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Abstract

Recent self-supervised learning methods are able to
learn high-quality image representations and are closing
the gap with supervised approaches. However, these meth-
ods are unable to acquire new knowledge incrementally –
they are, in fact, mostly used only as a pre-training phase
over IID data. In this work we investigate self-supervised
methods in continual learning regimes without any replay
mechanism. We show that naive functional regularization,
also known as feature distillation, leads to lower plasticity
and limits continual learning performance. Instead, we pro-
pose Projected Functional Regularization in which a sep-
arate temporal projection network ensures that the newly
learned feature space preserves information of the previ-
ous one, while at the same time allowing for the learning of
new features. This prevents forgetting while maintaining the
plasticity of the learner. Comparison with other incremen-
tal learning approaches applied to self-supervision demon-
strates that our method obtains competitive performance in
different scenarios and on multiple datasets.

1. Introduction

Self-supervised learning aims to learn high-quality im-
age representations without the need for human annotations.
A recent set of works has shown that self-supervised learn-
ing can achieve performance close to that of supervised
learning [5, 10, 12, 23], and that learned representations
transferred to downstream tasks are sometimes even supe-
rior to fully-supervised representation learning [6]. These
methods learn representations that are invariant with respect
to a set of data augmentations. They are typically trained
with contrastive losses in which multiple views of the same
image (computed by applying different data augmentations)
are mapped close together, whereas representations of other
images are mapped far away. However, several methods

show that only encouraging similarity between views from
the same image (without any explicit loss to promote the
distancing of negative pairs) can also obtain excellent per-
formance [12, 23]. These methods apply various mecha-
nisms to prevent trivial solutions, including asymmetric ar-
chitectures and the use of momentum updates of the model.

Recent works on self-supervised learning have in com-
mon that they assume that all training data is available dur-
ing the training process. However, in many real-world ap-
plications the learner must cope with non-stationary data
in which they are exposed to tasks with varying distri-
butions of data. Continual learning relaxes the IID as-
sumption that underlies most learning methods and stud-
ies the design of algorithms that learn from data with shift-
ing distributions. Naively training a learner on such data,
for example by simply continuing stochastic gradient de-
scent, leads to catastrophic forgetting [46]. A variety of
approaches have been proposed including various types of
regularization [1, 32, 37, 69], data replay [7, 30, 53, 65],
pseudo replay [58, 64], and growing architectures [55].
Even though there is some work on unsupervised continual
learning [21, 36, 43, 55], the vast majority of existing work
is on supervised continual learning [49, 51].

Earlier works on self-supervised learning was based on
pretext tasks like predicting rotation [22], determining patch
position [17], or solving jigsaw puzzles in images [47]. La-
bels for these discriminative pretext tasks can be automat-
ically computed and allow learning of meaningful feature
representations of images. Recently, researchers are adapt-
ing contrastive methods for unlabeled data and operating
more at an instance-level augmentation while looking for
similarity or contrastive samples [5,10,23,68]. These meth-
ods rely heavily on stochastic data augmentation to produce
enough similar examples to learn representations. Negative
examples are randomly sampled or not used at all [12]. The
results are impressive and are competitive with many super-
vised methods on downstream tasks [6].
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We propose an approach to continual self-supervised
learning that is able to learn high-quality visual feature rep-
resentations from non-IID data. The learner is exposed to
a changing distribution and, while learning new features on
current task data, should prevent forgetting of previously ac-
quired knowledge. These representations should, at the end
of training, be applicable to a wide range of downstream
tasks. We focus on the more restrictive, memory-free con-
tinual learning setting in which the learner is not allowed
to store any samples from previous tasks. This scenario is
realistic in many scenarios where data privacy and security
is fundamental and often legislatively regulated.

