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Abstract

Learning continually from non-stationary data streams
is a challenging research topic of growing popularity in the
last few years. Being able to learn, adapt, and generalize
continually in an efficient, effective, and scalable way is
fundamental for a sustainable development of Artificial Intel-
ligent systems. However, an agent-centric view of continual
learning requires learning directly from raw data, which lim-
its the interaction between independent agents, the efficiency,
and the privacy of current approaches. Instead, we argue
that continual learning systems should exploit the availabil-
ity of compressed information in the form of trained models.
In this paper, we introduce and formalize a new paradigm
named "Ex-Model Continual Learning" (ExML), where an
agent learns from a sequence of previously trained models in-
stead of raw data. We further contribute with three ex-model
continual learning algorithms and an empirical setting com-
prising three datasets (MNIST, CIFAR-10 and CORe50), and
eight scenarios, where the proposed algorithms are exten-
sively tested. Finally, we highlight the peculiarities of the
ex-model paradigm and we point out interesting future re-
search directions.

1. Introduction
Continual learning (CL) studies learning in dynamic, non-

stationary environments [22, 24]. Recently, there has been
significant progress in the development of continual learning
algorithms able to efficiently learn deep hierarchical rep-
resentations from a sequence of experiences or tasks with
increasingly robust and effective solutions, even for challeng-
ing scenarios with high degrees of non-stationarity [16, 22].

Most of these solutions follow an agent-centric view of
Artificial Intelligence, which tends to mimic the same oper-
ative constraints of biological learning systems [7, 16, 25].
Under this view, a continual learning agent directly interacts

with the environment and learns from raw data. This frame-
work is closer to neuroscience-grounded theories of learning
and intelligence [7, 12], but it ignores the opportunities and
challenges provided by the pervasive and distributed nature
of the modern computing infrastructure:

1. expert models: continual learning should reuse knowl-
edge from expert models, such as local personalized
models or large pretrained models.

2. distributed learning: agents in a distributed environ-
ment should be able to learn independently and to share
knowledge efficiently at the same time.

3. sample efficiency: learning from raw data may be in-
efficient due to noise and redundancy inherent to high-
dimensional perceptual data.

4. privacy: sharing knowledge between agents must be
limited by privacy constraints, and each agent should
be allowed to set its privacy constraints.

Currently, (1) is partially addressed by initializing continual
learning models using pretrained models [6, 21]. However,
it is not possible to use multiple pretrained models or to
exploit a pretrained model after the initialization phase. Re-
cently, some works have partially addressed (2) by studying
federated continual learning [9, 27, 31]. Unfortunately, this
approach requires a tight integration between the devices,
intensive communication and strong assumptions about the
model’s architecture and learning procedure. Point (3) is
often ignored in the continual learning literature. Pretrained
models can partially address (3) by providing a compressed
form of knowledge, i.e. the model’s parameters, that can
be used to learn more efficiently. Lastly, (4) is explored in
CL with settings such as data-free class-incremental scenar-
ios [3, 26], where access to the previous data is forbidden.
Again, this scenario assumes a single agent and access to the
current data, making it difficult to share knowledge between
multiple agents.

In this paper, we propose a novel framework based on
an alternative and integrative approach of the four points
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Figure 1. Classic Continual Learning scenario (left) compared to an Ex-model Continual Learning scenario (right). The CL model fExM
i is

trained using the stream of expert models fS
i , without access to the original data.

above, envisioning a more pervasive and distributed form
of continual learning. Compressed knowledge and skills
in the form of trained neural models ("neural skills", for
short) are generated and made available every day. So our
motivating question is rather: why not to learn directly from
them instead? Learning directly from trained models allows
to efficiently share knowledge between domain experts (1),
to train each expert independently (2) and efficiently (3).
Additionally, each expert can determine its privacy level
(4) by not sharing the model or training with differentially
private algorithms [1].

Intuitively, learning from models resembles other forms
of learning from compressed knowledge, such as when we
learn from books or use the Internet instead of learning by
trial and error. We argue that learning from compressed
knowledge will become more and more important for the
same reasons. Towards this vision, the original contributions
of this paper can be summarized as follows:

1. We propose and formalize Ex-Model Continual Learn-
ing1 (ExML) as a new CL paradigm designed to allow
efficient and private sharing of compressed knowledge
between independent agents (Section 2).

