
Continual Learning with Transformers for Image Classification

Beyza Ermis
AWS, Berlin

ermibeyz@amazon.com

Giovanni Zappella
AWS, Berlin

zappella@amazon.com

Martin Wistuba
AWS, Berlin

marwistu@amazon.com

Aditya Rawal
AWS, Santa Clara

adirawal@amazon.com

Cédric Archambeau
AWS, Berlin

cedrica@amazon.com

Abstract

In many real-world scenarios, data to train machine
learning models become available over time. However, neu-
ral network models struggle to continually learn new con-
cepts without forgetting what has been learnt in the past.
This phenomenon is known as catastrophic forgetting and
it is often difficult to prevent due to practical constraints,
such as the amount of data that can be stored or the limited
computation sources that can be used. Moreover, training
large neural networks, such as Transformers, from scratch
is very costly and requires a vast amount of training data,
which might not be available in the application domain of
interest. A recent trend indicates that dynamic architectures
based on an expansion of the parameters can reduce catas-
trophic forgetting efficiently in continual learning, but this
needs complex tuning to balance the growing number of pa-
rameters and barely share any information across tasks. As
a result, they struggle to scale to a large number of tasks
without significant overhead. In this paper, we validate in
the computer vision domain a recent solution called Adap-
tive Distillation of Adapters (ADA), which is developed to
perform continual learning using pre-trained Transform-
ers and Adapters on text classification tasks. We empiri-
cally demonstrate on different classification tasks that this
method maintains a good predictive performance without
retraining the model or increasing the number of model pa-
rameters over the time. Besides it is significantly faster at
inference time compared to the state-of-the-art methods.

1. Introduction
The ability to learn from evolving streams of training

data is important for many real-world applications. While
neural networks showed a great ability to learn a task, but
when confronted with a sequence of different ones they tend
to override the previous concepts. Deep networks suffer

heavily from this phenomenon called catastrophic forget-
ting (CF) [21], impeding continual or lifelong learning. A
growing amount of efforts have emerged to tackle catas-
trophic forgetting [7, 11, 16, 26, 33, 34] in continual learn-
ing (CL). Existing methods can be roughly categorized as
replay-based methods [3, 4, 20, 27, 31] that retain some
training data of old tasks and use them in learning a new
task to circumvent the issue of CF; regularization-based
methods [1, 14, 16] add a regularization term to the loss to
consolidate previous knowledge when learning a new task;
and parameter isolation methods that can dynamically ex-
pand the network architectures [19, 36] or re-arrange their
structures [10, 15]. Replay-based methods explicitly re-
train on a subset of stored samples while training on new
tasks. That can induce dramatic memory overhead when
tackling a large number of tasks or regulatory-related is-
sues due to the data storage. Regularization-based meth-
ods are often difficult to tune due to the sensitivity to the
importance of the regularization term. In practice, this
complexity often leads to poor performance. Parameter-
isolation methods either keep augmenting additional pa-
rameters with the consequence of significantly increasing
the number of parameters, or need complex pruning as
post-processing with requirement to know which parame-
ters should be kept/pruned.

Inspired by the significant achievement of Transform-
ers [30] in Natural Language Processing (NLP), some
pioneering works have recently been done on adapting
transformer architectures to Computer Vision (CV). Vi-
sion Transformer (ViT) [6] showed that a pure Trans-
former applied directly to a sequence of image patches can
perform well on image classification tasks if the training
dataset is sufficiently large. Data-Efficient Image Trans-
formers (DeiT) [29] further demonstrated that Transform-
ers can be successfully trained on standard datasets, such as
ImageNet-1K [5]. Besides, some recent studies [2, 18, 35]
showed transformers have a good ability to generalize well
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to new domains with a few samples. To this end, we lever-
age the vision transformers to improve the ease of use of CL
frameworks for real-world applications. To the best of our
knowledge, only a few recent works [8, 18] have applied
the transformer architecture to CL on image datasets, but
they also require rehearsal memory or training a new trans-
former model from scratch (cannot work with pre-trained
transformer models).