The main contributions of this work are twofold. First,
we propose a new method, called projected functional regu-
larization, to alleviate forgetting during unsupervised repre-
sentation learning without the need for an external memory
of samples from previous tasks. This technique is an exten-
sion of Learning without Forgetting (LwF) and distillation
in feature space. To improve the plasticity of the method we
introduce a temporal projection network that provides more
freedom to learn features from the current task. Secondly,
we propose a set of experiments over benchmark datasets to
compare with other state-of-the-art methods and use differ-
ent scenarios to evaluate the functional projection role in the
context of continual self-supervised representation learning.
We show that the additional projection to past tasks results
in better representation learning during class incremental
training sessions. Without any adjustment, evaluation on
a truly class incremental scenario – with only a single class
per task, where many class incremental methods cannot be
directly applied – our method still prevents forgetting and is
able to progressively learn new features. Furthermore, we
confirm that our method is generic and the results are not
restricted to a particular self-supervised learning approach.
In a variety of experimental settings the transferability of
the learned features to different downstream tasks is main-
tained, confirming that the network is incrementally learn-
ing more robust representations. The influence of the reg-
ularization strength is analyzed for different regularization
methods applied to self-supervised continual learning and
results clearly shows the benefit of the proposed additional
projector resulting both in improved plasticity (i.e. lower
intransigence) and less forgetting.

2. Related Work

Both self-supervised and continual learning have gath-
ered increasing interest in recent years. We briefly review
the literature on both topics before articulating our contribu-
tion which combines elements of both in the form of con-
tinual self-supervised representation learning.

Self-supervised learning. Self-supervised learning has
proved useful for many applications. In order to learn rep-

resentations useful for a downstream task, a self-supervised
pretext task can be introduced to avoid supervision. Many
pretext tasks were investigated for learning image represen-
tations, including rotation prediction [22], solving jigsaw
puzzles [47], determining relative patch positions [17], pre-
dicting surrogate classes [18], and image colorization [71]).

In the last few years, the gap between supervised and
self-supervised learning is being closed. This is primarily
due to methods based on data augmentation and contrastive-
like learning in which two samples are considered either
similar or different to each other. This has links to earlier
contrastive methods used in metric learning [25] and some
extensions using triplet losses [63]. However, in the unsu-
pervised setting without labels, different approaches must
be used for creating such pairs. In SimCLR [10], simi-
lar samples are created by augmenting an input image with
a random distortion, while dissimilar ones are chosen by
random. To make contrastive training more efficient, the
MoCo method [11, 26] uses a memory bank for learned
embeddings which enables efficient sampling. This mem-
ory is kept synchronized with the rest of the network dur-
ing training by using a momentum encoder. The SwAV
approach uses online clustering over the embedded sam-
ples [5]. SwAV does not sample negative exemplars, how-
ever, other cluster prototypes can play the role of negative
examples.

Interesting are methods without any explicit contrastive
pairs. The BYOL approach proposed by [23] is based on
an asymmetric network with an additional MLP predictor
between two outputs of the two branches. One branch is
kept “offline” and updated by a momentum encoder. Sim-
Siam [12] goes even further and offers a simplified solu-
tion without a momentum encoder and moreover works well
without a very large mini-batch size. BarlowTwins is an-
other simplified solution like SimSiam which uses a loss
function based on correlations between each pair in a cur-
rent training mini-batch [68]. Negatives are implicitly as-
sumed to be available in each mini-batch. No asymmetry is
used by the BarlowTwins network, but a larger embedding
size and bigger mini-batches are preferred in this method in
comparison to SimSiam.

Continual learning. Existing continual learning meth-
ods can be broadly divided into replay-based, architecture-
based, and regularization-based methods [14, 44]. Replay-
based methods save a small amount of data from previ-
ously seen tasks [4, 9] or generate synthetic data with a
generative model [62, 70]. Architecture-based method ac-
tivate different subsets of network parameters for differ-
ent tasks by allowing model parameters to grow linearly
with the number of tasks. Previous works following this
strategy include DER [66], Piggyback [42], PackNet [43],
DAN [54], HAT [56], Ternary Masks [45] and PathNet [21].
Regularization-based methods add an additional regulariza-
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tion term derived from knowledge of previous tasks to the
training loss. This can be done by either regularizing the
weight space (constraining important parameters) [57, 60]
or the functional space (constraining predictions or inter-
mediate features) [13, 19, 31]. EWC [32], MAS [1],
REWC [38], SI [69], and RWalk [8] constrain the impor-
tance of network parameters to prevent forgetting. Methods
such as LwF [37], LwM [16] and BiC [65] instead leverage
knowledge distillation to regularize features or predictions.

