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Abstract

With the rapid advances in generative adversarial net-
works (GANs), the visual quality of synthesised scenes
keeps improving, including for complex urban scenes with
applications to automated driving. We address in this work
a continual scene generation setup in which GANs are
trained on a stream of distinct domains; ideally, the learned
models should eventually be able to generate new scenes in
all seen domains. This setup reflects the real-life scenario
where data are continuously acquired in different places at
different times. In such a continual setup, we aim for learn-
ing with zero forgetting, i.e., with no degradation in syn-
thesis quality over earlier domains due to catastrophic for-
getting. To this end, we introduce a novel framework that
not only (i) enables seamless knowledge transfer in contin-
ual training but also (ii) guarantees zero forgetting with a
small overhead cost. While being more memory efficient,
thanks to continual learning, our model obtains better syn-
thesis quality as compared against the brute-force solution
that trains one full model for each domain. Especially, un-
der extreme low-data regimes, our approach outperforms
the brute-force one by a large margin.

1. Introduction

Visual scene synthesis with generative adversarial net-
works (GANs) conditioned on input semantic segmenta-
tion masks is progressing fast. Since the early work of
Pix2Pix [6], many architecture designs and learning strate-
gies [8, 12, 14, 19] were proposed to push forward the syn-
thesis quality, making generated images look more and
more realistic. However, most existing works are limited
to a single-domain setting, i.e., once trained, the GAN can
only generate images close to the distribution of the training
domain. Recent works propose techniques for fine-tuning a
pre-trained GAN [9, 21], training specific parameters [16]
or identifying the most favourable regions on the learned
manifold [20], to help transfer learning to new domains.
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Figure 1. Overview of the proposed framework. Our contin-
ual setup for urban-scene generation involves a stream of datasets,
with GANSs trained from one dataset to another. Our framework
makes use of the knowledge learned from previous domains and
adapts to new ones with a small overhead. Best viewed in color.

We here tackle the task of continual urban-scene gen-
eration for multiple domains using GANs (see overview
in Fig. 1). We address a realistic scenario that takes into
account the continual property of driving data acquisition:
data are continually collected from different places. Such a
reality asks for efficient mechanisms to continuously extend
generative models, which were previously trained, to newly
collected datasets. The straight-forward solution is to fine-
tune the current model using the new data. However this
solution greatly suffers from the “catastrophic forgetting”
phenomena, often met with data-driven models [15,22,25].

In this work, we aim for preserving at best the synthesis
quality in all domains, i.e., we want to avoid catastrophic
forgetting altogether, seeking instead no- or zero-forgetting.
To this end, one could train a separate model for each do-
main, at the expense of significant memory consumption
when the number of domains grows. We argue that, al-
though urban-scene datasets look different in color/texture
and even have different label spaces, they share lots of
structure, e.g., scene arrangements and shapes of objects in
shared classes. Therefore, given a GAN pre-trained on a re-
lated domain, it should be unnecessary to have all model’s
weights learned again for the new domain; instead, only a
minimal set of parameters should need learning. Based on
this rationale, we propose a novel framework for contin-
ual scene generation with zero-forgetting. Building around
the idea of modulating network weights, we approach the
continual task with care, analyze the requirements for suit-
able architecture designs and learning strategies to handle
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the extension of the label space in the new domains, with
minimal overhead and large adaptability. Effectively, we
seek a good trade-off between the complexity overhead re-
quired by zero-forgetting and the image synthesis quality.
In brief, the main contributions of this paper are as follows:

* We address the novel task of continual learning of GAN
for semantic scene generation, where each new domain
comes with new semantic classes and new visual styles.
To the extent of our knowledge, this is the first work ad-
dressing continual scene generation.

* We propose a modular approach, named CSGO, to tackle
the problem and evaluate the contribution of each module
in the context of urban scenes.

* We show in various continual setups, covering both
synthetic-to-real and real-to-real scenarios, that CSGO
outperforms state-of-the-art models trained on individual
domains.

* We demonstrate the merit of CSGO in low-data regimes
in which learning is done with only a few tens of samples.

