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Abstract

This paper presents a hybrid video compression frame-
work, aiming at providing a demonstration of applying
deep learning-based approaches beyond conventional cod-
ing framework. The proposed hybrid framework is estab-
lished over the Enhanced Compression Model (ECM) of
which the core is the Versatile Video Coding (VVC) stan-
dard. We propose to integrate a series of enhanced cod-
ing tools, such as block partitioning, intra prediction, and
inter prediction to further remove the spatial and tempo-
ral redundancy. Moreover, deep learning-based technolo-
gies including loop filter and super resolution are involved
to restore the compression distortion. Compared with the
VVC software VTM-11.0, experimental results demonstrate
the effectiveness of the proposed learning-based framework,
leading to 25.81%, 35.08%, and 37.54% bit-rate savings
for Y, Cb and Cr components, respectively under random
access configuration. In addition, the proposed framework
achieves 39.313 and 32.050 PSNRs in the test set under
1 Mbps and 0.1 Mbps video compression tracks of CLIC-
2022. 33.522, 30.758, and 28.300 in terms of PSNR are
obtained in 0.3 bpp, 0.15 bpp, and 0.075 bpp image com-
pression tracks.

1. Introduction
Recent years have witnessed the rapid development of

the video-oriented applications. The video data volume in-
creases rapidly, which constantly brings new challenges to
image and video coding. Video coding technologies have
been explored for several decades, which aims at more com-
pactly representing the visual signals with tolerable per-
ceivable distortions, thus facilitating the storage and trans-
mission. Currently, the mainstream video coding standards
such as the High Efficiency Video Coding (HEVC) [16],
the Versatile Video Coding (VVC) [4], and the third gen-
eration of Audio and Video coding Standard (AVS3) [20]
are deployed with the classical hybrid coding framework.
The prediction coding [5–9], transformation and quantiza-
tion coding [15, 24], entropy coding [17], and in-loop fil-

tering [18] are delicately cooperated, such that the spatial,
temporal, statistical redundancies could be effectively re-
moved.

Due to the limited capacity of the transmission band-
width and storage spaces, video coding technologies evolve
rapidly. The next generations of video coding standards in
terms of the VVC and AVS3 were finalized in 2020, em-
phasizing versatility and adaptability of the video codec in
various application scenarios. Almost all modules are en-
hanced in the VVC and AVS3. In particular, VVC and
AVS3 both adopt more complicated coding unit (CU) parti-
tioning structure, wherein the quad-tree (QT) nested binary-
tree and ternary-tree/extended quad-tree partitioning [19] is
employed to better adapt multiplex video contents. More-
over, the number of angular intra prediction is doubled [7],
in order to capture the arbitrary edge directions more effi-
ciently. Cross-component prediction [10] is considered as
additional chroma intra prediction mode such that the re-
dundant information existing in different color components
could be eliminated. Affine motion compensation [21] is
adopted by the VVC and AVS3 to cope with the non-
translation motions.

Deep-learning based coding tools have attracted many
attentions in the exploration experiments, which mainly
concentrate on modifying the prediction and filtering mod-
ules. The promising deep-learning based coding tools bring
significant performance improvement in terms of the com-
pression performance and reconstruction quality, exhibiting
remarkable restoration and non-linear modeling capability.
Due to the limited computing resources at the user-end,
the high-complexity decoder induced by the deep learning
module is still unacceptable, which hinders the further stan-
dardization of the deep-learning based coding tools.

In this paper, we propose a learning-based video cod-
ing framework, which successfully harmonizes the tradi-
tional coding tools and deep-learning based coding tools,
leading to significant improvement of the compression per-
formance. To be more specific, the basic framework is
constructed upon the Enhanced Compression Model 3.1
(ECM) [13], cooperating with more advanced CU partition-
ing structure, enhanced prediction tool, learning based fil-
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(a) UQT-H1. (b) UQT-H2. (c) UQT-V1. (d) UQT-V2.