Our approach, called Projected Functional Regulariza-
tion is a functional regularization approach. Normally, these
approaches distill information at the class-prediction level
between an old and new model. However, in self-supervised
learning this has to be applied to the embedding output.
Regularizing the embedding layer is known to undermine
plasticity [19], we therefore propose an additional temporal
projection network that maps between the latent spaces of
current and previous model. We show that this regulariza-
tion prevents forgetting while obtaining improved plasticity.

Continual representation learning. Continual unsu-
pervised representation learning was investigated by [52]
with an approach based on variational autoencoders and a
Gaussian mixture model. Still, detection of new clusters
and model expansion is necessary. In a very recent paper,
the authors used contrastive self-supervised learning with a
memory buffer for storing exemplars [40]. They proposed
the LUMP method in which images from the current task
and previous tasks are combined with CutMix for continual
training. One of the main differences between LUMP and
our approach is that ours does not require storing any data
from previous tasks.

Our contribution is fundamentally different from meth-
ods using self-supervised learning to improve the learning
of a sequence of supervised tasks [24, 72]. Their objec-
tive is not to learn from unlabeled data, but rather to use
self-supervised learning to further enrich the feature repre-
sentation. The hypothesis of these works is that, for class
incremental learning scenario, the features learned via self-
supervision will be more generic than ones learned from
task-bounded discrimination problems.

3. Continual Self-supervised Representation
Learning

We begin with a discussion of self-supervised represen-
tation learning, and then describe our proposed Projected
Functional Regularization (PFR) approach for continual
learning of self-supervised representations without the need
of any memory or replay.

3.1. Self-supervised representation learning

In recent works on self-supervised learning the aim is
to learn a network fθ : X → F that maps from input
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Figure 1. Self-supervised continual learning with Projected Func-
tional Regularization. Instead of performing feature distillation
directly between the previous task backbone and the new one, we
use a learned temporal projection between the two feature spaces.

space X to output feature representation space F . This
network is learned on unlabeled input data x drawn from
distribution D. The aim is then to exploit the learned fea-
ture representation to perform any variety of downstream
tasks. As an example, for the downstream task of clas-
sification on some target domain, we have training data
Dt = {xt

i, y
t
i} on which we learn a classifier gϕ : F →

Y (with Y being the output space) that minimizes a loss
L = ℓ (yt, ŷt = gϕ (fθ (x

t))). Adaptation to the target do-
main might only optimize the weights ϕ while keeping θ
fixed on the target data, or instead might also allow θ to be
fine-tuned on the target data.

In this paper we apply the BarlowTwins [68] approach to
self-supervised learning of the representation network fθ.
However, the proposed method is general and can be ap-
plied to other self-supervised methods. BarlowTwins does
not require explicit negative samples and achieves com-
petitive performance while remaining computationally ef-
ficient, assuming that negatives are available in each mini-
batch to calculate correlation between all samples in it.
The BarlowTwins architecture has two branches (see the
shaded area in Fig. 1). In both branches a projector network
z : F → Z is used. For the sake of notational simplicity,
we do not make explicit the parameters of the network z
since it is not used by downstream tasks. The parameters
in the backbone and projector layer are shared between the
branches.