2. We propose a family of continual learning strategies,
Ex-Model Distillation (ED), based on data-free knowl-
edge distillation (Section 3). In particular, we compare
three possible instances of Ex-Model Distillation: two
of them perform distillation by generating synthetic
data, while the other relies on out-of-distribution data
unrelated to the task solved by the expert (Section 4).

3. We assess the performance of Ex-Model Distillation
strategies against five different baselines, three popular
continual learning benchmarks (MNIST, CIFAR-10 and

1The meaning of ex comes from latin, which can be roughly translated
as "out of, from".

CORe50) and scenarios (Task-Incremental, Domain-
Incremental and Class-Incremental) in order to high-
light the general applicability of our solutions (Section
5). We release the code to easily instantiate the ExML
scenario and to reproduce our experiments2.

We believe that the introduction of the ExML paradigm,
together with the design of the Ex-Model Distillation strate-
gies and the experimental setup, will provide a robust starting
point to study continual learning from models and its impacts
on many downstream applications (Section 7).

2. Ex-Model Continual Learning
We begin by formalizing a classic continual learning

scenario (Figure 1), where data arrives in a streaming fashion
as a (possibly infinite) sequence of learning experiences
S = e1, . . . , en. We assume a supervised classification
problem, where each experience ei consists of a batch of
samples Di, where each sample is a tuple ⟨xi

k, y
i
k⟩ of input

and target, respectively, and the labels yik are from the set Yi,
which is a subset of the entire universe of classes Y . Notice
that it is very easy to generalize the scenario to different CL
problems. Usually Di is split into a separate train set Di

train

and test set Di
test. A continual learning algorithm ACL is a

function with the following signature [16]:

ACL : ⟨fCL
i−1,Di

train,Mi−1, ti⟩ → ⟨fCL
i ,Mi⟩ (1)

where fCL
i is the model learned after training on experience

ei,Mi a buffer of past knowledge, such as previous samples
or activations, stored from the previous experiences and
usually of fixed size. The term ti is a task label which may
be used to identify the correct data distribution. Most of
the experiments in this paper assume the most challenging
scenario of ti being unavailable. Usually, CL algorithms are
limited in the amount of resources that they can use, and

2https://github.com/AntonioCarta/ex_model_cl
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they are designed to scale up to a large number of training
experiences without increasing their computational cost over
time. The objective of a CL algorithm is to minimize the
loss LS over the entire stream of data S:

LS(f
CL
n , n) =

1
n∑

i=1

|Di
test|

n∑
i=1

Lexp(f
CL
n ,Di

test) (2)

Lexp(f
CL
n ,Di

test) =

|Di
test|∑

j=1

L(fCL
n (xi

j), y
i
j), (3)

where the loss L(fCL
n (x), y) is computed on a single sample

⟨x, y⟩, such as cross-entropy in classification problems.

Stream of Experts In an ExML scenario, there is no di-
rect access to a data streamD1, . . . ,Dn. Instead, the stream
consists of expert models fS

1 , . . . , f
S
n , where each expert

is trained on some specific domain (Figure 1). As a conse-
quence, an ex-model algorithm must learn only by extracting
information from each expert. To keep the scenario as gen-
eral as possible, we do not make any assumption about the
models, such as their architecture or the specific hyperpa-
rameters used during training. We assume that the ExML
algorithms have no control over how the experts have been
trained. Each model fS

i has been trained on a corresponding
learning experience ei to minimize Lexp(f

S
i ,Di

train). We
denote by fS

i the learned function, θSi its parameters, fS
i (x)

the model’s output, i.e. the logits, for a particular input
sample x, and pSi (x) the output probabilities computed by
applying the softmax function to the model’s output.

ExML Scenario The objective of the ExML scenario
is to continuously update a model fExM

i whenever a
new expert fS

i becomes available. Notice that the loss
Lexp(f

ExM
i ,Di

train) cannot be evaluated since we do not
have access to the original data. Since the stream of models
may be unbounded, training strategies must be scalable up to
a large number of experts. Therefore, ex-model algorithms
cannot keep in memory all the previous experts. As a result,
there are two constraints in an ExML scenario: lack of access
to the original data and limited computational resources.