Due to the drawbacks that we listed above, existing
methods do not seem to fit the requirements of many practi-
cal CL applications. We found the work of [9] as a promis-
ing candidate to adopt since it does not require re-training
the model nor storing the old task data, keep the memory
and resources consumption limited (e.g. constant number of
parameters) as the number of tasks grows and can work with
pre-trained transformer models. This method stores a small
set of covariates to be used for distillation, but given the lim-
ited size and usage, they can easily be replaced with external
data sources (e.g., data provided by the owner of the model
and not subject to the same legal restrictions of user data).
It introduces a reasonable amount of additional parameters
(about 12% of the BERT size in their experiments) and only
adds a new linear head for every task. Moreover, it is tested
with several pre-trained transformer models for text (i.e.,
BERT, DistillBERT and RoBERTa). Nevertheless, there is
no evidence that this may work for CV Transformers. Our
main focus is to answer the question: Can this technique
provide good performance also for CV?

In this study, we address an image classification problem
on a sequence of classification tasks provided in sequence
using pre-trained models: ViT and DeiT. While the solution
can be used in several different tasks, we limit our study
to image classification since image classification is core to
computer vision and it is often used as a benchmark to mea-
sure progress in image understanding. We conjecture that
the behaviour observed in these experiments will be infor-
mative also for related tasks such as detection or segmenta-
tion.

We test the efficiency of Adaptive Distillation of
Adapters (ADA) on CIFAR100 and MiniImageNet. Our
main contributions are: 1) Using Adapters approach with
vision transformers for the first time on continual image
classification tasks 2) Validate that Adapters work with vi-
sion transformers and show that Adaptive Distillation of
Adapters (ADA) can achieve predictive performance on-par
with memory-hungry methods such AdapterFusion [24],
3) Adding a benchmark with CL methods such Elastic
Weight Consolidation (EWC) [16] and Experience Replay
(ER) [27] by using transformer architectures.

Related Work. We discuss the related work in two folds:
Adapters and CL with vision transformers. Residual
adapters [25] adds a few learnable residual layers to the

standard ResNet model and train only these newly added
layers, has been proposed as a transfer learning technique
used for multi-domain learning and domain adaptation.
These adapters are designed specifically for ResNet models,
so they are not generalizable to other networks. Recently
Houlsby et al. [12] proposed Adapters for Transformers in
NLP to isolate task-specific knowledge for multi-task learn-
ing. However, in the sequential learning setting, Adapters
keep increasing the model parameters with each task, so
the memory requirements. In the CL direction, [9] uses
Adapters for text classification, but by using distillation af-
ter training a set of task, it manages to keep the memory size
constant while maintaining a good prediction performance
for both old and new tasks. Benchmarking this approach on
CV tasks is the main focus of our work.

Two recent works are related with the method we are
testing. In [18], for each task, before training on a new
task, the model is copied and fixed to be used as the teacher
model in the distillation phase. The student model is trained
on both new task samples together with the knowledge dis-
tillation loss that uses samples from old tasks which is
stored in the rehearsal memory. In [8], they aim to learn
a unified model that will classify an increasingly growing
number of classes by building upon a new architecture.
However, they need to train a new transformer model, where
the process is very costly. Our main goal is to use public
pre-trained models.

2. Problem setup

In this section we formalize our goal of CL on a se-
quence of image classification tasks {T1, . . . , TN} where
each task Ti contains a different set of image-label training
pairs (xi

1:t, y
i
1:t). Each task Ti may contain c new classes

namely Yi = {Y 1
i , . . . , Y

c
i } and each new class has t ex-

amples. Ti is sampled iid from a distribution Di(Xi, Yi).
Each task represents a different classification problem and
the learner creates a new classification head for each. The
task identifier is provided also at inference time.

The goal of the learner is to learn a set of parameters Θ̃
such that 1

N

∑
i∈{1,...,N} loss(Ti; Θ̃) is minimized. In our

specific case, Θ̃ is composed of a set of parameters Θ pro-
vided by a pre-trained model and, depending on the algo-
rithm, additional network parts whose weights need to be
learnt. In its simplest case this additional set of model pa-
rameters can just be a head model but, some algorithms use
significantly more elaborate functions.