The network is trained by minimizing an invariance and
a redundancy reduction term in the loss function [68]. Here,
different augmented views XA and XB of the same data
samples X are taken from the set of data augmentations D∗.
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This leads to the loss defined as:

Lc = EXA,XB∼D∗

∑
i

(1− Cii)2 + λ
∑
i

∑
j ̸=i

Cij2
, (1)

where λ is a positive constant trade-off parameter between
both terms, and where C is the cross-correlation matrix
computed between the representations z of all samples XA

and XB in a mini-batch indexed by b:

Cij =
∑

b z
A
b,iz

B
b,j√∑

b (z
A
b,i)

2
√∑

b (z
B
b,j)

2
, (2)

The cross-correlation matrix C has values in the range of -
1.0 (worst) to 1.0 (best) correlation between the projector’s
outputs: ZA = z(fθ(XA)) and ZB = z(fθ(XB)). The
invariance term of the loss function encourages the diagonal
elements to be 1. As such the learned embedding will be
invariant to the applied data augmentations. At the same
time, the second term (redundancy reduction) keeps the off-
diagonal elements close to zero and decorrelates the outputs
of non-related images.

3.2. Projected Functional Regularization

Current work on self-supervised learning considers the
above scenario where the learner has access to a single,
large dataset which can be revisited multiple times to learn
the optimal feature extractor fθ. However, for many real-
world scenarios this is an unrealistic setup and the learner
will have to learn the optimal feature extractor fθ from a
stream of data drawn from a distribution that varies over
time.

We consider scenarios in which the learner must learn
from a set of tasks, each containing data drawn from a dif-
ferent distribution. We consider the tasks T = {1...c}
where c is the current task and the data of task t follows
the distributions Dt. In this case we would like to find the
parameters θ of the feature extractor fθ that minimize the
summed loss over all tasks up to the current one c:

argmin
θ

c∑
t=1

Lt
c, (3)

where Lt
c = EXA,XB∼D∗

t
[Lc] and Lc is defined as in Eq. 1.

Again, D∗
t refers to the set of augmented samples from Dt

(i.e. the data from task t). However, during continual train-
ing we only have access to the data of one task, meaning
that the optimal parameters must be found using only the
current data Dc. Naive fine-tuning results in parameters op-
timal for task c, however leads to catastrophic forgetting of
knowledge acquired during previous tasks.

Regularization methods are among the most successful
at addressing catastrophic forgetting, especially for scenar-
ios where storing of any data from previous tasks is prohib-
ited (which is the objective in this article). Regularization

methods can be divided into two important groups: weight
regularization approaches [1,32,69], which aim to find a set
of weights that is both good for the current task while in-
curring only a small increase in loss on previous tasks, and
functional regularization methods (also known as data reg-
ularization methods) which optimize weights for new tasks
while incurring only minimal changes in the network out-
puts on previous tasks [29, 48, 61].

The canonical example of functional regularization,
called Learning without Forgetting (LwF), was introduced
in [29] and is based on knowledge distillation [28]. It
was proposed for supervised continual learning and intro-
duces an additional loss that prevents the class predictions
of previous tasks on the current data from undergoing large
changes while training on the current task data. This loss
cannot be directly applied to self-supervised learning since
it requires class predictions. However, several continual
learning works have extended this idea to feature layers by
replacing the modified cross-entropy distillation loss with a
distance (typically L1 or L2) which can be applied to any
layer output [19, 39, 67]. We will refer to this as feature
distillation (FD) and it leads to the following loss when
training task t:

Lt
c + λfdExa,xb∼D∗

i
[∥ fθt (xa)− fθt−1 (xa) ∥
+ ∥ fθt (xb)− fθt−1 (xb) ∥], (4)

where θt−1 refers to the parameters learned after training
up to task t− 1, and λfd defines the importance of the reg-
ularization term.

The regularization imposed on class predictions in the
original LwF paper [29] is not very restrictive: the weights
can still significantly vary as long as the final network pre-
dictions do not significantly vary. It has been observed
in the literature, however, that feature distillation is very
restrictive and leads to continual learning methods with
low plasticity [19]. In addition, this loss directly penal-
izes the learning of new features since these would lead
to a difference between the new and old model output
∥ fθt (x) − fθt−1 (x) ∥. To address this problem we pro-
pose Projected Functional Regularization (PFR).