Overall, an ExML algorithm AExM is a function with
the following signature:

AExM : ⟨fExM
i−1 , fS

i ,Mex
i−1, ti⟩ → ⟨fExM

i ,Mex
i ⟩, (4)

where fExM
i is the current model, fS

i the current expert
from the stream, Mex

i−1 is a set of samples from out-of-
distribution data or synthetically generated and currently
available to the model (Section 4), and ti the task label
information. Again, notice that task labels are optional and
they may not be available in many scenarios. The objective
of ex-model algorithms is to minimize Eq. 2, the loss over
the original (and unavailable) data stream.

3. Ex-Model Distillation
In this paper, we propose a family of algorithms, called

Ex-model Distillation (ED) algorithms, to solve ex-model
continual learning. The core idea behind our strategy is to
exploit a cumulative buffer of synthetic or auxiliary data,
generated from the expert model, to train the ex-model using
knowledge distillation [10]. In this section, we describe
how to perform the distillation and defer the data generation
process to Section 4. The algorithm consists of two steps:
buffer update and knowledge distillation. An overview of
the algorithm is provided in Algorithm 1.

Buffer Update Let us assume to have access to a set of
samplesMex

i−1 of fixed size N , where samples ⟨xsyn, ysyn⟩
are obtained from the previous steps of the algorithm and
they act as surrogate data in place of the original data from
e1, . . . , ei−1. We use a data generating procedure Agen to
generate a new set of samples

Dex
i = Agen(fS

i ,
N

i
), (5)

where |Dex
i | = ⌊Ni ⌋. A

gen generates synthetic data us-
ing the expert fS

i . To obtain a new buffer Mex
i of size

N , we subsample M̃ex
i−1 = subsample(Mex

i−1), such that
|M̃ex

i−1| = N − N
i and combine it with the new data to

obtain the updated bufferMex
i = M̃ex

i−1 ∪ Dex
i .

Knowledge Distillation Once we have updated the syn-
thetic buffer, we can start the distillation process. Differently
from knowledge distillation, we need to distill knowledge
from two different models, the previous ex-model fExM

i−1 ,
and the current expert from the stream fS

i . Ex-model algo-
rithms useMex

i to distill the knowledge from the current
expert without forgetting previous knowledge. Each of these
models is trained on a different (possibly overlapping) set
of classes: Yprev =

⋃i−1
k=0 Yk for the ex-model, and Yi

for the expert. Given a sample ⟨xsyn, ysyn⟩ and the output
ycurr = fExM

i (xsyn) from the current ex-model, the target
logits ỹ are computed by combining the normalized logits
of the previous ex-model and current expert:

yExM = normalize(fExM
i−1 (xsyn)) (6)

yS = normalize(fS
i (x

syn)) (7)
(8)

ỹ =


yExM if ysyn ∈ Yprev

yS if ysyn ∈ Yi

1
2 (y

S + yExM ) if ysyn ∈ Yprev ∧ ysyn ∈ Yi.

(9)
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Output normalization allows to combine the outputs indepen-
dently from the difference in scale between the two models,
which would create a bias if not removed. The resulting
vector ỹ is used as a target for the distillation by minimizing
the Mean Squared Error (MSE) loss

LMSE(y
curr, ỹ) = ∥ycurr − ỹ∥22 . (10)

Eq. 10 by itself is not sufficient to train a good model. The
main limitation of the loss is that it is unable to distinguish
whether a sample xsyn should be classified by the previous
ex-model (i.e., it belongs to one of the previous experiences)
or by the current expert (i.e. it belongs to the current expe-
rience) since the units of each model are treated separately.
Therefore, the ex-model distillation loss LED combines the
MSE with the crossentropy loss LCE :

LED(ycurr, ỹ, ysyn) =LMSE(y
curr, ỹ)

+λCELCE(y
curr, ysyn).