2. Related work

Scene generation with GANs. Image synthesis with
GANs conditioned on semantic maps has progressed signif-
icantly. Pix2Pix [6] is the first work to address this problem,
using an encoder-decoder generator with PatchGAN dis-
criminator. Pix2PixHD [19] proposes a coarse-to-fine gen-
erator architecture and multiple PatchGAN discriminators
to generate high-resolution images. SPADE [12] proposes
a spatially-adaptive normalization layer that modulates the
feature maps of the generator. The modulating parameters
are predicted based on the input semantic map. This explicit
use of the input semantic map to control the structure of the
generated images improves the fidelity to it. Similarly, to
have an explicit impact of the semantic map, CC-FPSE [8]
proposes to predict convolutional kernels of the generator
conditioned on it. OASIS [14] proposes a segmentation-
based discriminator and shows that only the adversarial loss
is sufficient to get high-fidelity generation unlike previous
works that require a perceptual loss. OASIS generator ex-
tends the SPADE layers to take jointly noise and semantic
map as input; this enhances the impact of noise and thus the
diversity of the generated images. In our work, we use OA-
SIS as our base framework for urban-scene generator and
explore various directions for continual learning with it.

Continual learning for GANs. Continual learning for
GANs was first addressed in [15], where elastic weight
consolidation (EWC) [7] is used to avoid catastrophic for-
getting. LifelongGAN [25] proposes to use knowledge
distillation from the previous generator to the current one
to address forgetting of the previous tasks. Memory re-
play GAN [22] uses the generated images of the previous
tasks with the current task images to train the current gen-

erator. In [22,25], all weights of the generator are fine-
tuned, thus still suffering from some forgetting. In Hyper-
lifelongGAN [24], convolutional filters of the generator are
decomposed into the dynamic task-specific base filters and a
deterministic generic weight matrix. Knowledge distillation
is used to ensure good performance on the previous tasks.
Recent works proposed to learn additional task-specific pa-
rameters while keeping the remaining generator frozen to
preserve the performance on the previous tasks. Piggybank
GAN [23] learns new task-specific filters. For the current
task, these filters are used in combination with filters from
a bank of filters learned on the previous tasks. GAN mem-
ory [1] proposes to learn task-specific weight modulation
parameters, that is, task-specific mean and standard devia-
tion of the weight matrices of the generator.

The existing continual GAN approaches are address-
ing continual learning for either unsupervised [1], class-
conditioned [1,22,25] or image-conditioned [23-25] GANS.
In this case, for each new task, the conditioning input do-
main (set of classes or images) is completely replaced by a
new domain; thus there is no overlap or sharing between the
input domains across the tasks. In this work, we focus on
continual learning for the task of semantic scene generation.
This brings some new aspects to continual GAN learning.
In particular, the label space of the previous tasks should be
extended rather than replaced when accommodating a new
incoming domain. To our best knowledge, our work is the
first to address continual learning for semantic scene gen-
eration. As will be explained in the next section, we take
the no-forgetting approach where we only learn some task-
specific new parameters while preserving the performance
on the previous tasks.

Fine-tuning GANs. Fine-tuning refers to continuing on a
new target dataset the training of a pre-trained model. The
objective is to achieve best performance on the new domain
or task, regardless of catastrophic forgetting. The first work
to propose GAN fine-tuning is [21], which shows that a pre-
trained generator can indeed be fine-tuned on a new dataset,
thus requiring less data and learning iterations. FreezeD [9]
proposes to freeze a few initial layers of the pre-trained dis-
criminator while fine-tuning the rest on a new dataset. [11]
learns new BatchNorm parameters to fine-tune the gener-
ator on a very small dataset. [16] proposes to learn class-
specific BatchNorm parameters by using knowledge from
BatchNorm parameters of the pre-trained conditional GAN.
MineGAN [20] learns a miner network that produces latent
codes for the pre-trained generator so as to gear it toward
the new target distribution. In the second stage, all the net-
works —the miner, the generator and the discriminator— are
fine-tuned on the target dataset.