We would like the network to retain previous feature rep-
resentation while allowing it to learn new features learned
on new tasks. These new features should not be directly pe-
nalized by regularization. To do so, we introduce a temporal
projection network m : Z → Z that maps the embedding
learned on the current task back to the embedding learned
on the previous ones (see Figure 1). The new loss is:

Lt
c + λpfrExa,xb∼D∗

i
[S(m(fθt (xa)), fθt−1 (xa))

+ S(m(fθt (xb)), fθt−1 (xb))] (5)
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where S(·, ·) is a cosine similarity:

S(a, b) = − aT b

||a||2||b||2
. (6)

New features learned in fθt (x) do not directly result in
an increased loss as long as they lie in the null-space of m.
As a consequence this loss prevents forgetting of informa-
tion of previous tasks while maintaining plasticity to adapt
to new tasks.

4. Experimental Results
Here we report on a variety of experiments performed to

evaluate the performance of Projected Functional Regular-
ization for continual self-supervised representation learning
without the need of an exemplar memory and replay.

4.1. Datasets

We use the following datasets in our evaluation:

• CIFAR-100: Proposed by [35], this dataset consists
100 object classes in 45,000 images for training, 5,000
for validation, and 10,000 for test with 100 classes. All
images are 32×32 pixels.

• Tiny ImageNet: A rescaled subset of 200 Ima-
geNet [15] classes used in [59] and containing 64×64
pixel images. Each class has 500 training images, 50
validation images and 50 test images.

• SVHN: contains 32×32 pixel images of from house
numbers. There are 10 classes with 73,257 training
images and 26,032 test images. From we split 5% of
the training images to use as a validation set.

• Cars: Was introduced in [34]. contains 16, 185 im-
ages of 196 cars classes which includes 8,144 as train
set and 8,041 as test set.

• Aircraft: Was proposed in [41] and consists 6,667 im-
ages for training and 3,333 for testing of 100 classes.

The last three datasets are used for evaluating our proposed
method on downstream tasks. We downscale images to
64×64 for Cars and Aircraft in our experiments.

4.2. Training procedure and baseline methods

In all experiments, we train a ResNet-18 [27] using SGD
with an initial learning rate of 0.06 and a weight decay of
0.0001. The network is trained with cosine annealing for
the first 1500 epochs. After these epochs of cosine anneal-
ing, the learning rate is reduced by a factor of 0.8 for the
both projectors (view and temporal) and 0.4 for the back-
bone. The data augmentation process is the same as in Bar-
lowTwins (which was taken from SimCLR [10]). As a tem-
poral projector, we use an MLP with a linear layer of 512

neurons followed by a batch normalization, Relu and a sec-
ond linear layer of 256 neurons for CIFAR-100 and a linear
layer with 512 neurons followed by a ReLu for TinyIma-
geNet.

Downstream task classifiers are by default linear with
a cross-entropy loss and are trained with Adam optimizer
with a learning rate 5e-3 for CIFAR-100 and 5e-2 for Tiny-
ImageNet. We use validation data to implement a patience
scheme that lowers the learning rate by a factor of 0.3 up to
three times while training a downstream task classifier.

In our experiments we compare with the following base-
line methods:

• Fine-tuning (FT): The network is trained sequentially
on each task without access to previous data and with
no mitigation of catastrophic forgetting.

• Single Task: We perform joint training with fine-
tuning on all data which provides an upper bound.

• Continual Joint Training (CJ): We continually per-
form joint training on the entire dataset seen so far.
This is provides a tighter upper bound than Single
Task [3].

• Feature Distillation (FD): Knowledge distillation is
used as in LwF [37] to retain representation from pre-
vious tasks. We use the L2 distance as the regular-
ization term, as is also proposed by other methods
performing knowledge distillation on feature embed-
dings [19, 39, 67].

• Elastic Weight Consolidation (EWC): We use the
regularization method from [32] with a contrastive loss
used to estimate the diagonal of the Fisher Information
Matrix.