(11)

The loss in Eq. 11 is optimized by stochastic gradient descent
for a fixed number of iterations, sampling randomly the
buffer at each step to create a mini-batch.

Algorithm 1 Ex-Model Distillation

Require: Stream of pretrained experts S and a continually
learned model fExM .

1: Mex
0 ← {} ▷ empty buffer

2: for fS
i in S do

3: Dex
i ← Agen(fS

i ,
N
i )

4: M̃ex
i−1 ← subsample(Mex

i−1)

5: Mex
i ← M̃ex

i−1 ∪ Dex
i

6: for k in 1, . . . , niter do ▷ Knowledge Distillation
7: ⟨xk,yk⟩ ← sample(Mex

i )
8: ycurr ← fExM (xk)
9: ỹ ← get_target(xk) ▷ Eq. 9

10: L← LED(yk, ỹk, yk)
11: do SGD step on L
12: end for
13: end for

4. Distillation Data

As discussed in Section 2, ex-model distillation needs an
alternative source of dataMex

i to distill the knowledge from
the expert. Since the original data Di is not available, we
need an alternative source of samples. In this section, we
show three methods that can be used to generate a synthetic
dataset. Notice that in order to obtain a good performance it
is not necessary that the synthetic data resembles the original
data. Even highly distorted images or images from different
domains may be useful to distill the knowledge from fExM

i .

In fact, we will see in the experimental results that the syn-
thetic data that we will use may be widely different from the
original data.

Model Inversion. Model inversion [5] extracts samples us-
ing fS

i by maximizing the output probabilities of the chosen
class by gradient descent. Given a randomly initialized sam-
ple xsyn, a target class ysyn, and an expert fS

i , with model
inversion we optimize xsyn by stochastic gradient descent by
minimizing the crossentropy LCE

(
fS
i (xsyn)/τ, ysyn

)
, where

τ is the softmax temperature. We can generate a batch of im-
ages for each class by using different random initializations.
Since the computations for each sample are independent,
they can be optimized in parallel using large mini-batches.

Data Impression. Data impression is a data extraction
method proposed in [23] for the data-free offline training
scenario. Data Impression exploits the classifier’s weights of
the expert W ∈ RNc×Nh , where Nh is the number of hidden
units and Nc the number of classes, to define a Dirichlet dis-
tribution used to sample probability targets. Data impression
treats each row wk of W as a template for class k, comput-
ing the matrix of pairwise similarities C(k, j) =

w⊤
k wj

∥wk∥,∥wj∥ .
The similarity coefficients are used to define a Dirichlet dis-
tribution Dir(Nc,α

k) for each class such that αk = βck,
ydi ∼ Dir(Nc,α

k), where β is a temperature parameter
and ck the kth row of the similarity matrix. Targets ydi

sampled from the resulting Dirichlet distribution are used to
optimize a randomly initialized xsyn using a knowledge dis-
tillation loss LKD(pfExM

i
(xsyn),ydi, τ). We generate a dif-

ferent target for each sample using the Dirichlet distribution
corresponding to the desired class. Since data impression
provides a target for the entire output distribution instead
of a single target class, which is needed for the ex-model
distillation loss (Eq. 11), we set ysyn = argmaxydi. The
advantage of Data Impression compared to Model Inversion
is that the Dirichlet distribution of the soft targets models
the class similarities instead of ignoring them.

Auxiliary Data. The usage of auxiliary data is an alterna-
tive solution that does not require additional computation to
generate synthetic samples. For example, for image classi-
fication tasks we may use large open datasets such as Im-
ageNet [4] as a substitute for the original data. While the
images may represent different classes, a large dataset of
diverse images may be sufficient to distill knowledge from
the expert models. This technique is also more efficient
since it does not require a separate data generation phase.
However, it is possible to use it only if a large open dataset
is available, which may be true for image classification prob-
lems with natural images but more difficult in other domains,
such as the medical domain, where data is scarcer. Since
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data comes from a different domain than the original one,
we do not have a target class corresponding to the original
domain. Therefore, we set ysyn = argmax fS

i (x
syn) for

each sample xsyn in the auxiliary dataset.