While GAN fine-tuning is important, it is not directly
applicable to continual learning without forgetting, which
is our goal here for semantic urban-scene generation.
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3. CSGO for continual scene generation

We address the task of continual scene generation, con-
ditioned on input semantic segmentation masks. On a con-
tinuous stream of IV datasets, GAN training is done from
one dataset to another. At inference, the main goal is to
purposely synthesize images coming from any of the NV do-
mains. Starting from a GAN model pre-trained on previous
domains, we want to reuse most of the learned weights and
extend the model with small overhead (i) to leverage the
knowledge learned from the previous domains and (ii) to
handle the new domain with new classes using the added
parameters.

To this end, several challenges must be overcome. First,
as we are dealing with new classes in the new domain, the
continual model must be re-designed so that it can accept
those classes as inputs. Second, we need an efficient mech-
anism to reuse most of the parameters learned from the pre-
vious domains while allowing sufficient degrees of freedom
so that the continual model can adapt to the new domain
with a different style. Furthermore, by default, most GAN
networks adopt Batch Normalization to stabilize training,
which may not be ideal for our task where we want a more
explicit control and adaptation of the domain’s “style”. In
what follows, we present all technical details of the base
generative model, in Section 3.1, and our proposed contin-
ual strategies, in Section 3.2.

3.1. GAN OASIS framework

We use the recent scene generator OASIS [14] as our
base framework. As input it takes a 3D noise concatenated
with one-hot segmentation maps. The input is fed at var-
ious levels using SPADE blocks [12]. The generator G
has six ResNet blocks, each block is structured as SPADE-
Conv-SPADE-Conv with a skip connection. The key idea
of OASIS training lies in the design of the discriminator D,
which is a segmentation-like network. This discriminator is
trained not only to discriminate real/fake pixels, but also to
classify real pixels into the correct semantic classes.

Denoting C' the number of semantic classes at hand, D(-)
thus outputs maps of size HxW x(C+1) given an input
image @ of size HxW; Accordingly, the generator G(-)
produces images of the same size, given a binary semantic
tensor S of size H x W x C' and a noise vector z (turned into
a 3D tensor by replication over the pixel grid) as inputs.

For training, we use the objectives proposed in OASIS,
that is, an adversarial loss for the generator and a segmen-
tation loss (with an additional fake class) combined with
LabelMix regularization for the discriminator. We provide
below an abridged description of the loss terms; for more
details readers could refer to [14].

Let S denote a one-hot input segmentation map, where
S; j.c € {0,1} is non zero only if pixel (7, j) is labelled as

class c. The generator is trained to minimize,
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that is, the combination of the C'-class cross-entropy loss for
real pixels and the binary cross-entropy loss for fake ones;
the first expectation is taken over real images and associated
ground-truth segmentation maps.

The discriminator is further trained with LabelMix reg-
ularization. A LabelMix image is formed by mixing real
and generated images associated with the same ground-
truth segmentation map according to a binary mask M, i.e.,
LabelMix(z,G(z,S),M) = Mx + (1 — M)G(z,S),
where operations are meant entry-wise. The discriminator
is regularized to be pixel-wise consistent in its prediction on
LabelMix images and on corresponding real and generated
images before mixing.

While we use OASIS as the base for our continual learn-
ing scene generation framework and its evaluation, note that
the approach is not limited to OASIS.

3.2. CSG0 Model

We now detail our continual strategies and introduce
the continual scene generation model with zero-forgetting,
namely CSGO. Figure 2 illustrates our architecture designs.
We start CSGO from the OASIS model G, pre-trained on
previous datasets with C,, semantic classes.

Extending the input label space. We now consider a new
domain with C,, new classes. To accommodate it, we need
to re-design the input layers of the generator to make them
ingest semantic masks with C,+C), classes. To this end,
we modify the SPADE blocks in OASIS to accept the new
3D semantic tensors composed of (C,+C,,)-dim one-hot
vectors. Originally, the first convolutional layer (conv)
of SPADE contains 1024 kernels of size C,x 3 x 3. For
new classes, we introduce a new conv layer, named “EL”,
standing for “Extented Labels”, with similarly 1024 ker-
nels, now of size C,, x 3 x 3.

We then split the input 3D tensor into the ‘“new” and
“old” 3D tensors, corresponding to the new and old classes.

