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Abstract

Prior work on few-shot class incremental learning has
operated with an unnatural assumption: the number of ways
and number of shots are assumed to be known and fixed e.g.,
10-ways 5-shots, 5-ways 5-shots, etc. Hence, we refer to this
setting as Fixed-Few-Shot Class Incremental Learning (FF-
SCIL). In practice, the pre-specified fixed number of classes
and examples per class may not be available, meaning one
cannot update the model. Evaluation of FSCIL approaches
in such unnatural settings renders their applicability ques-
tionable for practical scenarios where such assumptions do
not hold. To mitigate the limitation of FFSCIL, we propose
Variable-Few-Shot Class Incremental Learning (VFSCIL)
and demonstrate it with Up-to N-Ways, Up-to K-Shots class
incremental learning; wherein each incremental session, a
learner may have up to N classes and up to K samples per
class. Consequently, conventional FFSCIL is a special case
of herein introduced VFSCIL. Further, we extend VFSCIL
to a more practical problem of Variable-Few-Shot Open-
World Learning (VFSOWL), where an agent is not only
required to perform incremental learning, but must detect
unknown samples and enroll only those that it detects cor-
rectly. We formulate and study VFSCIL and VFSOWL on two
benchmark datasets conventionally employed for FFSCIL
i.e., Caltech-UCSD Birds-200-2011 (CUB200) and miniIm-
ageNet. First, to serve as a strong baseline, we extend the
state-of-the-art FSCIL approach to operate in Up-to N-Ways,

Up-to K-Shots class incremental and open-world settings.
Then, we propose a novel but simple approach for VFS-
CIL/VFSOWL where we leverage the current advancements
in self-supervised feature learning. Utilizing both benchmark
datasets, our proposed approach outperforms the strong
baseline on the conventional FFSCIL setting and newly intro-
duced VFSCIL/VFSOWL settings. Our code is available at:
https://github.com/TouqeerAhmad/VFSOWL

Figure 1. Operational example for Class Incremental Learning:
Fixed Few Shot (FFSCIL) vs Variable Few Shot (VFSCIL). Learning
with a small amount of data is often critical, leading to increasing
interest in few-shot learning. In this example, each row shows the
number of images from unknown classes arriving each month. In
an FFSCIL (say 5-ways 5-shots) setting, a learning agent must keep
waiting 3 time periods until at least 5 classes have at least 5 images
each – it then throws away the additional data and finally can start
incremental learning. In the more realistic VFSCIL, a learning
agent can learn when it has sufficient data and can exploit what
data it has at that time, providing maximum utilization of available
data. VFSCIL is still optimistic because it presumes someone
other than the underlying learning system identified the unknown
data to add. In addition to introducing VFSCIL, this paper also
introduces Variable Few Shot Open World Learning (VFSOWL)
where a system must identify unknown inputs, and only then can it
learn them.

1 Introduction

As more and more deep models are being deployed in the real
world, and computer vision keeps migrating from academia
to industry, several challenging practical problems have
emerged and are been explored extensively in recent years
e.g., task incremental learning [36, 81], class incremental
learning [21, 48, 73, 82], continual learning [61], few-shot
learning [88,93,103,109], open-set recognition [12,84], and
open-world learning [13, 34].

Few-Shot Class Incremental Learning (FSCIL) is one
such problem that was recently proposed by Tao et al. [88]
where class incremental learning (CIL) is addressed in an
even more challenging setup because it addresses the impor-
tant practical constraint of limited data about new classes.
We call their model Fixed FSCIL (FFSCIL) as upfront the
system knows exactly N classes will be added and exactly
K shots per class are available, where N,K are very small
(5/10), see Fig. 1. Due to more constrained assumptions,
FFSCIL suffers more over-fitting on the “few” classes. Like
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CIL, it also suffers catastrophic forgetting of old classes. As
a comparison, in general CIL, even the number of exemplars
retained per class for replay are way more (generally more
than 20) than the total samples per class (typically 5) in the
incremental sessions of FFSCIL. FFSCIL and general CIL
also assume a priori fixed number of classes (i.e., N-ways)
are being introduced in each incremental session. FFSCIL
further assumes that the number of shots per class is also
fixed (i.e., K-shots). In a practical deployment setting, these
assumptions rarely, if ever hold true, see Fig.1, requiring
either delay or wasting data or both.

To relax these assumptions, we propose to investigate
CIL and FSCIL in a variable format, in particular, Up-to

N-Ways, Up-to K-Shots setting and in this paper explicitly
focus on VFSCIL. More specifically, in Up-to N-Ways, Up-
to K-Shots class incremental learning (VFSCIL), an agent
may have up-to N-ways in each incremental session and
up-to K-shots per concept. Hence, the agent need not wait
for a fixed number of ways and a fixed number of shots to
become available. Inherently the conventional N-ways, K-
shots setting, is a special case of herein introduced VFSCIL
Up-to N-Ways, Up-to K-Shots.