4.1. Natural Image Priors

Synthetic data generation methods tend to generate im-
ages with unrealistic artifacts. The end-to-end optimization
over the raw pixels generates images with high output proba-
bilities in the target classes that do not resemble the original
images. Natural image priors are regularization terms that
encourage natural looking images.
Augmentations All the synthetic images are augmented
with common image augmentations, both during the gen-
eration and during the ex-model distillation. Depending
on the dataset, we use small displacements, rotations, and
horizontal flip.
L2 norm penalization We penalize the L2 norm of each
image Lnorm(xsyn) = ∥xsyn∥22. This regularization term
is used to penalize high activations.
Blur In natural images, neighboring pixels are simi-
lar. To encourage this property, we penalize the term
Lblur(x

syn) = ∥xsyn − blur(xsyn)∥22, where blur(xsyn)
is the result of applying a gaussian blur with a 3× 3 kernel
to the raw image xsyn.
Matching of batch normalization statistics Batch nor-
malization layers provide useful information about the ac-
tivations’ statistic of the original images [29]. Ideally,
synthetic images should have the same statistics. Given
a model with k batch normalization layers with mean
and variance µi, σi, and minibatch statistic for the syn-
thetic images µsyn

i , σsyn
i , we penalize the term Lbns =∑k

i=0(∥µi − µsyn
i ∥22 + ∥σi − σsyn

i ∥22).

5. Experiments
The objective of the experimental evaluation is twofold:

first, we evaluate ex-model scenarios under different condi-
tions by proposing novel ExML benchmarks with varying
levels of complexity. Second, we assess the performance
of different ex-model distillation strategies by comparing
different sources of synthetic data as defined in Section 4,
along with a set of baselines.

For each scenario, we trained a separate expert model
for each learning experience using the original data. For
each configuration, we repeated the training phase 5 times
to obtain 5 independent streams of experts that we used to
compute the mean and standard deviation. For simplicity,
we use the same architecture during the ex-model continual
learning phase. All the experiments are implemented using
Avalanche [19]. Source code for the proposed strategies,
along with the experiments configuration, code to repro-
duce the experiments, and the pretrained experts is available

Table 1. Summary of datasets and scenarios.

scenario
stream
length

total
classes

classes
per step model

Split MNIST (NC) 5 10 2 LeNet
Split CIFAR10 (NC) 10 10 2 ResNet18
CIFAR10-MT 10 10 2 ResNet18
CORe50-NC 9 50 10/5 MobileNet
CORe50-NI 9 50 50 MobileNet

online. Please refer to the repository and the additional ma-
terial for extended details about the hyperparameters of the
experiments.

Datasets and continual learning scenarios In each ex-
periment, the stream of experts is trained on popular CL
benchmarks. Most benchmarks come from the class-
incremental literature [22], where each experience provides
data for New Classes (NC), never seen before. We also ran
experiments on the New Instances (NI) scenario [18], where
each experience has the same classes with different instances
(e.g. different backgrounds). Therefore, in the NI scenario
expert models are trained on the same set of classes. Addi-
tionally, we show the results for joint training, i.e. the offline
training where the data is seen all at once. In this setting,
we do not have a stream of pretrained models. We used this
scenario to evaluate the performance of the data extraction
methods in the absence of continual learning.

We evaluated the proposed strategies on MNIST [15]
with a stream of LeNet [14] models, using the Split MNIST
(NC) scenario, with 5 experiences and 2 classes for each
experience. We also provide the results for joint training to
evaluate the degradation in performance from a simple data-
free knowledge distillation to a more challenging Ex-Model
CL scenario. For CIFAR10 [13], we used a ResNet18 [8]
and we evaluated both the popular joint training scenario
and the Split-CIFAR10 (NC) scenario [22]. The joint sce-
nario uses all 10 classes at once, while the class incremental
scenario uses 2 classes per experience. Furthermore, we eval-
uate Split-CIFAR10 in a multitask setting with a multi-head
classifier (CIFAR10-MT).

Finally, we used CORe50 [18], a dataset specifically
designed for continual learning. In the joint scenario we
used all the 50 classes of the dataset, while in the class-
incremental (NC) scenario we used 10 classes for the first
experience and 5 for the subsequent ones. We also experi-
mented with CORe50 in the NIC scenario. For all the config-
urations, we used a MobileNet [11] pretrained on ImageNet.