Figure 1. Illustration of the UQT partitioning.

tering and super resolution. The proposed framework sig-
nificantly surpasses the VTM-11.0 [14] with 28.28% BD-
Rate [2] gain. Moreover, the hybrid framework is expected
to promote the future research and development of the tra-
ditional and learning-based video compression.

2. Framework

In this section, we elaborate the components of the pro-
posed video compression framework which is built on top of
the ECM. A series of efficient conventional coding tools in-
cluding block partitioning, intra prediction, inter prediction
are involved. Moreover, neural-network based video cod-
ing technologies are adopted to nest with the conventional
hybrid coding framework. The proposed learning-based
framework achieves the high compression performance ow-
ing to the cooperation of the advanced coding technologies.

2.1. Unsymmetric Quaternary Tree

Coding unit partitioning has been a long-standing prob-
lem in the block-based hybrid video coding, which deter-
mines the shape and scales of the basic coding unit. Flex-
ible partitioning framework plays crucial roles in depicting
the diverse local contents.

In this paper, we introduce an unsymmetric quaternary
tree (UQT) partitioning structure, with the goal of improv-
ing the coding efficiency for larger blocks [22]. As shown
in Fig. 1, there are four types of UQT partitioning struc-
tures. According to the location of the largest sub-block,
the splitting shape of UQT could be noted as left, right, top
and bottom, corresponding to UQT-V1, UQT-V2, UQT-H1,
and UQT-H2. Unlike the QT, UQT divides a block into
four sub-parts asymmetrically along one certain direction.
For the horizontal direction, UQT-H1 and UQT-H2 split the
M × N block into one M × N/2, one M × N/4 and two
M ×N/8 sub-parts. UQT-V1 and UQT-V2 are along with
the vertical direction and divide the M ×N block into one
M/2 × N , one M/4 × N and two M/8 × N sub-parts.
Compared with the QT and Multi-Type Tree (MTT) [4],
the smallest sub-blocks generated by UQT could achieve
deeper depth with once splitting and capture the rich details

more effectively. Moreover, UQT produces a new partition-
ing pattern which could not be achieved by QT or MTT with
identical splitting times. It is worthy of mentioning that the
dimensions of sub-blocks are limited in the power of two,
such that it is unnecessary to involve new transform shapes.

2.2. History-based Affine Model Inheritance

There has been a consensus regarding the inter predic-
tion technique in video-based compression that the tempo-
ral redundancy can be efficiently removed by the motion
compensation. The motion model with certain motion pa-
rameters forms the basic skeleton of motion compensation.
Translational motion compensation model depicts the rigid
motion in videos, which assumes that the motion objects
belongs to translation movement. Affine motion compen-
sation model is employed to capture the complex motion
scenes, such as rotation and zooming.

In VVC, history-based motion vector prediction
(HMVP) has been adopted [23]. History-based affine
model inheritance (HAMI) is integrated into the proposed
framework to reduce the long-term correlation of model
parameters among the coding units. Inspired by HMVP,
HAMI fully explores the history model parameters of
previous coded blocks with affine mode. More specifically,
a history-parameter table (HPT) which records sets of affine
parameters, is elaborately maintained with limited capacity.
For each category indicated by reference picture list and
reference index, at most two entries can be held in HPT. In
particular, affine parameters of coded blocks are grouped
into a candidate to update the HPT on-the-fly similar to
the HMVP after encoding or decoding an affine-coded
block. To take full advantage of HAMI, the parameter
candidate in HPT can be utilized to derive the motion
vector (MV) of the current block with the base MV from
the neighboring blocks. With HAMI method, we could
increase the candidates of the affine AMVP, affine merge
and regular merge modes to decrease the redundancies of
motion parameters.
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(a) Network structure for luma component. (b) Network structure for chroma components.

Figure 2. Illustration of the network structure regarding the proposed CNN-based in-loop filter.

(a) Network structure for luma component.
(b) Network structure for chroma components.

Figure 3. Illustration of the network structure regarding the proposed CNN-based super resolution.