For the training of task Ti, the algorithm can access the
data provided in the current batch and some data which
eventually stored in memory. To evaluate the system, the
test data consists of examples across all the previous tasks.
All methods in the following sections receive as input a pre-
trained language model fΘ(.), e.g., ViT [6], parameterized
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by Θ. The pre-trained model receives an input image, called
xi and it is able to compute a representation for it.

3. The ADA algorithm
In this section we provide an overview of the main com-

ponents used by Adaptive Distillation of Adapters (ADA)
and the algorithm itself. ADA is performed in two steps:
the first step is to train an adapter model and a new clas-
sifier using the new task Ti’s training dataset Di, which is
referred as the new model; the second step is to consoli-
date the old model(s), the model(s) obtained in the previous
round, and new model.

Adapters. Adapters share a large set of parameters Θ
across all tasks and introduce a small number of task-
specific parameters Φi. Current work on adapters focuses
on training adapters for each task separately. For each of
the N tasks, the model is initialized with parameters of a
pre-trained model Θ. In addition, a set of new and ran-
domly initialized adapter parameters Φi are introduced for
tasks i ∈ {1, . . . , N}. The parameters Θ are fixed and
only the parameters Φi are trained. This makes it possi-
ble to train adapters for all N tasks, and store the corre-
sponding knowledge in designated parts of the model. The
objective for each task i ∈ {1, . . . , N} is of the form:
Φi ← arg minΦ Li(Di; Θ,Φ).
In this work, we propose to define and use adapters for vi-
sion transformers [6, 29] While this provides good predic-
tive performance, in the CL setting, new tasks are added
sequentially and storing a large set of adapters Φ1, . . . ,ΦN

is practically infeasible. As in AdapterBERT, we insert a
2-layer fully-connected network in each transformer layer
of ViT and DeiT (see Figure 1). DeiT is built upon the ViT
architecture, so the Adapter is added in the same way.

Distillation of Adapters. For each new task Ti, the
adapter parameters Φi are added to the model, while the
pre-trained model parameters Θ are kept frozen. Only the
task-specific model parameters Φi and the head model pa-
rameters hi are trained for the current task. The model
fi(x; Θ,Φi), with parameters Θ and Φi is called the new
model fnew. When a prediction for Ti is required the cor-
responding head model hi is called. The distillation of the
two models has the following objective:

f(x; Θ,Φc) =

{
fold(x; Θ,Φi, hi)[i], 1 ≤ i ≤ n− 1

fnew(x; Θ,Φn, hn)[i], i = n

where i denotes the index of the considered task and fold
is the model trained on the previous tasks. The output of
the consolidated model approximates the combination of
the model outputs of the old model and the new model. To

Figure 1. Left shows AdapterBERT [12] in a BERT transformer
layer, and Middle shows the adapter architecture. Depending on
configuration (Houlsby [12] or Pfeiffer [24]), only the top Adapter
can be used. Right shows our Adapter implementation in a ViT
transformer layer. As in AdapterBERT, we added an adapter be-
fore layer norm and feed-forward layers (MLP).

achieve this, the outputs of the old model and the new model
are employed as supervisory signals in joint training of the
consolidated model Φc.
To this purpose, they use the double distillation loss pro-
posed by [37] to train a new adapter that is used with the
pre-trained model to classify both old and newly learned
tasks. The distillation process proceeds as follows: fold
and fnew are freezed, run a feed-forward pass for each
training sample, and collect the logits of the two models
ŷold =

[
ŷ1, . . . , ŷn−1

]
and ŷnew = ŷn respectively, where

the super-script is the class label associated with the neuron
in the model. Then the difference between the logits pro-
duced by the consolidated model and the combination of
logits generated by the two existing specialist models based
on L2-loss is minimized:

Ld(y, ŷ) =
1

n

n∑
j=1

(
yj − ŷj

)2
, (1)

where yj are the logits produced by the consolidated model
for the jth task and ŷ is the concatenation of ŷold and ŷnew.
The training objective for consolidation is given by

min
Θ,Φc

1

|U|
∑
xj∈U

Ld(y, ŷ), (2)

where U denotes the training data used for distillation. After
the consolidation, the adapter parameters Φc are used for
fold in the next round.