Ex-model strategies are evaluated in the single incremen-
tal task (SIT) setting with a single head: this means that the
model does not have a task label to distinguish between the
different experiences. This is the most challenging setting.
A summary of the configuration for each scenario is shown
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Table 2. Stream accuracy computed on the test set for MNIST and CIFAR10 continual learning scenarios. Ensemble methods’ results are not
shown for joint scenarios because ensembling is not necessary when there is a single model.

Ex-model
scenario

MNIST CIFAR10
Joint NC Joint NC MT

Oracle ✗ 93.71±0.28 99.42±0.19 87.37±1.11 96.58±0.86 96.58±0.86

Ensemble Avg. ✗ – 33.40±4.74 – 51.85±2.37 –
Min Entropy ✗ – 39.41±5.27 – 52.03±2.67 –

Param. Avg. ✓ – 20.11±0.97 – 10.00±0.00 51.85±2.37

Model Inversion ED ✓ 93.09±1.43 43.23±3.00 64.55±3.25 17.40±3.96 61.71±7.52

Data Impression ED ✓ 92.12±0.88 36.05±6.74 52.64±5.82 24.70±6.85 61.15±3.92

Aux. Data ED ✓ 89.35±0.18 35.48±6.35 76.94±2.68 41.35±5.83 60.72±3.70

in Table 1.

Ex-model strategies We evaluated three Ex-model Distil-
lation (ED) strategies: Model Inversion ED, Data Impression
ED, Aux. Data ED. Each one uses a different source for syn-
thetic data. All data extraction strategies use a memory
buffer with a fixed size (5000 samples) to maintain the data
extracted from the previous experiences while keeping the
memory occupation reasonable for continual learning on a
large stream of experts. We use Fashion MNIST [28] as
auxiliary data for MNIST scenarios, and ImageNet for CI-
FAR10 and CORe50. Additionally, we show the results of
four baselines. Except Param. Avg., all the baselines do not
satisfy the constraints of the ex-model scenario since they
store the full stream of models or require the original data.

Oracle This is an ensemble of the stream of experts. The
ensemble uses a task label to determine the correct
model to use. Notice that this ensemble achieves higher
results than offline training since the task label makes
the classification easier by excluding all the classes
corresponding to different tasks.

Ensemble Avg. This is an ensemble of experts which com-
putes the output as the average of the experts’ outputs.

Min. Entropy This is a strategy that computes the output
for each expert in the stream and uses as final out-
put only the prediction with the minimum entropy
(i.e. the one with less uncertainty). Given the out-
put probabilities pj computed by the j-th expert, the
ensemble selects the outputs from expert j∗, where
j∗ = argminj −

∑
i p

j
i log p

j
i . This ensemble com-

putes all the output in parallel, similarly to the Oracle
ensemble. However, the entropy is used to select the
appropriate expert instead of the task label.

Param. Avg. This ensemble is a single model obtained by
averaging the expert’s parameters. This is the only base-
line which respects the ex-model scenario constraints

since it keeps a single model and it does not use the
original data. Unlike ED, this strategy assumes that the
experts’ architectures are all equal.

Replay ED This is a strategy where the ex-model distilla-
tion is applied using the original data. Notice that this is
different from a simple rehearsal strategy since it uses
the loss of Eq. 11 instead of the crossentropy.

Ensemble baselines show the performance that can be ob-
tained by combining the expert models without any training.
The memory requirements of an ensemble grows linearly in
the number of models, making these strategies not admissi-
ble for an ex-model scenario. Instead, Replay ED shows the
performance of the ex-model distillation in the ideal setting
where we have access to the original data.