Note that we only compare to exemplar-free methods and
exclude methods that require replay from our comparison.
1

4.3. Continual representation learning

In this experiment we evaluate all methods in the incre-
mental representation learning setting. The most straight-
forward way of doing this is to use the class incremental
learning setting without access to labels. Specifically, we
split datasets into four equal task as done in [53]. In each
task we learn a self-supervised representation and in the
evaluation phase we train a linear classifier using the trained
backbone encoder. In order to assess the learned represen-
tation, we use all available test data to obtain the overall
task-agnostic performance evaluation2

1code available at https://github.com/alviur/CVPR_PFR.
git

2Note that we use task agnostic in this paper to refer to the class-
incremental learning evaluation [44].
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Table 1. (top) Accuracy on CIFAR-100 with 4 tasks of 25 classes
for incremental, self-supervised training. The learned representa-
tion is evaluated using a linear classifier over all classes after each
task. (bottom) Evaluation of the same trained models on a differ-
ent downstream task - classification using SVHN dataset. Mean
and standard deviation over five runs are provided.

CIFAR100

Method Task 1 Task 2 Task 3 Task 4

Single - - - 65.4±1.4
CJ 53.3±0.7 58.4±0.8 60.8±1.1 63.6±1.5

FD 53.3±0.4 55.6±0.5 56.8±1.0 57.8±0.5
EWC 53.0±0.3 53.1±0.3 53.8±0.6 55.0±0.4
PFR 53.2±0.4 56.4±0.4 58.2±0.3 59.7±0.3

FT 53.4±0.5 53.0±0.7 54.6±0.2 54.8±1.0

SVHN

Method Task 1 Task 2 Task 3 Task 4

Single - - - 64.0±1.4
CJ 60.6±2.6 63.2±1.7 63.4±1.3 63.0±1.3

FD 60.4±2.7 62.7±2.2 64.3±1.7 65.8±1.5
EWC 61.3±2.3 62.4±1.8 64.1±1.2 64.5±1.5
PFR 60.4±2.7 63.5±2.3 66.2±1.9 68.0±1.5

FT 60.4±2.7 61.0±1.4 63.8±1.1 64.5±1.1

In Table 1 we present the results for all methods. Af-
ter the final task, the upper bound CJ obtains 60.6%, while
a simple fine-tuning (FT) method reaches 56.8%. This is
the gap where methods using regularization can improve.
Joint training on all data at once outperforms CJ by 2.4%.
PFR obtains an accuracy after the final task of 60.1%, while
other regularization methods FD and EWC reach 57.2% and
55.8%, respectively.

In addition, we show the task-aware results on CIFAR
100 of the incrementally learned representations in Figure 2.
Here the models are the same as those used in Table 1. Note
that all other results in the paper are task-agnostic (no task-
ID given during inference). Here, we also use training data
from future tasks to train the classifier: this allows us to
also evaluate the performance of the tasks that have not been
seen by the feature extractor (see above diagonal elements).
We observe that all methods, including FT, incrementally
improve results. Only our proposed PFR method consider-
ably outperforms FT in this setting. It is also interesting to
observe that PFR obtains positive backward transfer, since
the performance on task 1 and 2 improves during the con-
secutive training sessions.

Learned representations. In addition to evaluating ac-
curacy on downstream classification tasks, we compare
learned representation similarity with a Centered Kernel
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0.8 0.68 0.78 0.72 0.75

0.82 0.68 0.78 0.76 0.76

PFR

Figure 2. Task-aware performance after the four consecutive tasks
on CIFAR-100 for several methods. Each row reports the results
after each task, and columns represent on which task the model
is evaluated. The last column reports average accuracy after each
trained task.
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Figure 3. Representation similarity compared with CKA for FT,
FD, and PFR during incremental training.

Alignment (CKA) [33]. The results are given in Figure 3.
When the task is learned and immediately evaluated, the
similarity is equal to one. When we finetune the model with
new data, we start experiencing representation degradation
– seen in decreasing values in the columns in Figure 3, left.
With PFR, representation forgetting progresses much more
slowly. FT is the worst, having the first task similarity after
the last one with CKA equal 0.69, next is FD with value
0.72, and the best is PFR with 0.82.