2.3. CNN-based In-Loop Filter

In-loop filters are adopted for coding artifacts removal in
hybrid video coding, such as deblocking filter, sample adap-
tive offset and adaptive loop filter. The differences between
the original input and the reconstruction could be mitigated
with in-loop filters. The surging of the convolutional neural
network (CNN) impels the further exploration of the CNN
based in-loop filters, which is anticipated to further enhance
the qualilty of the reconstructions.

As shown in Fig. 2, a CNN-based filtering method with
adaptive parameter selection is employed [11]. For guid-
ing the enhancement, a series of intermediate compres-
sion information serving as extra side information conducts
as the input of the network, which could supplement the
prior knowledge. Specifically, prediction signals, boundary
strength generated during the compression process, as well
as the quantization parameter (QP) are employed as the aux-
iliary information of network. Moreover, regarding the filter
model of intra slice, the partitioning information is involved
as the additional input. With the involvement of the QP as
the network input, the model is unified to adapt to various
quality levels. Adaptive selection mechanism is involved
to adapt the contents at slice and block levels wherein the
model usage could be indicated by the signaled flags.

2.4. CNN-based Super Resolution

Resampling is a fundamental strategy frequently used in
image and video compression. With a serial of operations
regarding down-sampling and up-sampling, the coding effi-
ciency could be improved, especially in terms of high res-
olution frame with more compact representation inside the
texture. VVC has supported the reference picture resam-

pling (RPR) which involves the adaptive resolution varia-
tion in hierarchical reference structure. Owing to the power
of neural network, the up-sampling in RPR could be further
elevated.

Herein, we integrate a CNN-based super resolution
method which leverages the side information to perceive
compression distortion during the encoding or decoding
process [12]. More specifically, the proposed method in-
volves the prediction signals as the auxiliary information
of reconstruction signal where the prediction signals could
provide a guideline of characteristics such as the textural
features and directional features. To handle the various
quality levels with only one single model, QP map under
sequence level is fed into the network. In the network part,
those side information concatenated with reconstruction are
fed into a convolutional layer and the output is then fol-
lowed by several residual blocks and a convolutional layer.
Finally, the high-resolution reconstruction is generated by
a shuffle layer. Considering the diversity of different com-
ponents, the super resolution models for luma and chroma
components are designed and shown in Fig. 3, respectively.
In particular, the luma reconstruction located at the tempo-
ral collocated position of chroma component is exploited to
guide the chroma super resolution based on the texture ex-
tracted from luma component. It is worth mentioned that
the proposed CNN-based super resolution is more effective
for resampling in the low bit-rate scene.

3. Experimental Results

3.1. Performance with JVET Data Set

Herein, we conduct the experiments to compare the pro-
posed framework with the VVC where the VTM-11.0 [14]
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Table 1. Performance of the proposed framework under RA con-
figuration compared with the VTM-11.0

Class Sequence
BD-Rate [%]

YCbCr Y Cb Cr

A1

Tango2 -31.71 -28.41 -40.87 -36.39
FoodMarket4 -26.79 -24.80 -31.29 -32.62

Campfire -25.37 -23.35 -18.03 -45.29

A2

CatRobot1 -29.95 -27.76 -38.93 -36.11
DaylightRoad2 -38.67 -34.09 -46.40 -51.68
ParkRunning3 -21.51 -20.61 -22.48 -29.93

B

MarketPlace -28.02 -24.19 -42.64 -42.59
RitualDance -26.29 -24.46 -32.72 -34.77

Cactus -24.27 -22.26 -32.70 -31.45
BasketballDrive -29.77 -27.63 -37.10 -35.45

BQTerrace -31.10 -25.25 -48.93 -48.81

C

BasketballDrill -28.99 -27.65 -33.56 -34.58
BQMall -28.15 -25.94 -36.42 -36.02

PartyScene -28.89 -28.17 -32.69 -30.94
RaceHorses -24.79 -22.60 -31.37 -36.44

D

BasketballPass -27.13 -25.42 -35.33 -33.21
BQSquare -38.97 -37.92 -39.30 -46.23

BlowingBubbles -25.28 -23.91 -30.63 -29.99
RaceHorses -26.48 -24.59 -33.96 -34.97