3681



Resblock ]——[Resblock ]— -

=23

Resblock

4 N\ e
Resblock -

e — — — T /
‘ /

I

|
cSPADE I
I

Image

tanh

: [
: |
! |
| |
N \ I
:i‘.[ﬁws\ |
|§: I \|
"S- 1 |
|

|

|

...........

2, T 7 N i

(3 | e W

| A e
cSPADE \

| H, [con )

Normalization ;

: (BN/IN) :
Modulation
params :

Figure 2. Proposed framework for continual semantic image generation. Starting off from an OASIS model shown on top, we propose
new designs for continual learning. All modules drawn in blue are frozen during continual training, only green ones are learned. Yellow
blocks stand for the newly introduced input in the new domain as well as its corresponding features. Details are given in Section 3.2.

Effectively, the two split tensors are composed of one-hot
vectors of Cy-dim and C),-dim respectively. Areas of old
classes are encoded by zero vectors in the new 3D tensor,
and vice versa. The two split 3D tensors are fed into corre-
sponding conv layers, whose outputs are then summed up
to obtain one final output. This new SPADE block, modi-
fied for continual learning, will be referred to as “cSPADE”,
to distinguish it from the original one. The structure of this
block is represented in Figure 2, where the new input 3D
tensor and the output of the new EL conv are highlighted
in yellow, in contrast to the original 3D tensor and conv
layer which are in blue.

Weight modulation. Weights of the convolutional layers
encode most of the knowledge from the previous domains.
We want to retain important information encoded in these
weights while allowing certain adaptability to handle the
new domain. To this end, we adopt the mAdaFM technique
introduced in [1], which helps modulate the “style” of the
conv layer. The technique brings to conv layers the idea
of statistics modulation used for style transfer [3, 5]; intu-
itively, conv weights are regarded as network’s “features”
with domain-invariant and domain-specific parts. The key
idea is to keep the domain-invariant part frozen while allow-
ing learning in the domain-specific part, which eventually

results in weight adaptation to the new domain.

In detail, given a conv layer with Cj, input and Cyy
output channels, weight matrix W € RCouXCinx KXK' hiaq
vector b€ R and kernel size K, we modulate those pa-
rameters in the new conv by defining the new weight ma-
trix W and bias vector b as:

= W -M

W:a® S +ﬂ7 B:b+bconV7 (3)

where: M and S eR%uxCn with entries M, ; and
S;; being the mean and standard deviation respec-
tively of (W jpx)i1<pr<ri; © is the Hadamard product;
a € RCuxCin (scale), B € RCu*Cin and boyy € RC (shift)
are new domain-specific parameters. The learning process
on the new domain only updates these domain-specific pa-
rameters, while leaving the base parameters W and b un-
touched. In the Resblock of CSGO, we apply weight modu-
lation for the two conv layers coming after each cSPADE
block. The learnable parameters o and 3 are highlighted in
the green boxes in Figure 2.

Instance normalization. Batch normalization (BN) and
modulation of the activation in the generator have shown
to have a strong influence on the style of the generated im-
ages. This is also especially true for Instance Normalization
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(IN) [17]. Inspired by this observation that IN provides bet-
ter control of the style, we extend our minimal EL setup by
replacing BN with IN with affine transform. Note that us-
ing IN with affine transformation does not require any addi-
tional parameters compared to BN. The normalization block
in Figure 2 shows this module in the full framework. With
‘Modulation params’ in the figure, we mark that these are
dataset-specific parameters which are used to modulate the
activation in the normalization layer.

4. Experiments

4.1. Experimental details

Continual set-ups. In this work, we focus on generating
urban scenes, which leaves us a few dataset choices. Our se-
lection criterion is to have datasets that have rather different
visual styles and “private” semantic classes that do not exist
in others. The final shortlist contains GTAS [13], composed
of synthetic urban scenes, Cityscapes [2], collected in Ger-
many and Switzerland, Indian Driving Dataset (IDD) [18],
acquired in India, and Mapillary [10] with scenes from all
around the world. Addressed setups cover both synthetic-
to-real and real-to-real scenarios, each with different num-
bers of domains. We address in our experiments the six
following continual training sequences of 2 or 3 datasets:

* synth-to-real: GTA5—-IDD and GTA5—Mapillary

* real-to-real: Cityscapes—IDD and Cityscapes—Mapillary
* synth-to-real-to-real: GTAS—IDD—Mapillary

* real-to-real-to-real: Cityscapes—IDD—Mapillary.