Open-world learning [13,34] is an even challenging prob-
lem where an agent is required to not only learn incremen-
tally but also detect and enroll unknown samples in each
session. Open-world learning has been previously investi-
gated in settings where the number of samples per class in
each incremental session is quite high (more than 50 training
samples per class). In this work, we investigate few-shot
open-world learning (FSOWL) – an open-world setting sim-
ilar to FSCIL, where the number of samples per concept
is “few”. We extend our VFSCIL setting for open-world
learning, consequently formulating Up-to N-Ways, Up-to

K-Shots open-world learning (VFSOWL).
As we are the first to formulate Variable Few Shot Learn-

ing, no baseline pre-exists. We extend the state-of-the-art FF-
SCIL approach Continually Evolved Classifier (CEC) [104]
as a strong baseline for VFSCIL, and VFSOWL. While pos-
sible it seems unlikely that weaker FFSCIL solutions would
outperform this strong baseline on the new problem.

While formally novel, extending CEC is not our primary
contribution. Following the trends of incorporating self-
supervised learning for downstream tasks [16,34,37,41], we
propose a novel approach where we investigate the fusion of
self-supervised and supervised features as the representation.
Specifically, we leverage the self-supervised models trained
on ImageNet-2012 [85] or OpenImages-v6 [59] and a super-
vised model trained on data belonging to the base session
where a relatively larger number of labeled images are avail-
able. Both supervised and self-supervised models are kept
frozen after the initial training on the base session and dis-
joint unlabeled dataset, respectively, and serve as first-level
feature extractors for the subsequent incremental sessions. A

lightweight two-layer classification head is employed as the
learnable module that adapts with data for each incremental
session. The classification module is trained on the con-
catenation of independently normalized features emerging
from images belonging to the respective incremental ses-
sions. Since images are not directly fed to the classification
module, several feature vectors per image are generated with
conventional data augmentation techniques. To mitigate the
catastrophic forgetting of old classes, we maintain a single
mean vector per class as its representation. Our lightweight
classification module trained on combined supervised and
self-supervised features outperforms the state-of-the-art FS-
CIL methods on established benchmarks and is concurrently
presented [2]. Here we demonstrate that our proposed ap-
proach outperforms the extended CEC baseline on the novel
VFSCIL and VFSOWL settings and does so by a large, sta-
tistically significant margin.

Our Contributions: (a) Formalizing the novel and more
realistic, Variable Few Shot paradigm for class incremental
and open-world learning. (b) First to investigate self-su-
pervised learning for the novel downstream tasks VFSCIL
and VFSOWL. (c) Extending current FFSCIL SOTA CEC
as a strong baseline for novel VFSCIL, VFSOWL settings.
(d) Demonstrate our feature fusion approach outperforms
the extended baseline on established benchmarks generally
employed for FFSCIL and here adapted for new problems,
setting new state-of-the-art performance. (e) Ablations study
parameter choices and trade-offs between recognition per-
formance and unknown detection.

2 Related Work

To the best of our knowledge, there is no published prior
work on Up-to N-Ways, Up-to K-Shots learning. This sec-
tion documents some of the work in closely related research
problems of incremental learning, few-shot class incremental
learning, open-world learning, and self-supervised learning.
We discuss the most relevant works and how they are related
to and different from our work.

2.1 Incremental Learning

Incremental learning is problem of learning new classes or
representations without forgetting past classes and represen-
tations [1,3,6,11,23,33,42,44,49,50,62,67,70,71,74,76,80,
89, 94, 96, 99, 109]. Several incremental learning solutions
adapt both feature extractor and classifier jointly [107], oth-
ers decouple feature extraction from inference subsystem [9],
also, many methods add classes incrementally when feature
extraction remains constant [10, 63, 87]. Models that use
artificial neural networks forget what they have learned previ-
ously while learning new concepts [26,32,36,58,83,108] i.e.,
catastrophic forgetting. When new samples of old classes
come over time, the distribution of features may change
in an unforeseen way, making the performance degrade
dramatically on the new data, which is known as concept
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drift [15, 43, 101, 102]. Although incremental learning is
related, these solutions require many samples to learn new
classes, usually more than 20/50 samples per class per incre-
mental session. Their performances drop significantly when
the number of samples is small. Additionally, such general
class incremental methods have a large memory budget for
retaining exemplars to counter the catastrophic forgetting
of old classes. Therefore, we do not compare the proposed
method with general class incremental learning approaches.

2.2 Few-Shot Class Incremental Learning

Few-Shot Class Incremental Learning (FSCIL) is a special
case of incremental learning where the number of samples
per class is small [25, 31, 57, 88, 97]. Cheraghian et al. pro-
pose to use semantic information during training [30]. A
recent work [109] proposed a random episode selection strat-
egy that adapts the feature representation and a self-promoted
prototype refinement mechanism, which strengthens the ex-
pressive ability of the new classes. In ERL [35], authors
focused on the stability-plasticity dilemma and proposed
exemplar relation distillation incremental learning frame-
work to balance the tasks of old-knowledge preservation
and new-knowledge acquisition. Centroid-Based Concept
Learning (CBCL) method is proposed in [7]. In [104], au-
thors devised a decoupled learning strategy for representa-
tions and classifiers where only the classifiers are updated in
each incremental session to avoid knowledge forgetting. To
propagate context information between classifiers learned
on individual incremental sessions, they employed a graph
model and proposed Continually Evolved Classifier (CEC).
To the best of our knowledge, CEC is the best performing
FSCIL approach to date. We have thoroughly compared our
proposed approach against the most recent FSCIL methods,
including CEC, on established FSCIL benchmarks in [2].
Herein, we only present a summary table of performance
comparison on FSCIL for completeness before focusing on
the newly introduced VFSCIL, and VFSOWL problems.

