
Alleviating Representational Shift for Continual Fine-tuning

Shibo Jie Zhi-Hong Deng* Ziheng Li
School of Artificial Intelligence, Peking University

{parsley, zhdeng, liziheng}@pku.edu.cn

Abstract

We study a practical setting of continual learning: fine-
tuning on a pre-trained model continually. Previous work
has found that, when training on new tasks, the features
(penultimate layer representations) of previous data will
change, called representational shift. Besides the shift
of features, we reveal that the intermediate layers’ repre-
sentational shift (IRS) also matters since it disrupts batch
normalization, which is another crucial cause of catas-
trophic forgetting. Motivated by this, we propose ConFiT,
a fine-tuning method incorporating two components, cross-
convolution batch normalization (Xconv BN) and hierar-
chical fine-tuning. Xconv BN maintains pre-convolution
running means instead of post-convolution, and recovers
post-convolution ones before testing, which corrects the in-
accurate estimates of means under IRS. Hierarchical fine-
tuning leverages a multi-stage strategy to fine-tune the pre-
trained network, preventing massive changes in Conv lay-
ers and thus alleviating IRS. Experimental results on four
datasets show that our method remarkably outperforms sev-
eral state-of-the-art methods with lower storage overhead.
Code: http://github.com/JieShibo/ConFiT.

1. Introduction

An artificial neural network (ANN) well-trained on a
task suffers from catastrophic forgetting when learning a
new task: its performance on already learned tasks drops
dramatically after learning a new one [14, 28]. However, in
a real-world scenario where re-training on past data may be
expensive or infeasible, we expect ANNs to be able to learn
continually, acquiring new knowledge without interfering
with previously learned skills. This learning paradigm is
referred to as continual learning.

Meanwhile, pre-trained models have already shown
overwhelming results in many fields of deep learning, such
as computer vision and neural language processing (NLP)
[10,32,45]. By pre-training an ANN on a large-scale dataset

*Corresponding author

Figure 1. Continual Fine-tuning on a pre-trained model in multi-
head (task-incremental) scenario.

and then fine-tuning all or part of the network parameters
on the downstream dataset, the general knowledge obtained
from large-scale datasets can be transferred to downstream
tasks. Due to the effectiveness of pre-training & fine-tuning
paradigm, using a pre-trained model as initialization has al-
ready been adopted as a generic approach in continual learn-
ing of NLP [4, 6, 15, 40].

Whereas in vision, most previous works of continual
learning prefer to initialize the network randomly. Other
works either directly leverage the pre-trained model as a
frozen feature extractor, upon which shallower classifiers
or task-specific masks are continually learned [19, 27, 38];
or investigate the performance of their methods when fine-
tuning continually on hard fine-grained datasets [1, 7, 41,
43, 44] and/or tough scenarios [26, 43, 44]. Since our ulti-
mate aim is to deploy a high-performance continual learn-
ing system in the real world, it is sensible to leverage the
pre-trained models and their general knowledge. Therefore,
how to fine-tune a network without catastrophic forgetting
given its pre-trained parameters is a key issue for designing
effective methods in continual learning.

So, what is the crucial cause of catastrophic forgetting
when fine-tuning continually? We here follow the multi-
head setting adopted by some previous works [7, 20, 36],
under which each task monopolizes a specific output fully-
connected (FC) layer and the other layers are shared among

3810

Conv

ReLU

Conv

ReLU

BN
Xconv

BN
Momentum

Update

Momentum Update

Momentum
Update

BNµ

BNσ
rµ

rσ BNµ
BNσ

rµPreµ

rσ
rµ

Conv

ReLU

Xconv
BN

���

���

FC

Conv

ReLU

Xconv
BN

���

���

FC

Conv

ReLU

Xconv
BN

���

���

FC

Moment estimates
True moments

Xconv BN
Intermediate

Representational
Shift

Fine-tuning
Hierarchical FT

Figure 2. Fine-tuning (left) and ConFiT (right). After fine-tuning
on new tasks, the true moments of previous tasks’ intermediate
representations are shifted, and the running moment estimates of
BN are biased towards new tasks. ConFiT alleviates IRS via hier-
archical fine-tuning and corrects running means via Xconv BN.