5.1. Results

Table 2 shows the stream accuracy on the test set for
MNIST and CIFAR10 scenarios. The average accuracy over
time for the entire stream and single experiences is also
available in the supplementary material. When we have ac-
cess to the entire stream of expert models and task labels
(Oracle) we obtain the upper bound performance. Notice
that the accuracy of this strategy in the class incremental
scenarios is even higher than the joint scenarios since the
task labels provide additional information that restricts the
number of possible classes for a given sample. Ensemble
methods have a large drop in performance in the class incre-
mental scenarios. Notice that we do not consider them to be
proper ex-model strategies since they keep the entire stream
of models. The only proper ex-model ensemble strategy is
the Param. Avg., which obtains a random performance on
CIFAR10. This is due to the large number of models that
need to be averaged together, each one trained on differ-
ent data. Ex-model distillation strategies have a very high
performance in joint scenarios, showing that synthetic and
auxiliary data is sufficient to perform the knowledge distil-
lation. However, there is a large performance drop in the
class incremental scenarios, except for CIFAR10-MT, which
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Table 3. Stream accuracy computed on the test set for CORe50 continual learning scenarios. Ensemble methods’ results are not shown for
joint scenarios because ensembling is not necessary when there is a single model.

Ex-model
scenario

CORe50
Joint NC NI

Oracle ✗ 85.73±0.29 96.04±1.08 –
Ensemble Avg. ✗ – 26.30±1.38 69.92±0.70

Min. Entropy ✗ – 42.41±0.96 61.36±1.86

Param. Avg. ✓ – 2.00±0.00 2.00±0.00

Model Inversion ED ✓ 50.06±2.76 33.1±1.93 44.38±4.93

Data Impression ED ✓ 52.91±2.09 17.57±3.57 43.26±2.36

Aux. Data ED ✓ 81.82±0.29 34.87±1.16 44.51±2.91

(a) Original data. (b) Joint MNIST,
Model Inversion

(c) Joint MNIST,
Data Impression

(d) Split MNIST,
Model Inversion

(e) Split MNIST,
Data Impression

Figure 2. Original data and generated samples for Joint MNIST and Split MNIST.

is multi-task and therefore easier to learn. Table 3 shows
the stream accuracy on the test set for CORe50 scenarios.
CORe50 is more challenging than MNIST and CIFAR10
due to the higher resolution images (we use 128x128 images
in our experiments). However, since we used a pretrained
MobileNet, all the expert models start from a common initial-
ization with a rich feature extractor. The initialization helps
to learn and mitigate the interference between the experts in
the NC and NI scenarios. Notice that in the NI scenario it is
not possible to evaluate the Oracle baseline since CORe50-
NI provides a single test set that cannot be split, unlike the
NC scenario where we split by classes.

Buffer samples Figure 2 shows the samples generated by
model inversion and data impression on joint MNIST and
Split MNIST. In both settings, the images have been trained
until the desired class was predicted with probability > 0.99.
Both methods generate visually plausible digits in the joint
scenario, wich resemble multiple digits superimposed over
each other. Instead, in the class incremental scenarios, de-
spite the high confidence of the model, the images are far
from being realistic. This result may partially explain the
different results of joint and continual learning scenarios.
In joint scenarios, the single expert must be able to distin-
guish between all the possible classes. Instead, in continual
scenarios, the experts will overfit their small subset of data,
and will incorrectly classify out-of-domain classes with high
confidence. As a result, the generated images will not be re-
alistic because the model did not learn to extract the features
that would help to classify the images in the joint domain.

For more samples please check the additional material.
While the difference between the joint and NC scenarios
is less striking in some CIFAR10 and CORe50 configura-
tions, the general conclusions are the same and it can be
easily noticed that images generated in the NC scenario are
qualitatively worse.

Buffer size Figure 3 shows the test stream accuracy on
CIFAR10-MT for increasing buffer sizes. The minimum
size is 10, corresponding to a single sample per class. Notice
that the blue line showing ex-model distillation using a sub-
set of the original data increases with larger buffers. Instead,
other methods show negligible differences between the mini-
mum and maximum buffer size. This results hints that the
major limitation of current data extraction techniques is the
scaling to larger buffers. There may be several reasons for
the lack of scaling in accuracy. For example, the diversity
between generated images of the same class may be insuffi-
cient, which renders large buffers useless (see the additional
material for some samples).