2.3 Open-World Learning

Open-world learning is the problem of detecting and learn-
ing new classes incrementally [12, 14, 22, 34, 47, 55, 77, 84].
The biggest difference between open-world learning and in-
cremental learning is that in incremental learning, labels of
all new samples are provided, while an open-world learning
agent only gets labels for those samples that it has predicted
as novel. Some papers [51,60,69,72,86] used the term “open-
world” in their titles, but they never showed how to learn
new classes and are inconsistent with the original definitions
of [12]. To our best knowledge, there is no published work
on few-shot open-world learning (FSOWL). For comparison,
we extend the SOTA FSCIL approach (CEC) for FSOWL
as a strong baseline and compare our proposed method on
benchmarks conventionally adapted for FSCIL.

2.4 Self-Supervised Learning

Self-supervised learning is an active research area where
many approaches have emerged in recent years to learn better
feature representations without any supervision and labeling.
Self-supervised learning has been accomplished by solving
a pretext task [38–40, 54, 75, 78, 79, 105, 106] using con-
trasting loss [27, 45], by clustering [17, 18] the underlying
deep features, or by knowledge distillation [20, 64]. Gener-
ally, models learned in a self-supervised manner are eval-
uated on the downstream task of object recognition, using
ImageNet-2012 [85], by training a classification head. How-
ever, there have been recent studies where self-supervised
learning has also been explored for other downstream tasks
such as incremental/open-world learning [16, 34], continual
learning [37], and novel class discovery and recognition [41].
Inspired by these recent advances, we explore the suitability
of self-supervised learning for challenging VFSCIL, and VF-
SOWL problems. While there has been a recent surge in self-
supervised approaches [5, 8, 24, 29, 53, 64–66, 68, 92, 95, 98],
in this paper we have used self-supervised features based on
Moco-v2 [28], and DeepCluster-v2 [18].

3 Problem Statement

Herein, we first review the formulation of few-shot class in-
cremental learning (FSCIL). Then we extend it for few-shot
open-world learning (FSOWL). Subsequently, we generalize
them to make both problems variable (Up-to N-ways, Up-to
K-shots) rather than fixed (N-ways, K-shots), which are the
primary problems in this paper.

Few-Shot Class Incremental Learning (FSCIL) Like
CIL, in FSCIL, the objective of the underlying model is
also to learn new concepts while retaining the knowledge
of old ones. But unlike CIL, in FSCIL, very few la-
beled samples per class become available to the learner
in each incremental session. Following [88, 104], let
{D0

train,D1
train, · · · ,Dn

train} be the training sets for n in-
cremental sessions and class labels for i-th session i.e.,
Di

train is denoted by Ci. The classes added in different
sessions do not have any overlap i.e., 8i, j where i 6=
j, Ci \ Cj = ;. After each incremental session i, the model
is evaluated on test data belonging to the current session and
classes seen in all previous sessions, i.e., C0 [ C1 · · · [ Ci.
In FSCIL, it is conventional [88] to have way more training
data in the base session (D0

train) than in the incremental
sessions where N-way K-shot setting is employed, i.e., each
incremental session has N fixed number of classes and only
K samples per class are available. For our approach, we
assume there exists another unlabeled data set Du

train that is
disjoint with data for any of the sessions in FSCIL and used
for self-supervised training.

Few-Shot Open-World Learning (FSOWL) Open-
world learning is a general problem where instead of pro-
viding the agent with all the training samples from an in-
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cremental session, the agent is required to detect training
samples from the subsequent session as unknown/novel. The
agent then can be provided with the labels for all the training
samples irrespective of its detection performance (i.e., incre-
mental learning + unknown detection ), or can be provided
labels for only samples that have been detected correctly (i.e.,
true open-world learning). This work explores open-world
learning in a few-short setting where the agent is provided
fewer samples in each incremental session like FSCIL. The
agent is not only evaluated on its incremental recognition per-
formance on all the classes enrolled so far (C0 [ C1 · · ·[ Ci),
but also its capability of detecting samples belonging to these
classes as knowns and samples from classes of subsequent
incremental session (Ci+1) as unknowns. Like FSCIL, the
number of ways and shots per concept would also be fixed
in FSOWL.