Transferability Estimation. ADA keeps a pool of
adapters and the selection of the adapter to be distilled is
based on transferability. The intuition behind this choice is
that highly similar tasks will interfere less with each other
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and so will cause significantly less forgetting. In [9] they
leverage two common methods for transferability estima-
tion: (1) Log Expected Empirical Prediction (LEEP) [22]
and (2) TransRate [13].
LEEP is a measure (or a score) that can tell us, without train-
ing on the target data set, how effectively the transfer learn-
ing algorithms can transfer knowledge learned in the source
model Θs to the target task, using the target data set D. The
details of LEEP can be checked in [22] and [9].
TransRate measures the transferability as the mutual infor-
mation between the features of target examples extracted
by a pre-trained model and labels of them with a single pass
through the target data. It achieves minimal value when
the data covariance matrices of all classes are the same. In
this case, it is impossible to separate the data from differ-
ent classes and no classifier can perform better than random
guesses. To see the details how the knowledge transfer from
a source task to a target task is measured, please see [13].

Algorithm. ADA procedure is detailed in Algorithm 1.
For every new task the algorithm trains a new adapter and
head model (called Φn and hn). If the adapters pool did not
reach the maximum size yet (controlled by K), it just adds
it to the pool. If the pool reached the maximum size, the
algorithm is forced to select one of the adapters already in
the pool and distill it together with the newly trained one.
In order to select which adapter to distill it leverages the
transferability scores (e.g., LEEP or TransRate). Once the
adapter in the pool with the highest transferability score
(called f j∗

old) is identified, it consolidates that adapter and
the newly trained one into a new adapter and replaces the
old one present in the pool. In order to be able to make ef-
fective predictions, the algorithm also keeps a mapping (in
the map m) of which adapter in the pool must be used in
combination with each of the task-specific heads.

4. Experiments
As discussed in Section 1, we would like to test ADA

due to three main characteristics: i) limited or no data (ex-
ternal or synthetic data can be used for distillation) storage
required; ii) almost-constant number of parameters added
with the growing number of tasks and iii) interoperability
with pre-trained Transformers available in public reposi-
tories. To this purpose, we designed a set of experiments
on CIFAR100 [17] and MiniImageNet [28]. The complete
setup is described in the next sections.

Experimental setup. Both CIFAR100 and MiniIma-
geNet consist of 60000 colour images in 100 classes, with
600 images per class. We design two scenarios, in the
first scenario each new task is a balanced binary classifi-
cation problem where the positive class is selected at ran-

Algorithm 1 Adaptive Distillation of Adapters (ADA)
Require: Θ: pre-trained model, K: adapters pool size

1: Freeze Θ
2: Create m = Map()
3: for n← 1 to N do
4: A task Tn is received
5: Initialize Φn

6: Process Tn and train new model fn(x; Θ,Φn) and head hn

7: Sample from Tn and add to distillation data Ddistill

8: if n ≤ K then
9: Set fn(x; Θ,Φ1) to fn

old

10: else
11: j∗ ← arg maxj∈{1,...,K} TRANSCORE(Tn, fn, f

j
old)

12: Add (n, j∗) to m
13: Consolidate model:

f j∗

old = DISTILLATION(f j∗

old, fn, Ddistill)
14: end if
15: Serve predictions for any task i ≤ n using hi and f

m(i)
old

16: end for

17: DISTILLATION(fold, fn, Ddistill):
18: Get soft targets ŷold from old model fold with Ddistill

19: Get soft targets ŷnew from new model fn with Ddistill

20: Initialize Φc

21: Compute distillation loss as in Equation (1) and train model
f(x; Θ,Φc)

22: return f

dom and the data points in the negative class are selected
randomly from the classes picked from the previous tasks.
Each class can be selected to be the positive class only
once. In the second scenario each task is a balanced multi-
class classification problem with 5 classes. In both cases
we provide the learner with 50 data points per class both
at training and test time: in the first scenario each task
will have a training set of 250 data points and in the sec-
ond case of 100 data points. The total number of tasks is
fixed to 20 for both scenarios. We use Adam as optimizer
with the batch size of 8. For learning rate, we select best
from {0.00005, 0.0001, 0.0005, 0.001} after observing the
results on the first five tasks.

