This CVPR workshop paper is the Open Access version, provided by the Computer Vision Foundation.

Except for this watermark, it is identical to the accepted version;
the final published version of the proceedings is available on IEEE Xplore.

Entropy-based Stability-Plasticity for Lifelong Learning

Vladimir Araujo'?# Julio Hurtado>3} Alvaro Soto?, Marie-Francine Moens'
'KU Leuven, ?Pontificia Universidad Cat6lica de Chile, *University of Pisa

vgaraujo@uc.cl, jahurtado@uc.cl, asoto@ing.puc.cl, sien.moens@kuleuven.be

Abstract

The ability to continuously learn remains elusive for
deep learning models. Unlike humans, models cannot accu-
mulate knowledge in their weights when learning new tasks,
mainly due to an excess of plasticity and the low incentive
to reuse weights when training a new task. To address the
stability-plasticity dilemma in neural networks, we propose
a novel method called Entropy-based Stability-Plasticity
(ESP). Our approach can decide dynamically how much
each model layer should be modified via a plasticity factor.
We incorporate branch layers and an entropy-based crite-
rion into the model to find such factor. Our experiments in
the domains of natural language and vision show the effec-
tiveness of our approach in leveraging prior knowledge by
reducing interference. Also, in some cases, it is possible to
freeze layers during training leading to speed up in training.

1. Introduction

Humans learn continuously throughout their lives, in-
tegrating new information to their knowledge to face new
and changing environments. By contrast, artificial neural
networks learn in a bounded environment, where the in-
put distribution is assumed fixed. When the input distri-
bution changes, the model must adapt its weights to per-
form correctly on the new task. Due to those modifications,
the model overwrites previously learned patterns, creating
interference between old and new tasks, causing a prob-
lem known as catastrophic forgetting [29, 34]. This exces-
sive plasticity in the model is part of the stability-plasticity
dilemma [31, 44], which addresses the trade-off between
modifying the parameters to learn a new task (plasticity)
or keeping the parameters constant (stability) to avoid inter-
ference between tasks.

Several methods have been proposed to mitigate the
stability-plasticity dilemma, focusing mainly on avoiding
the catastrophic forgetting problem. Using different tech-
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niques to mitigate interference, these methods can be di-
vided into two groups. The first group aims to restrict
weight modifications by using regularization functions [,

,49] that minimize the modifications of key weight val-
ues. The second group uses gating functions [15,27, 39]
to adaptively activate each weight depending on the context
provided by the current task or input instance.

In this work, we follow the first group by proposing a
model that aims to restrict weight modifications. We rely
on evidence showing that the lower layers of a deep learn-
ing model capture general knowledge while the upper layers
capture task-specific knowledge [20,22,47,48]. Under this
premise, in the case of a lifelong learning scenario, a model
should update its layer weights based on how general or
specific these layers should be. We propose the Entropy-
based Stability-Plasticity (ESP) method, which relies on an
entropy-based criterion to decide how much a model has to
modify the weights in each of its layers. Specifically, ESP
augments each layer of an encoder with a branch layer that
computes an entropy-based plasticity factor during the for-
ward pass, and dynamically updates the layer weights based
on these plasticity factors during the backward pass. This
way, when a new training example arrives, the model calcu-
lates how much we can update the weights of the model via
a plasticity factor. We found in our experiments that in some
cases, our method forces the model to freeze some layers,
setting their gradients to zero, which encourages reusing
past knowledge and reduces training time.

We demonstrate the effectiveness of our method experi-
mentally by running a diverse set of experiments and com-
paring our results against well-known baselines. Unlike
previous work in the field, we evaluated ESP on both, vi-
sion and natural language domains. The code is publicly
available for further replicability and future research’.

2. Related Work

Previous methods have tackle the problem of Continual
Learning (CL) using three main strategies. The first group
of methods focus on limiting the plasticity of learning new

Uhttps://github.com/vgaraujov/ESP-CL
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tasks. The typical approach penalizes weight modifications
or freezes a subset of the model. This can be achieved
by adding weight regularizations [19, 49], using masks to
freeze parts of the model [15,27,28], or based those regu-
larization on gradients behavior [4,37].

The second strategy is to use dynamic architectures
by increase network capacity and adding extra parameters
[10,36], or by finding new paths of relevant weights to solve
each task [12], freezing used weights, and limiting learn-
ing of new tasks. Other approaches use different functions
as components in the network, either Hypernetworks [45],
Deep Artificial Neurons (DANSs) [3], Compositional Struc-
tures [30,32], or novel learning strategies [16], so that net-
work components can be more flexible when learning new
tasks.