tasks, as shown in Fig. 1. Ideally, the penultimate layer
representations of previous tasks should be kept unchanged
when learning new tasks. Otherwise, the distorted represen-
tations may not correspond with the output layer, because
the output layers of previous tasks are not updated. We re-
fer to this phenomenon as representational shift. The shift
of the penultimate layer representations has already been
discussed by [44], but we will step further here: the repre-
sentational shift of other intermediate layers in the network
is also noteworthy, since it significantly disrupts Batch Nor-
malization (BN) [18].

BN is a widely used technique in deep backbone net-
works such as ResNet [16]. While testing, BN normalizes
the intermediate representations using running estimates
(means and variances) of the global moments calculated
during training. In continual learning, two problems arise
when we directly employ BN in networks. First, the run-
ning moments will be inevitably biased towards new tasks.
Second, even if we keep the running moments unchanged,
the representational shift of intermediate layers (i.e., inter-
mediate representational shift, IRS) still leads to changes
in the distribution of intermediate representations. Due to
these two problems, the BN becomes uncontrollable in con-
tinual learning, and thus we cannot normalize intermediate
representations accurately when testing on previous tasks.
As a result, the model’s performance on previous tasks is
degraded, which causes catastrophic forgetting.

In this paper, we propose ConFiT, a method to address
these issues on both sides via two novel techniques, cross-
convolution batch normalization (Xconv BN) and hierarchi-
cal fine-tuning, as illustrated in Fig. 2. Xconv BN is de-
signed on the basis of BN, but can provide more accurate
running estimates under IRS. For BNs placed after convolu-
tional (Conv) layers, we calculate the pre-convolution run-
ning means before the Conv layers during training, and use
them to recover the post-convolution running means. Hier-
archical fine-tuning prevents massive changes in Conv lay-
ers by fine-tuning the network with a multi-stage strategy
and thus alleviates IRS.

In summary, our contributions are as follows:

• We reveal that intermediate representational shift

(IRS) deserves to be noticed since it disrupts BN and
consequently leads to forgetting. As far as we know,
no previous work has presented this issue.

• We propose ConFiT, a novel fine-tuning method that
both alleviates IRS and corrects BN estimates.

• Experimental results show that the proposed method
remarkably promotes the performance of fine-tuning
and outperforms several state-of-the-art baselines with
lower additional storage overhead.

2. Related Work
2.1. Continual Learning

Continual learning methods focus on alleviating catas-
trophic forgetting, which can be categorized into three
groups [23]. Regularization-based methods measure the
importance of parameters in previous tasks, and then im-
pose a regularization term on the loss to prevent important
parameters from significant deviation [1, 7, 8, 20, 41, 46].
Replay-based methods maintain a limited memory space to
store samples from previous tasks, and jointly train them
with new data to overcome forgetting [2, 3, 5, 24, 31, 34,
35,42]. Parameter-isolation methods offer distinct parame-
ters for each task, so as to isolate interference among tasks
[13, 27, 33, 36].

Pre-trained models such as BERT [10] and GPT2 [32]
have already been used in NLP tasks of continual learn-
ing [6, 15, 40]. However, in vision tasks, most recent works
prefer to start from random initialization, or use a frozen
pre-trained model as a feature extractor, which simplifies
the problem by only learning the shallow classifier con-
tinually. There are only a few works that have made lim-
ited attempts to fine-tune pre-trained vision models. For
instance, [1, 7, 41] investigate the fine-tuning performance
of their methods on hard datasets (e.g., CUB200 [39] and
CORe50 [25]), and [26,43,44] use pre-trained initialization
under a more difficult class-incremental setting where new
classes and patterns emerge over time. Whereas in this pa-
per, we directly study the forgetting on pre-trained model
and suggest strategies for fine-tuning continually.