Buffer strategy Figure 3 shows the performance of ex-
model distillation techniques against ex-model distillation
on the real data (Replay ED). We notice that there is a large
gap between Replay ED and proper ex-model distillation
strategies. Overall, we did not find a large performance
difference between Model Inversion and Data Impression.
Instead, we see techniques based on data generation perform
better on MNIST, while auxiliary data is better on some
CIFAR10 and CORe50 scenarios. We argue that this is a
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Figure 3. Test stream accuracy on CIFAR10-MT for increasing
buffer sizes (left). Results are shown on a semi-logarithmic scale.
Comparison between different strategies, including ex-model distil-
lation using a small buffer of the original data (Replay ED, on the
right).

consequence of the similarity between the original data and
the auxiliary data. MNIST and Fashion MNIST are very
different, except for the fact that they both use greyscale
images, since the domains are completely separate. Instead,
CIFAR10 and CORe50 are much closer to ImageNet since
they both contains natural images, albeit with different reso-
lutions and classes. Furthermore, it appears synthetic data
techniques perform much better on multitask scenarios.

6. Related Works

The objective of continual learning is to continuously
adapt the model without forgetting the previous knowledge
[16]. Recently, there has been an increasing interest towards
data-free settings, where the previous data is not available.
Under this constraint, the most popular scenario is the data-
free class-incremental learning (DF-CIL), where new classes
appear over time. Notice that, despite the apparent similarity,
DF-CIL is a very different scenario from ex-model. First, in
DF-CIL the current data is available, making it possible to
exploit a subset of the real data. Furthermore, in DF-CIL the
model is trained sequentially, while in ex-model scenarios
the experts are trained independently.

Learning without forgetting (LwF) [17] is a continual
learning strategy that mitigates catastrophic forgetting via
knowledge distillation of the old model’s logits computed on
the new data. More recently, several proposals have adapted
knowledge distillation to DF-CIL scenarios. [32] exploits
publicly available training data. [3, 26] train generative mod-
els to extract synthetic samples.

Data-free knowledge distillation methods apply several
techniques to generate representative and diverse samples.
Image priors help to guide the optimization process towards
natural looking images during the model inversion [5]. [20]

proposes the use of norm penalization to penalize high acti-
vations and total variation to penalize differences between
small shifts. [29] proposes to match batch normalization
statistics between the real and generated data. [23] generates
targets logits according to a Dirichlet distribution instead
of hard targets in order to capture inter-class similarities,
while [30] trains generative networks instead of the sam-
ples directly. Notice that realistic images are not strictly
necessary to perform knowledge distillation. [2] shows that
knowedge distillation can be modeled as function matching.
They show that aggressive augmentations combined with
long training regimes help the knowledge distillation.

7. Discussion and Conclusion

In this paper we introduced Ex-Model Continual Learn-
ing, a novel scenario to continuously train a model from a
stream of pretrained experts, without assuming any access
to training data. We proposed a family of continual learn-
ing strategies, called Ex-Model Distillation, able to transfer
knowledge from the experts to the Ex-Model, trained con-
tinuously. We validated the ability of three ED strategies to
learn in our novel scenario against three different continual
learning benchmarks. ExML exploits the growing number
of pretrained models currently available for many different
applications (object detection, language modelling...), with-
out making any assumptions on the model architecture or
the training modalities. ExML would benefit from an orga-
nized categorization of the existing pretrained models and of
the type of knowledge they acquired during training. Such
neural skills catalogue would make it easier to decide, when
possible, which expert to select in order to best incorporate
the required knowledge.
ExML is related to modern distributed learning paradigms,
where different models are trained independently and their
knowledge is then aggregated into a centralized architecture.
Unlike federated learning, where each agent is constantly
communicating with a centralized server, in ExML each
agent is independent and the communication between agents
is limited. Moreover, as privacy-aware settings are gaining
relevance within the machine learning community, the need
to learn in data-free environment will become mandatory
for many applications. Medical environments, for example,
are often subjected to strong privacy constraints, where it
might not be possible to transfer data collected from pa-
tients to other devices. Ultimately, ExML constitutes a novel
paradigm which does not supersede the available continual
learning scenarios, but instead it stands as promising alter-
native to deliver continual learning capabilities to otherwise
inaccessible real-world environments.
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