The third strategy is based on memory-based methods.
This strategy mitigate catastrophic forgetting by inserting
data from past tasks into the training process of new tasks,
continuously re-training previous tasks [13], either with
raw samples [5, 6, 35], or minimizing gradient interference
[4,25]. Later works such as [23, 40] train generator func-
tions (GANSs) or autoencoders [|8] to generate elements
from past distributions. They seek memory-efficiency by
generating examples instead of saving real data. Similarly,
[2,17] seek to be memory-efficient by saving feature vectors
of instances from previous tasks, while learning a transfor-
mation from the feature space of past tasks to current ones.
Other works use memory to create prototypes that can rep-
resent classes [7, 35], either for use as distillation or classi-
fication vectors.

3. Method

In this work, we consider a lifelong (continual) learn-
ing setup. Each task ¢ consists of a new data distribution
Dt = (Xt Y"), where X' denotes the input instances and
Y? denotes the instance labels. The goal is to train a clas-
sification model f : X — Y using data from a sequence
of T tasks: D = {D!, ..., DT}. Following the Class Incre-
mental Learning setup for CL [42], each task is presented
sequentially to the model without a task descriptor. Also, in
our setup, we only allow each item to be viewed once, such
as in online learning scenarios [8,20].

A model in this configuration consists of an encoder and
a decoder. The encoder takes an input « and produces a vec-
tor representation. The encoder could be any kind of model,
for instance, a Transformer [43] for text classification, or a
ResNet [14] for image classification. The decoder is a lin-
ear transformation and a softmax layer to predict the class y
of an input z. Note that because there is no task descriptor,
the decoder predicts across all classes.

Next, we explain the proposed method and how it is in-
corporated into the learning process.
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Figure 1. Overview of the method. During the forward step, the
backbone processes an example and generates prediction and plas-
ticity factor values for each block (left). During the backward pass,
the plasticity factor is used to adjust the final amount of modifica-
tion each layer will have (right).

3.1. Entropy-based Stability-Plasticity (ESP)

Previous works attempt to solve the stability-plasticity
dilemma by slowing down learning on certain weights
based on how important they are to previously seen tasks
[19,49]. Although effective, these methods neglect that
some layers learn general or task-specific patterns [20, 22,

, 48] and constantly update the weights of the different
layers, resulting in interference with the acquired knowl-
edge. Based on this, ESP addresses the stability-plasticity
dilemma using a mechanism that allows the model to decide
how much each layer should be updated using an entropy-
based criterion. This method favors the reuse of previous
knowledge existing in the layers by means of little or no
modification of their weights and the specialization of the
layers in a specific task by means of a high modification of
their weights.

Under the CL setup mentioned above, an encoder could
be seen as a stack of processing blocks. As shown in Fig. 1,
ESP extends each model block ¢ with a side branch layer
Br; to generate a classification of the input x:

ji = Wi (e (W] fi(x))) QY

where f;(z) is the output of the block i, W} and W? are

trainable linear layers, and o is an activation function.
Later, the vector ; is used to compute the entropy of the

prediction probability distribution for each block:

E(ji) = i log i 2)
Finally, a plasticity factor (PF) is calculated as the com-
plementary entropy value. Note that a softmax function is
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applied first to find the proportion of entropy corresponding
to each block .

PF = (1 — softmaz(E(Y))) 3)

This whole process is slightly similar to previous work
using branch classifiers and entropy for early exiting [ 11,41,

,51]. However, in this case, the calculated factors provide
the proportion by which the weights of each model layer
should be modified. Intuitively, a high value of PF (low
entropy) leads to a high modification of the weights, spe-
cializing them for the task. On the other hand, a low value
of PF (high entropy) leads to smaller changes in weights,
reducing interference and catastrophic forgetting.

3.2. Training

Analogous to EWC and SI, which have an additional step
to find the importance of each weight after each new task,
ESP needs to update each block’s branch layers Br before
training a new task. To do that, we first freeze the encoder
and decoder and train only the attached layers with a subset
of the training set (e.g., replay set). We train the layers as
a classification problem, where the output of each layer is
compared with ground truth using a Cross Entropy loss.

Loss; = CrossEntropy (¥, yi) (€))

Then, to train the backbone (encoder and decoder), the
branch layers must be frozen. The reason for freezing the
branch layers is to maintain the optimal quality of the de-
coder classifier. If the branch layers are not frozen, the
model layers will no longer be optimized solely for the de-
coder classifier, which generally worsens its quality. Em-
pirically, we found that joint optimization of branch layers
and the backbone also leads to worst results.