Many task scenario. Here we consider a challenging set-
ting with longer sequences – i.e. with more tasks. We exper-
imented with our PFR method, fine-tuning(FT) and feature
distillation(FD) on CIFAR-100 split into 50 or 100 tasks. In
the case of 100 tasks, we only have a single class per task,
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which is an interesting setting since there are no negative
classes, forcing the network to learn representations that are
discriminative at the instance level. Results are presented
in Figure 4a, where accuracy over all classes is given per
training session for each method. Without any mitigation of
forgetting, FT cannot maintain the learned representations
in longer tasks sequences, dropping closely to the level of a
randomly initialized backbone (23%) in the extreme case of
100 tasks. FD is also struggling on the longer sequence of
100 tasks. Only, our method shows stable results, prevent-
ing forgetting of the learned representation and progressing
steadily. Similar results can be observed for 50 tasks, how-
ever the differences are not as pronounced as for the 100
task sequence.

4.4. The influence of regularization

Each regularization method is applied differently to the
self-supervised network. To assess the influence of reg-
ularization and quantify its effect, we use the forgetting
and intransigence measures defined in [8]. Forgetting mea-
sures the average drop in accuracy per-task during continual
learning. Intransigence describes the inability of a model to
learn a new task. Formally, it is the difference between a
referential model accuracy at task t – for us jointly trained
self-supervised model up to task t – and the current task
accuracy measured using held-out data.

In Figure 4b all methods with different λ parameter val-
ues are shown for CIFAR-100 dataset. FT is a point of refer-
ence here since it uses no regularization and maximum for-
getting is expected. EWC is a weight regularization method
that regularizes network weight changes using the Fisher In-
formation Matrix. With larger lambda, forgetting is lower,
but at the same time we pay the price of larger intransigence.
As in the other experiments, we found that weight regular-
ization does not obtain satisfactory results when applied to
continual self-supervised learning. Feature distillation rep-
resents a better trade-off. The closer the results are to the
bottom left corner, the better they are, and here PFR is the
clear winner. The PFR results are consistently better than
FD by some margin, which implies that the additional flex-
ibility of the model introduced by the temporal projection
network indeed leads to higher plasticity while at the same
time keeping forgetting low. These results are confirmed
on the larger Tiny ImageNet dataset (see Figure 4c). Here,
the gap between FD and PFR is much larger, showing that
projected functional regularization suffers from much lower
forgetting at equal intransigence values.

4.5. Generality of the Approach

In order to verify that PFR generalizes to other self-
supervised approaches, we conducted a series of ex-
periments with SimCLR [10], SimSiam [12], and Bar-
lowTwins [68]. In Table 2 we present results of fine-tuning

Table 2. Accuracy of SimCLR, SimSiam and BarlowTwins on
CIFAR-100 split into 10 tasks of 10 classes.

Method Task 1 Task 2 Task 5 Task 10

SimCLR PFR 40.4 44.7 47.2 48.2
SimSiam PFR 43.1 50.2 53.1 55.1
BarlowT PFR 45.1 50.6 54.7 55.4

SimCLR FT 40.4 41.2 40.6 42.8
SimSiam FT 43.1 46.0 47.0 46.7
BarlowT FT 45.1 48.8 48.9 47.0

and PFR for a ten task scenario. PFR results in 5.4%, 8.4%,
and 8.1% improvement over FT after the final task. For
this longer task sequence scenario the gain of our method
with respect to FT is much larger when compared with re-
sults in Table 1. Starting from the second task, the effect
of projected regularization is clear. In the ten task scenario,
SimSiam after the first five tasks begins to outperform Bar-
lowTwins, which is reflected by the results in the Task 10
column.