Continual training. In each continual set-up, we start off
with a vanilla OASIS model trained on the first dataset. Pre-
trained weights of this OASIS are used to initialize the con-
tinual CSGO models. All new CSGO parameters, which are
dedicated to the next datasets, are newly initialized.

Evaluation protocol. In this work, we are mainly con-
cerned with transferring with minimal overhead the knowl-
edge learned from previous datasets to the current one, so
as to achieve good synthesis quality. The most important is
thus finding a sweet spot in the trade-off between complex-
ity overhead and image quality. The former is measured
by the number of newly introduced parameters, and the to-
tal number of parameters needed for generation in all do-
mains. To assess the latter, we regard FID [4] as the main
metric, similarly to [8, 12, 14, 19]. Following [14], we ad-
ditionally report the mean intersection-over-union (mloU)
obtained when testing a pre-trained PSPNet [26] segmen-
tation model on the generated data; this metric is named
‘GAN-test’. We note the difficulty of quantitatively assess-
ing the synthesis quality: on some metrics like GAN-test,
good scores do not always match visual quality. In this re-
gard, FID appears to be the most meaningful metric.

4.2. Main results

We organize results by the final target dataset in the con-
tinual stream, i.e., IDD in Tab. | and Fig. 3, Mapillary in
Tab. 2 and Fig. 4. In each table, we report results of ablated
CSGO models and the brute-force approach where one full-
blown OASIS model is trained for each dataset.

IDD results. With IDD as final target domain, we con-
sider two 2-domain scenarios: GTAS5S—IDD (synthetic to
real) and Cityscapes—IDD (real to real). From the base
OASIS model with 35 classes, pre-trained either on GTAS
or Cityscapes, CSGO extends in both cases to 44 classes of
which 9 are new, only existing in IDD.

The main results are reported in Tab. 1. In this table,
‘cSPADE’ stands for the basic CSGO model that adopts
the vanilla c¢SPADE block to accommodate new classes,
e.g., only introducing the EL conv layers. Training of the
c¢SPADE model only learns parameters in these EL layers
and keeps everything else untouched. This basic model,
though only introducing a small overhead of 0.3M param-
eters, does not achieve good results in terms of FID and
mloU; the first column of Figure 3 visualizes some quali-
tative results. We still notice the colors and patterns of the
previous domain, i.e., GTAS in this case; This is most no-
ticeable for street and vegetable classes. The synthesized
sky does not have the cloudy tone as in IDD. For new classes
like fuk-tuk, the model cannot generate satisfactory results.
When replacing the original BatchNorm layers in cSPADE
block with InstanceNorm ones, denoted as ‘cSPADE + IN’
in Table 1, the continual model gets better in learning the
new style of IDD. We observe significant improvements in
the aforementioned classes. However, the overall realism
level is quite limited, as reflected in the FID score, as well
as in the qualitative results shown in column 2 of Figure 3.

With a larger overhead cost of 10.8M parameters, the fi-
nal CSGO model having the weight modulation strategy, de-
noted as ‘cSPADE + IN 4+ WM’, obtains much better syn-
thesis quality. With more learnable parameters, we ob-
serve a significant boost as compared to ‘cSPADE + IN’.
As shown in the third column of Figure 3, scenes generated
by CSGO are more realistic with similar color tones as in
the IDD dataset. The street areas, sometimes mixing soil
and asphalt, look very much like typical Indian roads.