Adapter architectures. We use pre-trained models from
HuggingFace Transformers [32] as our base feature extrac-
tors. We ran experiments with ViT-B [6]1 and DeiT-B [29]2.
Both models use 12 layers of transformers block with a hid-
den size of 768 and number of self-attention heads as 12 and
has around 86 M trainable parameters. We implemented the
same adapter architecture for ViT and DeiT with Adapter-
BERT [12]. For all the adapter-based algorithms that we

1https : / / huggingface . co / google / vit - base -
patch16-224

2https://dl.fbaipublicfiles.com/deit/deit_base_
patch16_224-b5f2ef4d.pth
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Figure 2. Comparison between baselines and ADA with ViT model on MiniImageNet and CIFAR100. Top figures shows the first scenario
(binary) results, and bottom figures shows the second scenario (multi-class) results. On the x-axis we report the number of tasks processed,
on the y-axis we report the average accuracy measured on the test set of the tasks processed, shaded area shows standard deviation.

define in the following section, we use the same configura-
tion for the adapters, setting the adapter hidden size to 48.
With this setting, an adapter contains 1.8 M parameters.
We also train a head model for each task, that has the size
of ViT-B× output size.

Baselines. We compare ADA with the following base-
lines. 1) Fine-tuning head model (B1): We freeze the pre-
trained representation and only fine-tune the output layer of
each classification task. The output layer is multiple-head
binary classifier that we also use for the other methods. 2)
Fine tuning the full model (B2): We fine-tune both the pre-
trained representation and the output layer for each classi-
fication task. 3) Adapters [12]: We train and keep sepa-
rate adapters for each classification task as well as the head
models. 4) AdapterFusion [24]: It is a two stage learning
algorithm that leverages knowledge from multiple tasks by
combining the representations from several task adapters in
order to improve the performance on the target task. This
follows exactly the solution depicted in Section 3, Adapters.
5) Experience Replay (ER) [27]: ER is a commonly used
baseline in Continual Learning that stores a subset of data
for each task and then “replays” the old data together with
the new one to avoid forgetting old concepts. To make

the results comparable, we use ER with same pre-trained
network of the other algorithm and a single adapter be-
ing trained. Memory size is set to 500. 6) Elastic Weight
Consolidation (EWC) [16]: EWC is a regularization-based
CL method that assumes that some weights of the trained
neural network are more important for previously learned
tasks than others. During training of the neural network
on a new task, changes to the weights of the network are
made less likely the greater their importance. To estimate
the importance of the network weights, EWC uses prob-
abilistic mechanisms, in particular the Fisher information
matrix. We tune the regularization coefficient of EWC by
grid search in {0, 1, 10, 100, 1000}.
In addition to these baselines, we use one special case of
ADA with K=1, offering another reference point with the
performance of ER and helping to quantify the advantage
of effective consolidation of adapters. All the results in this
section are average of 5 runs.

Predictive performance. Figure 2 shows the comparison
of ADA and the baseline methods. It can be clearly seen that
freezing all pre-trained model parameters, and fine-tuning
only the head models (B1) leaded to an inferior performance
compared to other approaches. The main reason is that the
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Figure 3. Comparison between baselines and ADA with DeiT model on MiniImageNet and CIFAR100. Top figures shows the first scenario
(binary) results, and bottom figures shows the second scenario (multi-class) results.

head models have small amount of parameters to train and
fine-tuning only the heads suffers from under-fitting. B2
performs well only for first 2-3 tasks, since we keep train-
ing the complete model, it forgets the previously learned
tasks very quickly. Adapters and AdapterFusion add 1.8
M parameters for each task and train these parameters with
new task data, fixing them after training. There is no for-
getting since the parameters are not shared among tasks and
the results on each dataset confirm this. Although the care-
ful tuning of regularization coefficient, EWC cannot handle
CF, especially for multi-class classification problem. ADA
with K=1 shows that distillation alone doesn’t prevent for-
getting. In almost all cases, ER perform on-par with ADA
K=1, providing evidence that a small amount of memory
can actually improve performance compared to fine-tuning
or regularization, but the improvement is limited and does
not last as the number of tasks increases.
ADA-LEEP and ADA-TransRate results with K=4 adapters
show that selective consolidation of adapters significantly
improve the performance. For binary classification, their
performance are on par with AdapterFusion while the num-
ber of model parameters is significantly lower. For multi-
class, their performance slightly declines after a certain
number of tasks. This is discussed in [9], and the main rea-
son is that the capacity of the adapter is exceeded. Using a