This training step uses the information provided by the
frozen branch layers to self-regulate the weight update.
During the forward pass (Fig. 1 left), the model generates
an output y and each Br generates the corresponding PF.
During the backward pass (Fig. 1 right), the PF’ scales the
gradient of the corresponding block to control the modifi-
cations that the task wants to make to the model. Note the
encoder and decoder are optimized with the same loss func-
tion of Eq. (4). The training of the model with ESP is sum-
marized in Algorithm 1.

4. Experiments

In this paper, we test our approach in the domains of
natural language and vision. For a fair and consistent com-
parison, we use the same CL setup (explained in Sec. 3) and
the same baselines for both domains.

Algorithm 1: ESP Training Process

Components:

o D?: Dataset for task t.
e F': Model.
¢ B(C'" Branch Layers.

BC < TrainBC(F, D)
for x,y to D* do
# Forward pass
PF,§ + F(x)
Vg < Loss(y, )
# Backward pass
Vgnew < UpdateGrad(PF,Vg)
F + UpdateModel(F, V gnew)
end

4.1. Baselines

One of the most reliable approaches to overcoming
catastrophic forgetting is Replay [13]. It involves storing a
subset of previous inputs (e.g., sentences) and mixing them
with more recent inputs to update the model. The replay
subset is usually a percentage of data randomly taken from
the training set of previous tasks. As our baseline, we use a
standard replay strategy with commonly used percentages.

To compare our method, we consider several well-known
methods that attempt to address the stability-plasticity
dilemma to apply to our primary baseline. We provide a
brief description of each below:

1. Stability: A method that keeps the encoder weights
fixed and trains only the decoder (classifier).

2. Plasticity: A method with complete freedom to train
the encoder and decoder (classifier).

3. Linear Plasticity: A method that, similarly to ESP,
uses a factor to scale the gradient of each block. The
factors are linearly spaced between 0 and 1 with re-
spect to the model’s number blocks, where 0 is for the
first block and 1 for the last one.

4. O-EWC: Online EWC [38] introduces a regulariza-
tion term involving the Fisher information matrix that
indicates the importance of each of the parameters to
previous tasks.

5. SI: Synaptic Intelligence [49] adjusts the plasticity of
the model by regularizing the modification of these im-
portant weights with a coefficient.

We also consider the class imbalance issue in our ex-
periments. We train all methods in two scenarios: (1) using
ONLY the replay set items, similar to [33] but without using
a fixed amount of data, and (2) combining ALL data from
the current task with the replay set. In the latter case, there
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Replay
10% 20% 30% 40% 50%
Stability 67.8 68.8 69.1 694 69.7
Plasticity 76.6 769 769 768 76.9
Linear Plasticity | 76.8 77.1 769 770 77.1
O-EWC 76.8 76.8 769 769 77.1
SI 76.7 76.6 769 769 772
ESP 769 773 7711 712 718

Table 1. Text classification results using replay set concatenated
with ALL the training set.

Replay
10% 20% 30% 40% 50%
Stability 633 66.8 68.0 686 689
Plasticity 749 75.6 763 766 76.8
Linear Plasticity | 74.7 75.8 762 76.6 769
O-EWC 743 757 762 765 763
SI 74.6 760 762 766 769
ESP 750 761 766 769 77.3

Table 2. Text classification results using ONLY replay set.

could be a significant class imbalance, but a more consider-
able amount of data would be available to train the model.

4.2. Natural Language
4.2.1 Implementation Details

We use BERT [9], a Transformer-based [43] pre-trained lan-
guage model, as the encoder. As decoder, following original
BERT model, we use the first token (special token [CLS])
of the sequence and a classifier to predict the class. In ad-
dition, we use the default BERT vocabulary in our experi-
ments. We use Adam optimizer with a learning rate of 3>
and a training batch of size 32.