Fixed vs Variable In a fixed version of the above prob-
lems (FFSCIL/FFSOWL), the values of N and K are pre-
specified and fixed for the experiment. While this simplifies
experimental protocols and was a good first start in this prob-
lem space, these assumptions rarely hold true for practical
deployment applications. In the variable (Up-to N-ways,
Up-to K-shots) variants of FSCIL and FSOWL, we relax
the assumptions of having a fixed number of classes per in-
cremental session and a fixed number of shots per class. In
the variable version, there can be up-to N-ways i.e., we can
have as few as one class in an incremental session. Similarly,
there could be up-to K-shots i.e., and we can have only a
single sample for a class. The evaluation for VFSCIL and
VFSOWL stays the same as that for FSCIL and FSOWL,
respectively. An agent is still evaluated on all the test sam-
ples belonging to the classes enrolled so far. In VFSCIL, an
agent can use the supplied labels to determine the number
of classes for that round; in VFSWOL, agents determine the
unknowns, which means they can have different numbers of
classes in any round complicating evaluation. A VFSOWL
agent may fail to detect and enroll samples from a specific
class but is still evaluated on that specific class’s test samples.
Consistently with FSCIL protocol [88], we assume the base
training session has relatively much more data.

4 Method

The overall architecture of our proposed approach Few-Shot
Self-Supervised System (FeSSSS) is comprised of: the fea-
ture extraction, the feature fusion, the linear classifier, and
the unknown detection module for open-world learning. Be-
low, we describe each module of our pipeline, code is avail-
able on GitHub along with the extended baseline and the
experimental setup files for proposed framework.

4.1 Feature Extractors

A typical deep learning model can be thought of as a com-
position of a feature extractor x̂ = f(x; ✓) followed by a

classification head c(x̂;�); where ✓, and � are learnable pa-
rameters, and x (an image), x̂ (feature vector) are the inputs
for respective modules. During training, these parameters
are learned using data in a supervised or self-supervised man-
ner depending upon the setting. In our hybrid framework
FeSSSS, we train one deep model (fs(x; ✓s), cs(x̂;�s)) us-
ing data from base session D0

train in a supervised manner,
and another network (fss(x; ✓ss), css(x̂;�ss)) is trained on
Du

train in a self-supervised manner. We do not assume any
fixed task for the self-supervised model and it can be learned
in any conventional manner, i.e., using a pretext task, em-
ploying contrastive loss, through clustering, or knowledge
distillation. Once the two models are trained fully on their re-
spective datasets, their classification heads are discarded and
outputs from feature extractors fs(x; ✓s), fss(x; ✓ss) are nor-
malized to have unit L2 norm yielding (x̄s, x̄ss) which are
then used as input to the lightweight classification module.

4.2 Feature Fusion and Classification Module

Our model operating in the incremental setting is comprised
of a lightweight network lc(✓c) that has two fully connected
layers followed by a Softmax. It takes concatenated normal-
ized feature vectors x̄t = (x̄s|x̄ss) as input and provides the
probability vector for n classes that have been enrolled up
to the current incremental session. The number of nodes
in the intermediate feature fusion layer is set to half of the
feature dimension of the concatenated vector x̄t, whereas
the number of output nodes is equal to the total number of
classes enrolled so far and grow with each incremental ses-
sion. In each incremental session, up-to N new nodes are
added where nodes being added are different in each incre-
mental session, but never more than N and could also be zero.
In an open-world learning scenario, only classes detected as
unknowns are enrolled, and the agent may end up enrolling
no new classes in an incremental session as it was unable to
detect those samples as unknowns. The lightweight module
is initially trained with data from base classes, giving the
initial training of feature fusion considerably more data.

In each incremental session the lightweight model lc(✓ic)
is initialized with weights from the previous session ✓i�1

c

and up-to N more nodes are added to the output layer. The
weights for these new connections are randomly initialized.
After training each incremental session, the model is evalu-
ated on test samples belonging to all classes that have been
enrolled so far. Importantly, the weights between the input
normalized concatenated features are retained so that the
system continues to better learn feature fusion over time.
The new nodes, while randomly initialized, can exploit those
fused features. If the system only used a simple linear classi-
fier (linear layer), even retaining weights for known classes
would not allow learning to fuse since the new classes would
have no access to that information.
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4.3 Unknown Detection

We use a simple Softmax thresholding approach [46] for
detecting unknowns, determined based on the fixed true
positive rate (TPR) on the base session; the chosen threshold
is then used through all the subsequent incremental sessions.
More sophisticated novelty/unknown detection approaches
can be plugged directly into our pipeline. Still, here we focus
on introducing the new problem setup and not after getting
the absolute best performance.

5 Experiments and Results

We conducted our experiments on two established bench-
mark datasets which are commonly employed for FSCIL
i.e., Caltech-UCSD Birds-200-2011 (CUB200) [91], and
miniImageNet [85]. We exclude CIFAR100 [56]), also often
used for FSCIL evaluation because, in our opinion, is im-
practical (32⇥ 32 sized images). Thus it does not add much
to evaluation. Below we list the details about datasets, exper-
imental settings and subsequently provide results comparing
our approach against the extended baseline.