bigger adapter pool, or using larger adapters can solve the
issue quickly, but to keep the comparison fair, we used the
same size adapters for each algorithm.
To validate the interoperability of ADA to different mod-
els, we run the same experiments on DeiT model. Figure 3
demonstrates the same behaviour of algorithms with DeiT.

Fine-Tuning (B1, B2) and EWC
Trainable Inference Total Total (Size)

Task = {1, 10, 20} 86 M 86 M 86 M 344

Adapters & AdapterFusion
Trainable Inference Total Total (Size)

Task = 1 1.8 M 87.8 M 87.8 M 351.2
Task = 10 1.8 M 86 + (F×1.8) M 104 M 416
Task = 20 1.8 M 86 + (F×1.8) M 122 M 488

ADA
Trainable Inference Total Total (Size)

Task = 1 1.8 M 87.8 M 87.8 M 351.2
Task = 10 2×1.8 M 87.8 M 86 + (K+1)×1.8 M 344 + (K+1)×7.2
Task = 20 2×1.8 M 87.8 M 86 + (K+1)×1.8 M 344 + (K+1)×7.2

Table 1. The number of all parameters and those used for train-
ing and inference as well as the model size of methods for ViT-B
(Same for Deit-B). K is the number of adapters in the pool, and
F is the number of fused adapters (it is between 2 and number of
tasks). For the Adapters F = 1. For ER, for Task = {1, 10, 20}, it
is same with ADA Task=1. Total size is in MB.
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Memory consumption. Table 1 reports the number of pa-
rameters used for baselines and ADA in our experiments.
We don’t add the head size to the table, since it’s very small:
768 parameters per binary head, 15K parameters (6 KB)
for 20 tasks, 3840 per multi-class head, 75K parameters
(30KB) for 20 tasks. Also they are same for all the meth-
ods.
These results make clear that ADA is significantly more ef-
ficient in terms of memory usage. It can achieve predictive
performance similar to the one of Adapters and Adapter-
Fusion while requiring significantly less model parameters.
ADA stores only 5 Adapters (K=4 adapters in the pool,
and one adapter for new task), against the 20 required by
AdapterFusion.

Similarities and differences with the NLP experiments
In [9], they address incremental binary text classification.
In this paper, we further investigated the multi-class classi-
fication where we observe a total of 100 classes. Almost all
algorithms show similar behaviour with NLP experiments.
One interesting outcome is the performance of full fine-
tuning (B2) performed better with image transformers. The
accuracy declines more significantly on NLP datasets with
NLP transformers. Besides LEEP works better with image
datasets as it was originally proposed for CV tasks. There
is mostly no difference between ADA-LEEP and ADA-
TransRate, or the difference is very small. But in [9], the
difference is noticable.

5. Conclusion
In this work we show that the usage of Adapters in com-

bination with Transformers for continual CV problems. In
particular, utilizing ad-hoc algorithms, such as ADA, can
give a strong result in terms of predictive performance with
constant parameter increase. Vision transformers have been
known to have a tendency to overfit training datasets, con-
sequently leading to poor predictive performance in small
data regimes, however [23] just showed that this claim is
poorly supported, explains the nature of multi-head self-
attentions and shows that ViT does not overfit even on
smaller datasets. This work is encouraging for the future
studies in CV with vision transformers, and any develop-
ment in that field will positively impact CL research with
Transformers.

There are some aspects of our results which we would
like to further investigate in the future. For instance, in this
work we adopted the same Adapters structure leverage in
the NLP domain and, while that gave good results, there
is the possibility that it is a suboptimal choice. Also, we
tested ADAwith a fixed number of Adapters but it is easy to
observe that the number of Adapters could be controlled by
the algorithm itself, for example leveraging heuristics based
on thresholding the LEEP or TransRate scores.
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