajectories. To better understand
the global effect of trajectories on feature space structure,
we empirically show inter- and intra-class distances in Fig-

ure 7. In Figure 7, we show the distance between samples
with matching AT levels (AT-to-AT), and the distance be-
tween clean samples and AT samples (clean-to-AT). First we
discuss AT-to-AT then clean-to-AT.

For samples unaffected by turbulence (AT = 0), Figure 7
shows relatively small intra-class distances and large inter-
class distances, which corresponds with high recognition
accuracy. Between AT = 0 and AT = 1, Figure 7 shows
increasing geodesic distance for AT-to-AT distances. How-
ever, at AT > 1.5, AT-to-AT intra-class distance begins to
decrease. At the same time, AT-to-AT inter-class distance
also decreases. This leads to similar intra- and inter-class
distances at high AT, which corresponds with low recogni-
tion performance. Additionally, low inter- and intra-class
distances suggest that all samples exist in a single sub-space
and create a high-AT superclass. This result corresponds
with Figure 4, where we show that at higher levels of AT, all
samples are following similar trajectories.

In comparison to AT-to-AT distances, clean-to-AT inter-
class distances remain high, while clean-to-AT intra-class
distances increase monotonically. This shows that clean
samples have large geodesic distances from AT samples.
This is true even for intra-class distances, thus AT samples
are far from their original class-centers.

5.3. Interpretation of Results

In this section, we bring together previously presented
results. In our results, a point of interest is at AT = 1.5,
which is an inflection point for all of the following mea-
surements: magnitude, trajectory similarity, and AT-to-AT
class distance. Additionally, at this point, there is the low-
est correlation between accuracy and magnitude—meaning
validation accuracy is dropping quickly while magnitude is
beginning to increase (Figure 3 Plot 3).

At approximately AT = 1.5, the increase in magnitude
suggests the model is finding features representative of in-
creased quality. At the same time, feature trajectories be-
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come similar, leading to lower AT-to-AT inter-class distances.
Lower AT-to-AT inter-class distances suggest new, similar
features are appearing in all images. It follows that: the face
recognition model misinterprets atmospheric turbulence ar-
tifacts as salient features for identification. As discussed
in Section 1, we call this effect feature defection, where de-
fected (deformed, blurred, magnified) image features remain
salient for model behavior. Feature defection is based on
observations of increasing quality assessment, decreasing
recognition performance, and the existence of the high-AT
superclass.

In Figure 5, we overview the transformation caused by
atmospheric turbulence. In Figure 5 diagram a, a clean
feature space is shown with high inter-class separation and
intra-class compactness. In diagram b, the effect of low tur-
bulence is shown—decreased feature magnitudes and class
distributions begin to overlap, causing performance to being
to drop. In diagram c, we show the effect of feature defection,
which occurs at approximately AT > 1.5. Under feature
defection, most feature space structure is lost, as samples
follow similar trajectories into a shared sub-space of feature
space, which is far the original class centers. In the next
section, we visualize feature defection with input activation
maps.

6. Input Activation Maps
In order to visualize the the effects of feature defection,

we show input activation maps. To calculate input activa-
tions, we use the Score-CAM method [23]. In Figure 6,
we show average activations at Block 2 out of 4 from the
Resnet backbone of our face recognition model. By looking
at Block 2 activations, we are able to understand what lower
level features are being extracted by the model. Figure 6
shows a significant difference between features extracted un-
der Gaussian blur and atmospheric turbulence. Many noisy
features are extracted under high-AT, and greater average ac-
tivation can bee seen (i.e., more yellow). Comparatively, few
features are extracted under high Gaussian blur. Under AT,
there is significant activations around the eyebrow region,
which indicate eyebrows are a feature commonly affected by
feature defection, which results in misclassifications.

In Figure 8, we show sample images with Block 4 ac-
tivations. Block 4 activations are an approximation of the
regions of the input the model used most for classification. In
the left columns, we show samples degraded by AT = 0.75.
Activations at AT = 0.75 mostly surround identifiable face
features. However, these sample have low quality assessment
due to the AT = 0.75 degradations.

In the right columns of Figure 8, we show samples de-
graded by AT = 3.0. Bright activation regions can be seen
around deformed edges in the face image (e.g. eyebrows,
hairline, mount). Despite the greater deformations and mis-
guided input activations, the samples at AT = 3.0 have

greater magnitudes than at AT = 0.75. This demonstrates
the essence of feature defection: defected features interpreted
as salient regions for identity classification.

Figure 8. Sample images under atmospheric turbulence levels
AT = 0.75 and AT = 3.0, shown with Block 4 activation maps.
Samples shown have an increase in feature magnitude (||F (x)||)
from AT = 0.75 to AT = 3.0, which is shown above each image.
Bright yellow regions indicate greater activation. It should be noted
that the amount of input activation (i.e., quantity of bright yellow)
does not indicate magnitude.

7. Conclusion & Future Work

In this work, we have studied the effect of atmospheric
turbulence on the feature space of deep face recognition. We
present a surprising result where feature magnitudes increase
under certain levels of atmospheric turbulence. Based on
our results, we create a more complete view of the transfor-
mation caused by atmospheric turbulence in deep feature
space. We identify feature defection—where the recogni-
tion model misinterprets AT artifacts as salient features for
identification—as a cause of lower recognition performance
and unexpected feature magnitudes.

Based on our results, we outline two challenges for future
work. The first is magnitude-accuracy alignment, which,
if improved, has the potential to be a meaningful quality
assessment for FR under AT. The second is inter-class sep-
aration, as AT-samples collapse into a shared subspace. In
future work, we plan to address these issues by designing
a training procedure that optimizes for both desired feature
space behavior and recognition performance under AT. We
also note that a significant limitation of current work on
atmospheric turbulence is that both training and testing are
on simulated data with no reference to ground truth AT, and
research validating simulated data is a part of future work.
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