5.1 Data Sets

Caltech-UCSD Birds-200-2011 CUB200 [91] is a fine-
grained image classification dataset originally comprised of
5994 training and 5794 test images belonging to 200 classes
of birds. Following FSCIL protocol [88] we use the first
100 classes as the base session, and the remaining 100 are
distributed in either 15 or 30 incremental sessions depending
upon the experimental setting. However, unlike [88] the 100
incremental classes are not distributed equally; rather each
incremental session may have up-to N classes. For training,
the base session is still comprised of 30 samples per class,
whereas for the incremental session, we explore 4 settings,
where N and K could be 5 or 10. Specifically we generated
(i) Up-to 10-ways, Up-to 10-shots, (ii) Up-to 10-ways, Up-to
5-shots, (iii) Up-to 5-ways, Up-to 5-shots, and (iv) Up-to
5-ways, Up-to 10-shots, and for each experimental setting 5
different experiments are generated. There are 15 incremen-
tal sessions for each of the first two settings and 30 for the
other two. It should be noted that all test examples belonging
to the enrolled classes at any given incremental session are
used for evaluation for class incremental learning and the
incremental module of the open-world agent.

miniImageNet miniImageNet is a small subset of
ImageNet-2012 [85] comprised of 100 classes, each hav-
ing 600 images; 500 training, and 100 test images. Tao et
al. [88] split the 100 classes into 60 base and 40 incremental
classes. Following [88] we retain the same 60 classes as the
base session while the remaining 40 classes are distributed
in either 7 or 14 incremental sessions depending upon the
experimental setting. We employ the same 4 experimental
settings for miniImageNet as described for CUB200.

5.2 Training Details

For incremental learning experiments, the baseline CEC ap-
proach is trained following the same training setup as in
authors’ original code [104] and changes are made to make
it work with different numbers of incremental sessions and
variables N and K. For open-world learning, a thresholding
approach is incorporated to detect and enroll the unknowns
while other training parameters such as learning rate sched-
ule, number of epochs, temperature etc. stay the same for
each incremental session as reported in [104]. It should be
noted that CEC adapts a cosine layer as the classification
layer instead of Softmax, so a fixed TPR is employed for a
fair comparison between CEC and the proposed to choose
their respective thresholds using base session data.

Following existing approaches on FSCIL, for supervised
training on the base session, ResNet-18 is used for both
CUB200 and miniImageNet datasets. For our feature fusion
approach, we use a model from CEC [104] trained on base
session data (D0

train) to provide the supervised features. For
self-supervised features, we use models trained on ImageNet-
2012 [85] and OpenImages-v6 [59] respectively for exper-
iments on CUB200, and miniImageNet. Specifically, we
use ResNet-50 models trained by DeepCluster-v2 [18], and
Moco-v2 [28] respectively for miniImageNet, and CUB200.
In a separate evaluation [2], DeepCluster-v2 and Moco-v2
performed best for FSCIL evaluation compared to other ex-
plored self-supervised approaches, including SwAV [19],
and SeLa-v2 [4], and hence used here for VFSCIL and VF-
SOWL. The mismatch of the disjoint dataset (Du

train) is
imposed to enforce no overlap between the datasets used for
supervised and self-supervised models.

To enhance the training data for the classification module,
we extract features from both supervised and self-supervised
models using various augmented versions of each image in
each incremental session. For each dataset, we use the same
augmentations as originally employed by CEC [104].

The classification module is trained for 500 epochs at a
learning rate of 0.1 for the base session. We use the same
number of epochs for each incremental session but a lower
learning rate of 0.001. A batch size of 256 is used for both
base and incremental training. We further employ class
balancing to emphasize the importance of old class centroids.
We choose the model saved with the last epoch for each
incremental session, not the best performing one on the
test set. This is because there is no held-out validation set
because there are so few samples, and we did not want to
tweak the test set that might result in marginal improvement.
On the other hand, CEC pipeline is set by respective authors
to save the best performing checkpoint on the validation data.
For experiments on CUB200, images are resized to 256
maintaining aspect ratio, and then 224⇥ 224 random crops
or horizontally flipped random crops are used for training.
For miniImageNet, we follow CEC [104] and resize images
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Table 1. Comparison of FeSSSS with the state-of-the-art FFSCIL on CUB200 dataset. ‡ indicates results reported in [104], * identifies the
few-shot approaches adapted by [104] for FSCIL, and † shows the results for approaches taken from their respective papers. Our relative
performance gain with respect to each approach in terms of average incremental accuracy is noted in the last column. Using a two-sided
t-test with each iteration as the data, our approach is statistically significantly better than the state-of-the-art with p < .0001

FFSCIL Performance on CUB200

Method Acc. in each session (%) " Avg. " our relative
improvement0 1 2 3 4 5 6 7 8 9 10

TOPIC‡ [88] 68.68 62.49 54.81 49.99 45.25 41.4 38.35 35.36 32.22 28.31 26.28 43.92 +18.93

LEC-Net† [100] 70.86 58.15 54.83 49.34 45.85 40.55 39.70 34.59 36.58 33.56 31.96 45.08 +17.77

SS-iCaRL† [31] 69.89 61.24 55.81 50.99 48.18 46.91 43.99 39.78 37.50 34.54 31.33 47.28 +15.57