F

BasketballDrillText -26.56 -25.65 -30.06 -29.64
ArenaOfValor -21.27 -19.88 -26.96 -25.37
SlideEditing -13.75 -12.70 -17.48 -17.91
SlideShow -23.32 -20.82 -32.81 -31.72

Average(A1) -27.96 -25.52 -30.07 -38.10

Average(A2) -30.04 -27.49 -35.94 -39.24

Average(B) -27.89 -24.76 -38.82 -38.62

Average(C) -27.71 -26.09 -33.51 -34.49

Average(D) -29.47 -27.96 -34.80 -36.10

Average(F) -21.23 -19.76 -26.83 -26.16

Average(A1,A2,B,C) -28.28 -25.81 -35.08 -37.54
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Figure 4. Rate and distortion curves of VTM-11.0 and the pro-
posed framework.

reference software is adopted. In the evaluation process,
random access (RA) configuration conforming to the com-
mon test condition [3] is used in the experiments. Se-
quences recommended by JVET is involved in the simula-
tion, including classes A1, A2, B, C, D, and F. The QPs are
set as 22, 27, 32, and 37. The coding performance is mea-
sured by BD-Rate [2] where negative BD-Rate indicates the
performance improvement. The YCbCr BD-Rate is calcu-

Table 2. Performance of the proposed framework under image and
video compression tracks in the test set of CLIC-2022.

Metric Image Track Video Track

Bitrate 0.075 bpp 0.15 bpp 0.3 bpp 0.1 Mbps 1 Mbps

PSNR 28.300 dB 30.758 dB 33.522 dB 32.050 dB 39.313 dB

Table 3. Performance of the proposed framework under image and
video compression tracks in the validation set of CLIC-2022.

Metric Image Track Video Track

Bitrate 0.075 bpp 0.15 bpp 0.3 bpp 0.1 Mbps 1 Mbps

PSNR 29.359 dB 31.728 dB 34.287 dB 31.218 dB 37.850 dB

lated by averaging the PSNR of Y, Cb, and Cr components
with weights 6:1:1. Tab. 1 shows the coding performance of
the proposed hybrid architecture compared with the VTM-
11.0 for each sequences under RA configuration. It can
be observed that the proposed framework achieves 28.28%,
25.81%, 35.08% and 37.54% BD-Rate savings for YCbCr,
Y, Cb, and Cr components, respectively on average of class
A1, A2, B, and C. The rate and distortion curves of VTM-
11.0 and the proposed framework are shown in Fig. 4.

3.2. Performance with CLIC Data Set

In this section, we evaluate the performance conforming
to the test conditions [1] recommended by the CLIC-2022
challenge. In the video and image compression tracks, 30
videos and images are involved, respectively. The coding
performance is measured by the averaged PSNR per pixel
under the limited bit-rates among all sequences where the
higher PSNR demonstrates the better performance. The
performance in the test set is shown in Tab. 2. The pro-
posed framework achieves 39.313 and 32.050 dB in terms
of PSNR under 1 and 0.1 mega bits per second (Mbps) of
video tracks. Under 0.3, 0.15, and 0.075 bits per pixel (bpp)
of image tracks, the associated PSNR values are 33.522,
30.758, and 28.300 dB. As show in Tab. 3, we also pro-
vide the experimental results in the validation set. In video
tracks, the PSNR values of the proposed framework are
37.850 and 31.218 dB. In addition, 34.287, 31.728, and
29.359 dB in terms of PSNR are acquired in image tracks.

4. Conclusion
In this paper, an artificial-intelligence-based video com-

pression framework is proposed. A series of enhanced com-
pression tools are involved in the framework, and mean-
while the CNN-based in-loop filtering and super resolution
are cooperated. The proposed framework significantly sur-
passes the VTM with 28.28% BD-Rate gain. Moreover,
the proposed framework achieves remarkable compression
quality for image and video compress tracks in CLIC-2022.
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