2.2. Batch Normalization

Batch normalization (BN) is widely used in deep neural
networks to accelerate training and reduce the sensitivity to
initialization [18]. To be specific, in a convolutional neu-
ral network, the activation a has a shape of (B,C,H,W),
standing for batch size, channel size, height and width, re-
spectively. During training, BN calculates moments as:

µBN =
1

BHW

B∑
b=1

H∑
h=1

W∑
w=1

ab,:,h,w (1)

3811

σ2
BN =

1

BHW

B∑
b=1

H∑
h=1

W∑
w=1

(ab,:,h,w − µBN)
2 (2)

where µBN ,σ2
BN ∈ RC . Meanwhile, BN main-

tains momentum-updated running moments to approximate
global moments:

µr ← µr + η (µBN − µr) , σ2
r ← σ2

r + η
(
σ2

BN − σ2
r

)
(3)

The normalized activation is:

a′ = γ

(
a− µ√
σ2 + ϵ

)
+ β (4)

where µ = µBN ,σ = σBN in training, and µ = µr,σ =
σr in testing. γ,β ∈ RC are trainable affine parameters.
All operations are broadcast alone the axes of B, H and W .

An obvious weakness of BN is that the training may fail
due to unstable µBN and σ2

BN when data batches are small
and/or non-i.i.d., especially when the model is confronted
with a continual unstable data stream. [26] suggests replac-
ing BN with Batch Renormalization (BRN) [17] so as to
bypass this drawback. But this weakness will not be ex-
posed in task-incremental learning where the data batches
are i.i.d. within each single task.

Another flaw of BN is that the moments used in testing
are estimated with training data, which may lead to trou-
ble when the estimates do not match the true distribution
of testing data. This inconsistency becomes more severe in
continual learning, which we will discuss comprehensive in
Sec. 3.1. For this reason, a novel normalization method has
been proposed by a recent study [30] to replace BN in on-
line continual learning. In this paper, we will improve BN
in another way to address this issue, which only differs from
BN in testing without modifying its normalization behavior
in training.

3. Methodology
3.1. Preliminaries & Motivation

In this paper, we consider a fundamental setting where
task boundaries are available. The model is supposed to
learn a sequence of tasks: T = {T1, T2, ..., TT }. At each
step t, the model can only have access to training set of
Tt = {(xtr

i , ytri , t)}. After training, the model will be tested
on test set of all learned tasks {(xte

i , ytei , j)|j = 1, ..., T}.
Following multi-head setting in previous works, we denote
the feature extractor of the model as a mapping f , and the
classifier head of task Tt as another mapping ht. Then
at step t, without any continual learning approaches, we
train the network by minimizing the empirical risk Lt =
1

|Tt|
∑|Tt|

i=1 L(ht ◦ f(xtr
i), ytri).

As the training goes on, f is evolving all the time,
whereas ht is updated only at step t. This is to say that at
t′ > t, the representations outputted by f have changed and
may no longer correspond with the classifier ht. We refer
to this phenomenon as representational shift of the penulti-
mate layer.

To generalize this phenomenon to other layers, we now
consider a more complicated case: a network with BN. We
decompose the feature extractor f into fBN ◦ f1. Since
fBN maintains running moments for testing, at t′ > t, the
running moments will be flooded by moments of the newest
task, and thus the intermediate f1(x) for x ∈ Tt will not be
normalized correctly during testing.

A trivial solution to this issue is to store specific mo-
ments for each task respectively. However, as discussed
above, even if the running moments of fBN are task-
specific, the f1 is still evolving all the time, which also
results in IRS — the distribution of intermediate represen-
tation f1(x) for x ∈ Tt has changed, so that the running
moments of previous task Tt have been no longer represen-
tative of this distribution. This IRS intensifies the inconsis-
tency between training and testing of BN, and thus leads to
catastrophic forgetting.

We now introduce the two components of ConFiT.