SS-NCM† [31] 69.89 61.91 55.51 51.71 49.68 46.11 42.19 39.03 37.96 34.05 32.65 47.33 +15.52

SPPR† [109] 68.68 61.85 57.43 52.68 50.19 46.88 44.65 43.07 40.17 39.63 37.33 49.32 +13.53

SS-NCM-CNN† [31] 69.89 64.87 59.82 55.14 52.48 49.60 47.87 45.10 40.47 38.10 35.25 50.78 +12.07

Decoupled-DeepEMD‡ [103]* 75.35 70.69 66.68 62.34 59.76 56.54 54.61 52.52 50.73 49.20 47.60 58.73 +4.12

Decoupled-Cosine‡ [90]* 75.52 70.95 66.46 61.20 60.86 56.88 55.40 53.49 51.94 50.93 49.31 59.36 +3.49

ERL† [35] 73.52 70.12 65.12 62.01 58.56 57.99 56.77 56.52 55.01 53.68 50.01 59.93 +2.92

ERL++† [35] 73.52 71.09 66.13 63.25 59.49 59.89 58.64 57.72 56.15 54.75 52.28 61.18 +1.67

CEC‡ [104] 75.85 71.94 68.50 63.5 62.43 58.27 57.73 55.81 54.83 53.52 52.28 61.33 +1.52

FeSSSS (Ours) 79.60 73.46 70.32 66.38 63.97 59.63 58.19 57.56 55.01 54.31 52.98 62.85

Table 2. Comparison of FeSSSS with the state-of-the-art on miniImageNet data set. ‡ indicates results copied from CEC [104], * identifies
the few-shot approaches adapted by [104] for FSCIL, and † shows the results for approaches taken from their respective papers. Further ⇧

identifies that the results have been approximated from graphs since tabular results are unavailable from respective papers.
FFSCIL Performance on miniImageNet

Method Acc. in each session (%) " Avg. " our relative
improvement0 1 2 3 4 5 6 7 8

LEC-Net† [100] 61.31 35.37 36.66 38.59 33.90 35.89 36.12 32.97 30.55 37.92 +30.31

TOPIC‡ [88] 61.31 50.09 45.17 41.16 37.48 35.52 32.19 29.46 24.42 39.64 +28.59

ERL†⇧ [35] 61.67 56.19 54.70 51.19 47.61 45.23 44.0 40.95 39.8 49.03 +19.20

ERL++†⇧ [35] 61.67 57.61 54.76 51.67 48.57 46.42 44.04 42.85 40.71 49.81 +18.42

SS-NCM-CNN†⇧ [31] 62.88 60.66 57.55 52.66 50.44 48.44 45.11 41.55 40.88 51.13 +17.10

Decoupled-DeepEMD‡ [103]* 69.77 64.59 60.21 56.63 53.16 50.13 47.49 45.42 43.41 54.53 +13.70

Decoupled-Cosine‡ [90]* 70.37 65.45 61.41 58.00 54.81 51.89 49.10 47.27 45.63 55.99 +12.24

CEC‡ [104] 72.00 66.83 62.97 59.43 56.70 53.73 51.19 49.24 47.63 57.74 +10.49

SPPR†⇧ [109] 80.0 74.0 68.66 64.33 61.0 57.33 54.66 51.66 49.0 62.29 +5.94

FeSSSS (Ours) 81.5 77.04 72.92 69.56 67.27 64.34 62.07 60.55 58.87 68.23

to 92 and then 84⇥84 random or horizontally flipped random
crops are used. During an evaluation, only central crop-based
features are concatenated and forward passed through the
trained classification module for each image.

Table 3. Incremental learning comparison of FeSSSS against ex-
tended CEC on CUB200 dataset across all experimental settings.
Mean (µ) and standard deviation (�) for 5 experiments per each
experimental setting is provided.

VFSCIL Performance

experimental setting FeSSSS CEC
µ � µ �

Up-to 10-Ways, Up-to 10-Shots 62.05 1.46 59.12 1.69
Up-to 10-Ways, Up-to 5-Shots 60.67 0.53 57.82 0.94
Up-to 5-Ways, Up-to 5-Shots 60.70 0.81 58.02 0.79
Up-to 5-Ways, Up-to 10-Shots 61.60 1.36 58.67 1.14
Avg " 61.26 1.18 58.41 1.21
Gain over CEC +2.85 - - -

5.3 Evaluation Metrics

For VFSCIL experiments, we adopt the conventional met-
ric used for FFSCIL i.e., classification accuracy for each
session and the average incremental accuracy. For each ses-
sion, all validation samples belonging to the enrolled classes
are used for evaluation. To establish a fair comparison be-
tween VFSOWL methods, a fixed true positive rate (TPR)
is decided which is used to determine the system threshold
using the data belonging to the base session. The determined
threshold stays fixed throughout the incremental sessions.

We have used a 95% TPR for comparing baseline and our
approach. An ablation on varying this TPR is also provided.
To measure the performance of VFSOWL approaches, we
report average incremental accuracy, average incremental
unknown detection accuracy (UDA), average incremental
known detection accuracy (KDA), and average incremental
total detection accuracy (TDA) for the validation data, and
average incremental unknown detection accuracy (UDA Tr.)
for the training data in the incremental sessions. The recogni-
tion accuracy is reported for the current session, whereas the
binary detection accuracies are reported for the subsequent
incremental sessions.