We make some interesting findings when comparing
CSGO with the OASIS model that is trained on IDD, ‘OA-
SIS (I)’ in Table 1. The OASIS model obtains a much
worse FID of 55.3 while our CSGO is able to reach 39.0
(GTA5-IDD) and 37.0 (Cityscapes—IDD). We posit that
such improvements are brought by the knowledge trans-
ferred from the previous domains that our continual models
are based on, i.e., GTAS and Cityscapes. We note that the
OASIS model reported in Table 1 corresponds to the brute-
force zero-forgetting solution, which resorts to training a
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Table 1. Performance on IDD of continual models. All continual models are initialized from an OASIS model, trained either on GTAS
(G) or Cityscapes (C), having 72M parameters. Table to the left: the first four rows report results of ablated CSG0O models on different
modules: ¢cSPADE stands for the use of EL conv layer, IN and WM stand for InstanceNorm and ‘Weight Modulation’ strategies; the
last row is for the ‘OASIS (I)’ model only trained on IDD. Some colored results in the table are plotted in the figure to the right with the
corresponding colors. The OASIS model, though having good mloU score, obtains worse FID as compared to CSG0 models. Such results
are matched with synthesis quality of examples shown in Figure 3.

cSPADE +IN + WM

cSPADE + IN OASIS(I)

Figure 3. Qualitative results on IDD. Each row visualizes images synthesized from the same input semantic segmentation mask using
different models. All continual models are initialized from the OASIS model that was trained on GTAS. Results of the basic CSG0 model
that only has the vanilla cSPADE still retain the color and texture of GTAS. The instance normalization strategy helps facilitate style
learning, resulting in images with more IDD-like tone. Having “Weight Modulation” (WM) improves further the quality. The ‘OASIS (I)’
model introduces visible artifacts, especially in “tree” and “sky” areas; also textures are quite repetitive. Our full CSGO model produces
the most realistic images with natural color tone and texture. Best viewed in color.

full OASIS model to handle a new dataset.

Our CSGO model, with much smaller overhead cost, out-
performs the ‘OASIS (I)’ in terms of FID. Though on the
GAN-test metric, CSGO models have slightly worse mloU
than the ‘OASIS (I)’, qualitative results of CSGO are much
more convincing. As visualized in the last column of Fig-
ure 3, the ‘OASIS (I)’ images have lots of artifacts; most
visible are with the trees and the roads. In general, OASIS
images exhibit weird color tone and contrast, making them
look less realistic as compared to CSGO’s.

In addition to the reported metrics, we have tried us-
ing generated images for data augmentation. In detail, we

train PSPNet models using both real training IDD data and
synthesized data. Compared to the model trained only on
real IDD, which achieves a validation mloU of 38.7%, the
model using both real and CSGO data achieves 39.5% vali-
dation mIoU, hence a slight gain of 0.8%.

Mapillary results. Mapillary has 64 semantic classes in
total. We show results of two continual set-ups with either
two or three datasets, respectively in Table 2 (a) and (b).
We observe similar results among all CSGO variants, prov-
ing the usefulness of proposed strategies. The CSG0O mod-
els achieve better FID than the brute-force OASIS model.
To learn scene generation for the three datasets, note that
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(a) Sequences of two datasets 23 T
Model New Total G—M C—-M
params params FID mloU FID mloU al Full (G*" M)
o cSPADE 0.8M 72.0M 48.6 216 57.6 17.6 Full (C—M)
8 cSPADE + IN 0.8M 72.0M 32.6 233 389 218 ¢
“ CSPADE+IN+WM 113M 825M 251 265 245 255 2% 1 Full (=)
OASIS (M) [14] 72M  143.2M idem idem a .
T Full (C—1—M)
(b) Sequences of three datasets ®y
Model New Total G—I—-M C—=I—-M
params params FID mloU FID mloU 7+
o cSPADE 0.8M 82.8M 562 21.6 658 169
% cSPADE + IN 0.8M 82.8M 34.1 239 394 220
“ CSPADE+IN+WM  113M 933M 240 266 254 261 e 25 26 2 28 29 30

OASIS (M) [14] 72M  214.6M idem idem

mioU

Table 2. Performance on Mapillary of continual models. Results of the two continual setups with sequences of (a) two datasets and (b)
three datasets are reported. For each sub-table, the structure is the same as in Table 1. To the right, we plot the results of our full CSGO
models (cSPADE + IN + WM) in both setups as well as the brute-force model ‘OASIS (M)’. CSGO models outperform OASIS in terms of
FID, which shows in the image quality in Figure 4. Colors are matched between the table and figure.