4.2.2 Datasets

We use publicly available text classification datasets from
[50]: (1) AGNews classification, (2) Yelp sentiment anal-
ysis, (3) Amazon sentiment analysis, (4) DBPedia article
classification and (5) Yahoo questions and answers cate-
gorization. We follow the same data processing described
in [8]. In total, we have 575,000 training examples and
38,000 test examples with 33 classes from all datasets. In
addition, we use the originally proposed dataset orders:

(1) Yelp — AGNews — DBPedia — Amazon — Yahoo
(ii) DBPedia — Yahoo — AGNews — Amazon — Yelp
(iii) Yelp — Yahoo — Amazon — DBpedia — AGNews
(iv) AGNews — Yelp — Amazon — Yahoo — DBpedia

Replay
1% 2% 3% 4% 5%
Stability 159 17,5 18.0 203 199

Plasticity 20.1 291 36.6 40.1 423
Linear Plasticity | 20.3 26.1 289 34.6 39.7

O-EWC 16.5 19.7 254 293 346
SI 23.0 299 388 404 438
ESP 21.8 31.8 391 386 40.6

Table 3. Image classification results using replay set concatenated
with ALL the training set.

Replay
1% 2% 3% 4% 5%
Stability 158 229 263 283 29.0

Plasticity 28.0 373 426 466 503
Linear Plasticity | 24.6 32.6 39.6 43.6 455

O-EWC 29.2 378 40.1 457 475
SI 289 385 440 471 49.6
ESP 26.0 36.1 412 462 485

Table 4. Image classification results using ONLY replay set.

4.2.3 Results

Our results in the natural language experiments are shown
in Tab. 1 and Tab. 2. The Plasticity model performs well
compared to the Stability version. This was expected be-
cause the Stability model limits the flexibility of the model
to acquire new knowledge. Interestingly, the Linear Plastic-
ity model outperforms the Plasticity model in almost all ex-
periments, supporting the hypothesis that lower blocks need
minor updates, and modifying higher blocks leads to better
results. On the other hand, we find that O-EWC and SI per-
form similarly or even worse than the Plasticity model in
some cases. This is because these methods perform better
under a setup in which a task id is provided.

In contrast, ESP outperforms all baselines when trained
on all experiments. We found that the increase in perfor-
mance is consistent in the ONLY and the ALL scenarios.
Overall, ESP achieves an accuracy gain of 0.34 and 0.44
points on average (across all replay percentages) over SI
and O-EWC, respectively. ESP also exceeds Linear Plastic-
ity, which means that dynamic plasticity factors are useful
to avoid forgetting.

4.3. Vision
4.3.1 Implementation Details

For the visual experiments, as encoder we use a pre-trained
ResNet-18 [14], and following previous works, a linear
classifier for the decoder. Instead of using a branch clas-
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Figure 2. Average plasticity factor per block across all tasks. % represents the percentage amount of replay.

sifier for each layer, here we use a branch classifier for each
block of ResNet. The output of each block is reduced to one
element per channel by averaging the values of the activa-
tion maps, this vector goes through the branch functions to
find the scores.

We use SGD as our optimizer, using a learning rate of
le~? and momentum factor equal to 0.9. We run all of our
experiments using a batch size of 32. For EWC and SI, we
try different values of regularization coefficient, at the end
we use 2000 for EWC and 0.1 for SI.

4.3.2 Datasets

Following previous works [49], we use CIFAR10 [21]
equally divided into 5 tasks. We use the implementation
from Avalanche [24] to generate the different sequence. We
run each experiments 3 times with different seeds and we
average the results.

4.3.3 Results

Similar to the natural language experiments, we use a pre-
trained model, specifically a ResNet pre-trained on Ima-
geNet. However, a big difference between text and images
is the number of elements saved in the replay set. As im-
ages weigh more than phrases, we do experiments saving
between 1 and 5% of previous tasks.

Results shown in Tab. 3 and Tab. 4, shows that regular-
ization methods have better results than Stability, Plastic-
ity and Linear Plasticity. On the other hand, modifying the
weights without a constraint does not achieve good results
either. In general, there is no clear advantage between the
regularization methods in either of the two scenarios. We
hypothesize the results diverge from the natural language
experiments for two reasons: The first is the difference in
the number of blocks, indicating that ESP may take advan-
tage of deeper networks. The second is because there is a

difference in the input distribution between ImageNet and
CIFAR10, we expand this hypothesis a bit more in Sec. 4.4.

The motivation behind regularization methods is to re-
duce the plasticity of the model to prevent forgetting. By
minimizing the modification of relevant weights in the fu-
ture training process, these methods force future tasks to
reuse knowledge even if those patterns are irrelevant or hurt-
ful to new tasks. For this reason, we believe it is essential
for these methods to learn representations that may be use-
ful across tasks. For example, if the model weights are too
specific for a task and we freeze all layers, the model would
not find a correct classification.