5.4 Results

We focus on the results and ablations for the CUB200 dataset
in the main paper and provide results for miniImageNet in
the supplemental. CUB200 is more challenging as there are
fewer samples (3K) and more classes (100) in the base ses-
sion compared to miniImageNet (30K samples, 60 classes).

Comparison Against SOTA FSCIL For completeness,
we document our FSCIL results on CUB200, and miniIma-
geNet in Tabs. 1, and 2 respectively, comparing our feature
fusion approach against latest state-of-the-art FSCIL meth-
ods [31, 35, 88, 100, 104, 109] and outperform each one of
them by a significant margin. To emphasize the relative per-
formance gain, we report the average incremental accuracy
in second-to-last column and percentage improvement due
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Figure 2. Incremental recognition accuracy for CUB200 for 4 experimental settings. For each setting, average over the five experiments
along with the standard deviation in terms of error bars are plotted for both extended baseline (CEC) and our proposed approach FeSSSS. In
each experimental setting, FeSSSS outperforms CEC baseline by a large margin.

to our approach in the last column. Since FSCIL is not the
main contribution of the paper, we focus on VFSCIL, and
VFSOWL evaluation.

VFSCIL Fig. 2 depicts the comparison of FeSSSS
against extended CEC where incremental recognition ac-
curacy for each of the 4 experimental settings is plotted as
a session-wise average along with the error bars reflecting
the standard deviations for each set of experiments. We can
note that FeSSSS outperforms extended CEC in each exper-
imental setting and in each incremental session. For both
methods, performance drops more rapidly in experimental
settings where more ways are introduced in fewer incremen-
tal sessions i.e., (i) Up-to 10-Ways, Up-to 10-Shots, and (ii)
Up-to 10-Ways, Up-to 5-Shots. Comparatively, for the other
two settings, the drop in average incremental accuracy is
more gradual. It should also be noted that even for the base
session, FeSSSS has higher accuracy than that of extended
CEC. Tab. 3 demonstrates the experimental-setting-wise
average incremental accuracy and overall average incremen-
tal accuracy with respective standard deviations. Overall,
FeSSSS outperforms CEC by about 3.0% performance gain
averaged across all experiments.

VFSOWL Tab. 4 provides the results for VFSOWL for
FeSSSS and extended CEC baseline where thresholds for
both approaches are determined at a 95% TPR on the base
session. Averages of all the metrics mentioned above are
reported. Each metric is first averaged across all incremental
sessions and then across all experiments in each experimen-
tal setting. We should note that recognition accuracy is
reported for each incremental session, whereas detection
performances are reported for data from subsequent ses-
sions. Tab. 4 demonstrates that FeSSSS outperforms CEC
on 4 out of 5 metrics. Understanding the relation between
UDA, KDA, and TDA is very important for open-world
learning. Although CEC performs better than FeSSSS in
terms of UDA, that is at the expense of declined KDA and

consequently dropped TDA. It is interesting to note that un-
known detection accuracy for incremental training data of
both methods is below 50%, which means they could only
enroll about half of the training data in each session.

5.5 Ablations

Varying TPR The value of true positive rate (TPR%) plays
a critical role as a trade-off between incremental recognition
performance and unknown detection accuracy. Tab. 5 pro-
vides the comparison between FeSSSS and CEC on CUB200
dataset when a 90% TPR is used to determine the threshold.
Comparing Tabs. 4, and 5 we can see that although the UDA
has increased for both training and validation data, KDA and
TDA have declined, and resultantly the recognition perfor-
mance (Acc) has also dropped. We should note that FeSSSS
still outperforms CEC on 90% TPR as well.

Importance of Feature Fusion For our proposed ap-
proach, we relied on the fusion of supervised and self-
supervised features. In an ablation, we studied the role
of these features independently. Training two-layer MLP on
either of the feature representations alone results in lower
performance than using fused features. Tab. 6 documents the
results comparing the performance of classification module
trained on independent feature representation; either of these
resultant systems underperforms the extended CEC baseline.

Updated Supervised Features for Feature Fusion For
FeSSSS, the supervised features are extracted from the
model trained on data belonging to the base session. It is
natural to question if extracting supervised features from an
updated model with each incremental session would help im-
prove the performance. Tab. 7 addresses this question where
we can see extracting supervised features from updated in-
cremental models results in marginal gain for FeSSSS.

6 Limitations

Unlike the real world, where incremental sessions are not pre-
determined, the current evaluation assumes a fixed number
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Table 4. Comparison of FeSSSS with the extended baseline (CEC) on CUB200 dataset for open-world learning at a 95% TPR. For both
methods, we report averages of the average incremental accuracy (Acc), average unknown detection accuracy (UDA), average known
detection accuracy (KDA), average total detection accuracy (TDA) for 4 experimental settings. We further report the average of average
unknown detection accuracy (UDA-Tr.) for the training data belonging to incremental sessions. The average across all experiments are
documented in second-to-last row, and performance gain over CEC is noted in the last row.

VFSOWL Performance @ 95% TPR

experimental setting FeSSSS CEC
Acc UDA KDA TDA UDA-Tr. Acc UDA KDA TDA UDA-Tr.