cSPADE

cSPADE + IN CSPADE + IN + WM

Figure 4. Qualitative results on Mapillary. Each row visualizes images synthesized from the same input semantic segmentation mask
using different models. All continual models are initialized from the OASIS model that was trained on Cityscapes. The basic cSPADE
model, with very small overhead cost, struggles to adapt to the style of Mapillary; indeed we still see the gloomy tone of the previous
Cityscapes dataset. Having instance norm helps bring more style transfer effect. Our full CSGO results look more natural and have less
visible artifacts than other models. Best viewed in color.

our full CSGO only needs 93.3M parameters in total, less
than half of the parameters needed in the brute-force solu-
tion. Comparing results between two and three datasets, we
do not see much difference in the real-to-real scenario, i.e.,
Cityscapes—Mapillary vs. Cityscapes—IDD—Mapillary. In
the synthetic-to-real scenario, with three datasets we no-
tice small FID improvements for some CSG0 models, while
GAN-test mIoUs are more or less the same. Under the
same comparison, no significant changes are observed for

the brute-force OASIS model. We conjecture that the num-
ber of domains the starting model has been trained on
is not a very important factor in zero-forgetting continual
scene generation. In Figure 4, we visualize some gener-
ated Mapillary-like images to demonstrate the differences
in synthesis quality.

Advantage in cross-dataset sampling. One interesting
property of CSGO is its advantage in cross-dataset sampling,
thanks to continual learning. In Figure 6, we illustrate some
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Figure 5. Low-data regime training. We compare our CSGO (‘cSPADE + IN 4+ WM’) models to ‘OASIS (I)’ and ‘OASIS (M)’. Two
sub-figures in the same row share the same legend. While the OASIS models overfit to the small subsets, thus getting comparatively higher
FID, our CSGO models benefit from transfer learning and achieve better scores. Similar gaps are observed in terms of GAN-test mloU.

CS Masks OASIS (I) [14]

Figure 6. Cross dataset sampling. The figure shows images
generated from IDD generators conditioned on Cityscapes (CS)
masks. ‘OASIS (I)’ does not work well with CS masks thus pro-
ducing visible artifacts, even on the shared classes.

results in which we sample images having Cityscapes lay-
outs but with IDD style. That is made possible by feed-
ing Cityscapes segmentation masks into models trained on
IDD. The task is challenging: If the GAN models can-
not handle well the shift in semantic distributions between
Cityscapes and IDD, the synthesis quality would be greatly
degraded. Compared to ‘OASIS (I)’, CSGO produces more
realistic results with fewer artifacts.

4.3. Low-data regime

Not only memory efficient, our continual framework
allows seamless knowledge transfer from the previous
dataset, encoded in the learned parameters, to a new yet re-
lated dataset. In this experiment, we showcase the merit
of CSGO when training with limited supervision, i.e., the
low-data regime, in the target dataset. In detail, we trained

CSGO models using IDD and Mapillary subsets of 20, 50,
100, 200 and 300 data samples respectively. Our models
are initialized using the OASIS model pre-trained on either
GTAS or Cityscapes. We compare against the full OASIS
model trained only on similar subsets.

Figure 5 plots performance curves of different models.
CSGO outperforms the OASIS models by significant mar-
gin, especially in the extreme set-ups with very little super-
vision, e.g., only 20 and 50 training samples. Having more
training data further closes the performance gap between
CSGO and OASIS. Results in the low-data regime confirm
the benefit of transfer learning in our continual framework.

5. Conclusion

This work addresses a pragmatic task of continual se-
mantic scene generation with zero-forgetting. We propose a
modular framework, named CSGO, with novel architecture
designs and strategies for this task. To showcase the merit
of our framework, we conduct intensive experiments on var-
ious continual urban scene setups, covering both synthetic-
to-real and real-to-real scenarios. Quantitative evaluations
and qualitative visualizations demonstrate the interest of our
CSGO framework, which operates with minimal overhead
cost (in terms of architecture size and training). Benefit-
ing from continual learning, CSGO outperforms the state-
of-the-art OASIS model trained on single domains. We also
provide experiments with three datasets to emphasize how
well our strategy generalizes despite its cost constraints.
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