Given the above, we believe that one reason why regular-
ization methods do not perform well in Class Incremental
scenarios is the inability to find good representations and
thus the need to start from a pre-trained model. To prove
this hypothesis and compare our results, we change the pre-
trained ResNet-18 to one initialize randomly. The results
show that none of the three regularizing methods has good
results, being outperformed by the Plasticity method in al-
most all replay percentages. The advantage of this method
is that it has complete flexibility to adjust the weights. This
advantage leads to the weights to learn new representations,
not tied to representations particular to the previous tasks.
It is of little use to reduce the modification of past relevant
weights if they can not be reused for future tasks.

4.4. Further Analysis

This section discusses the plasticity factors resulting
from our experiments in both domains. Fig. 2 shows the
average of the plasticity factors for our experiments on nat-
ural language (Fig. 2a) and vision (Fig. 2b).

We use a pre-trained BERT, a 12 block model for natu-
ral language. Interestingly, the plasticity factor of the lower
layers (1 to 4) is 0, and the factor constantly increases for
the upper layers. Which means null modification in the
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Figure 3. Training time comparison (in minutes) for all models
with a replay of 20%. The blue color corresponds to the training
time of the backbone and the orange color corresponds to the ad-
ditional time that the regularizer takes.

lower layers and high modification in the upper layers. Our
method leverages existing general knowledge in lower lay-
ers, which is general knowledge, while updating upper lay-
ers with task-specific knowledge.

Regarding vision, we use a pre-trained ResNet-18, a
four-block model. Here our method behaves slightly similar
to the natural language model, where the block with higher
modifications is the last one. However, unlike the natural
language results, the first block has a higher plasticity factor
than blocks 2 and 3. This result may be due to the data used
for pre-train the model. The BERT model is pre-trained on
a massive corpus of different domains and topics, promot-
ing the lower layers to be general for any task. On the other
hand, ResNet-18 was pre-trained on ImageNet, which has
much higher resolution images than CIFAR10. The basic
patterns are expected to be different between both datasets,
explaining the high plasticity factor of the first block.

In general, the plasticity factors for natural language and
vision are higher at the last layers. However, no one reaches
complete plasticity, which means those layers retain some
specialization acquired in previous tasks. Also, Fig. 2 it
shows that different amounts of percentages of replay sets
have similar results, indicating that the plasticity of the net-
work mainly depends on the current input.

Finally, we argue that ESP could be computationally ef-
ficient for cases like natural language experiments. Fig. 3
shows the training runtime of ESP and baselines under the
20% replay setup. We use a GPU NVIDIA GeForce RTX
3090 and a CPU AMD EPYC 7502 for these experiments.
The Stability model is the more efficient, with ~45 minutes,
because it only updates the decoder layer. The Plasticity and
Linear Plasticity model take ~127 minutes because the en-
tire backbone is trained. On the other hand, O-EWC and SI
methods take a total time of ~164 and ~167 minutes. For

a fair comparison, we divide the total execution time into
the backbone training time (blue) and the regularizer time
(orange) because both models include an additional process
to calculate the importance of the weights. O-EWC takes
~149 minutes of backbone training time and ~15 minutes
to find the importance of each weight. SI takes ~150 min-
utes of backbone training time and ~17 minutes of regular-
ization time. Note that the backbone training time of these
methods is superior to the plasticity model because they in-
clude an additional calculation loss based on the importance
of the previously calculated weights.

Concerning our method, ESP finishes its training in
~123 minutes. Analogous to O-EWC and SI, ESP has an
additional process to tune the branch layer, which takes ~12
minutes. This time is similar compared to O-EWC and SI
regularizer time. However, if we compare the training time
of the spine, ESP is remarkably efficient. ESP takes ~111
minutes, which is less than other methods, including the
Plasticity model. It happens because ESP sometimes forces
the model not to update some layers, allowing those layers
to be frozen on the fly, resulting in decreased training time.

5. Conclusion

In this paper, we introduced ESP, a method based on
an entropy-based criterion to decide how much a model
has to modify the weights of each of its layers. ESP aug-
ments each block of an encoder with branch layers that
computes an entropy-based plasticity factor used to update
layer weights dynamically. Our experiments in the natural
language and vision domains show the effectiveness of our
model in leveraging prior knowledge by not updating lower
layers and specializing other layers by updating higher lay-
ers. In addition, we show that in the case of the natural
language model, our method promotes computational effi-
ciency since it forces not to update some layers.

Among the ideas for future work, we consider testing
the hypothesis that ESP works better on networks with more
blocks than a Resnet-18, such as vision Transformers. Also,
we would like to extend ESP to an utterly online scenario.
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