4.6. Transfer to downstream tasks

To better asses the quality of the trained representation,
we evaluated all methods on a series of different down-
stream datasets. This allows us to evaluate the transfer-
ability of the learned features during the continual training
process. The results for the smaller sized (32x32 images)
CIFAR-100 and SVHN datasets are in Table 1 (bottom ta-
ble). We observe a similar outcome as in the source dataset
evaluation. The best results use our PFR method, followed
by FD, EWC, and finally FT. The results are consistent dur-
ing incremental learning: the better the representation is
on a source classification task, the better it is on the target
(SVHN) dataset after each task.

Furthermore, we trained all the methods on a larger
dataset (Tiny ImageNet). We use the same procedure as
for CIFAR-100 with four tasks, but with bigger images
(64× 64) and more classes (200). The results are presented
in Table 3. In this dataset our method (PFR) surpasses FD,
which is followed by the modified EWC and FT.

As in CIFAR100 we evaluate our networks trained on
Tiny Imagenet on different downstream datasets (Cars and
Aircraft). The results are given in Table 4. For these
datasets, as in CIFAR100, the accuracy of the various tech-
niques follows the same pattern: PFR yields the best results,
followed by FD, EWC, and finally FT.

5. Conclusions and Future directions
In this paper, we proposed a method for incremen-

tal self-supervised learning without the need for any stored
examples of previous tasks. Most existing regularization
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Figure 4. (a): Performance of several methods for different numbers of tasks on CIFAR-100. (b, c): Influence of regularization on forgetting
and intransigence for EWC, FD, and PFR. FT uses no regularization and represents a point of reference. The regularization hyperparameter
λ is given in parentheses, (b) presents results for CIFAR-100 dataset, (c) for Tiny ImageNet.

Table 3. Accuracy on TinyImageNet split into four tasks. The
learned representation is evaluated using a linear classifier over all
classes after each task.

Method Task 1 Task 2 Task 3 Task 4

Joint (no CL) - - - 46.0

FD 35.3 35.9 36.6 36.6
EWC 35.3 37.4 36.9 38.2
PFR (Ours) 35.3 38.6 39.9 42.3

FT 35.3 38.3 38.5 39.1

Table 4. Transfer Learning to downstream tasks.

Cars

Method Task 1 Task 2 Task 3 Task 4

Joint (no CL) - - - 34.5

FD 27.1 30.6 31.8 31.1
EWC 27.1 28.3 27.7 27.8
PFR 27.1 31.1 33.1 33.8

FT 27.1 29.5 29.2 31.5

Aircraft

Method Task 1 Task 2 Task 3 Task 4

Joint (no CL) - - - 30.0

FD 24.6 25.6 27.0 27.0
EWC 24.6 23.8 25.3 25.1
PFR 24.6 26.2 27.0 28.4

FT 24.6 25.6 26.9 27.0

methods for continual learning are applied to class predic-
tions or logits. Such approaches applied to self-supervised

representation learning result in low plasticity. To address
this, we propose Projected Functional Regularization via
a temporal projection network that ensures that the newly
learned feature space preserves information of the previous
one, while still allowing for the learning of new features, re-
sulting in higher plasticity. Extensive results on CIFAR100
and Tiny ImageNet demonstrate that our approach outper-
forms standard feature distillation by a considerable margin.

Finally, there are several limitations and future directions
we discuss here. First, due to the high computational de-
mands, experiments have been performed on low-resolution
images, and they need to be confirmed for higher resolu-
tion data. Next, our method assumes access to task bound-
aries and cannot be directly applied in the task-free set-
ting (without task boundaries) [2]. We think that this can
be addressed by replacing the regularization based on the
model from the previous task, with a regularization model
that is updated with momentum. Next, continual learning of
transformer architectures has only recently started [20, 50].
Self-supervised learning is a key ingredient of the trans-
former network training, and integrating our theory with
these attention-based architectures for their continual learn-
ing is especially interesting. Finally, extending the theory
with a limited replay buffer is of interest and would allow
to directly report class-incremental learning results where
the buffer is used to compute the classifier layer.
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