Up-to 10-Ways, Up-to 10-Shots 57.83 37.12 78.20 76.19 48.05 52.45 50.18 68.46 67.37 48.24
Up-to 10-Ways, Up-to 5-Shots 56.48 37.50 77.04 75.10 47.75 52.18 48.12 70.25 68.96 46.96
Up-to 5-Ways, Up-to 5-Shots 56.60 34.55 81.86 80.73 46.11 53.13 46.27 74.67 73.95 29.77
Up-to 5-Ways, Up-to 10-Shots 57.69 33.75 82.23 81.05 42.18 51.85 53.04 70.17 69.61 41.15
Avg " 57.15 35.73 79.83 78.27 46.02 52.40 49.40 70.89 69.97 41.53
Gain over CEC +4.75 -13.67 +8.94 +8.30 +4.49 - - - - -

Table 5. Comparison of FeSSSS with the extended baseline (CEC) on CUB200 dataset for open-world learning at a 90% TPR. For both
methods, we report averages of the average incremental accuracy (Acc), average unknown detection accuracy (UDA), average knowns
detection accuracy (KDA), average total detection accuracy (TDA) for 4 experimental settings. We further report the average of average
unknown detection accuracy (UDA-Tr.) for the training data belonging to incremental session.

VFSOWL Performance @ 90% TPR

experimental setting FeSSSS CEC
Acc UDA KDA TDA UDA-Tr. Acc UDA KDA TDA UDA-Tr.

Up-to 10-Ways, Up-to 10-Shots 55.35 51.01 69.97 68.96 62.09 49.20 64.65 59.98 59.97 58.90
Up-to 10-Ways, Up-to 5-Shots 54.16 50.63 69.29 68.28 62.90 49.10 62.71 61.37 61.17 55.38
Up-to 5-Ways, Up-to 5-Shots 54.98 51.65 73.02 72.49 61.76 50.30 63.53 64.69 64.61 40.37
Up-to 5-Ways, Up-to 10-Shots 55.18 48.44 73.82 73.16 58.51 48.47 68.73 60.57 60.61 52.30
Avg " 54.92 50.43 71.53 70.72 61.31 49.27 64.91 61.65 61.59 51.74
Gain over CEC +5.65 -14.48 +9.88 +9.13 +9.57 - - - - -

Table 6. Ablation demonstrating the importance of fused features.
Classification module trained on either of the independent represen-
tations performs poorly than CEC. Mean of average incremental
accuracy for 5 experiments per experimental setting is provided.

VFSCIL Performance

experimental setting FeSSSS Self-Supervised Supervised

µ µ µ
Up-to 10-Ways, Up-to 10-Shots 62.05 54.49 57.40
Up-to 10-Ways, Up-to 5-Shots 60.67 52.78 56.41
Up-to 5-Ways, Up-to 5-Shots 60.70 53.21 56.63
Up-to 5-Ways, Up-to 10-Shots 61.60 53.70 56.99
Avg " 61.26 53.54 56.86
Gain over CEC +2.85 -4.87 -1.55

Table 7. Ablation exploring performance gain if supervised features
are extracted from updated model adapted with each incremental
session instead of base-session model. The performance gain is
understandably minimal as base classes still dominate.

VFSCIL Performance

experimental setting FeSSSS – base FeSSSS – incremental

µ µ
Up-to 10-Ways, Up-to 10-Shots 62.05 62.36
Up-to 10-Ways, Up-to 5-Shots 60.67 60.81

that is essential for comparing approaches. The current up-
to N-ways, up-to K-shots evaluation applies to a few-shot
setting; its applicability to general class incremental and
open-world learning is yet to be explored. FeSSSS and
extended CEC baseline assume the presence of an oracle
that provides ground truth labels for correctly detected novel
samples; this assumption can be relaxed as a future work
in an unsupervised setting where clustering can be used to
provide pseudo labels and becomes closer to [52]. In the

current evaluation of VFSCIL/VFSOWL, the lower bound
of N and K is by default fixed to 1; in an extension, a more
constrained setting of M-to-N-ways, J-to-K-shots can further
be explored where both upper and lower ends are bounded.
The current evaluation is conducted in a curricular fashion
where classes in incremental sessions do not overlap.

7 Conclusions

In this work, we generalized beyond existing fixed few-shot
class incremental learning, proposing the more realistic Vari-
able Few Shot Class Incremental Learning (VFSCIL) where
a learning agent can expect up-to N-ways, up-to K-shots per
incremental session. We also introduced the variable few-
shot variant of open-world learning i.e., VFSOWL. State-
of-the-art fixed FSCIL is extended as a baseline to operate
in both VFSCIL and VFSOWL. Our proposed approach is
demonstrated to outperform existing SOTA FFSCIL methods
and the extended baseline on both introduced problems using
extensive experiments. Ablations were conducted to shed
light on the importance of feature fusion and the trade-off
between recognition performance and unknown detection
accuracy. Next, we plan to investigate variable class incre-
mental and open-world learning where data in incremental
sessions is not scarce.
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