3.2. Cross-convolution Batch Normalization

Since BN usually follows a Conv layer, we now consider
an intermediate fragment of network composed of a Conv
layer and a BN layer: fBN ◦ fConv . Firstly, for µr, σr,
β, and γ of fBN , we store specific ones for each task to
prevent them from leaning to new tasks. For a previous task,
if input activation a of this fragment is fixed, then the IRS
disrupting fBN is caused by the change of fConv . We start
our analysis with an interesting relation between the input’s
and output’s mean of a Conv layer. For convenience, we
first declare two following operators:

Definition 1 (Average Pooling) Suppose activation a has
a shape of (B,C,H,W), then AvgPool(a) has a shape of
(C), in which

AvgPool(a)c =
1

BHW

B∑
b′=1

H∑
h′=1

W∑
w′=1

ab′,c,h′,w′ (5)

Definition 2 (Dimension-Preserving Average Pooling)
Suppose activation a has a shape of (B,C,H,W), then
AvgPoolDP (a) also has a shape of (B,C,H,W), in
which

AvgPoolDP (a)b,c,h,w = AvgPool(a)c (6)

AvgPoolDP is dimension-preserving because it does not
change the shape of input as AvgPool does. Note that if we
broadcast AvgPool(a) along the axes of B, H and W , we

3812

Figure 3. BN (left) and Xconv BN (right). Moments in blue and
red circles are used for training and testing, respectively. µr of
BN is inaccurate since Conv layer has changed, so Xconv BN cal-
culates the post-convolution µr with stable pre-convolution µ′

r

before testing.

will get AvgPoolDP (a). With these operators, we show an
invariance of the Conv layer’s output:

Proposition 1 Suppose fConv(·) denotes a 2D-Conv layer
with stride = 1 and padding = kernel size − 1. Then,

AvgPool (fConv(a)) = AvgPool(fConv(AvgPoolDP (a))
(7)

Proof and other variants when stride ̸= 1 or padding ̸=
kernel size− 1 are in Appendix.

The fBN following fConv calculates mean as:

µBN = AvgPool(fConv(a)) (8)

From Prop. 1 we know that this mean can also be calculated
as:

µBN = AvgPool(fConv(AvgPoolDP (a)) (9)

This is to say that, if we assume the distribution
of input a is certain, we can always get the accurate
post-convolution µBN in testing by only storing its pre-
convolution mean AvgPool(a) during training, no matter
how the weight of fConv changes later. However, if we
directly store µBN instead (or use moving average µr to
approximate global µBN when batch learning) as BN does,
the changed Conv layer will make the stored training µBN

(or µr) unequal to true testing µBN .
On the other hand, if fBN normalizes the mean accu-

rately, its outputs have a certain mean vector — equal to
its β parameter. So the pre-convolution mean of the next
Conv layer is also certain — exactly this β (if there are no
other layers between them). Then as our analysis above, the
pre-convolution mean of the next Conv layer will also be
certain. Inductively, all BN layers will normalize the means
accurately when testing.

But in practice, there are also nonlinear activation func-
tions between a Conv layer and the BN layer ahead of it,
so we cannot directly use β of the previous BN as the pre-
convolution mean. Instead, the proposed Xconv BN main-
tains a momentum-updated pre-convolution running mean
µ′

r instead of fBN ’s µr. µ′
r is updated using batch pre-

convolution means µPre = AvgPool(a):

µ′
r ← µ′

r + η (µPre − µ′
r) (10)

Before testing, we uses it to calculate the approximate post-
convolution global mean of this Conv layer:

µr = AvgPool(fConv(Broadcast(µ′
r))) (11)

As for σr, we will empirically prove that it is not nec-
essary to correct it in Sec. 4.2.3, so we here retain the post-
convolution σr of BN in Xconv BN. The post-convolution
σr and recovered post-convolution µr are used for normal-
ization in testing, as demonstrated in Fig. 3. Besides, we
also store task-specific µ′

r like fBN ’s µr. Note that Xconv
BN just modifies the running moments of BN, so Xconv BN
still uses post-convolution µBN and σBN in training just as
BN does.

3.3. Hierarchical Fine-tuning

Xconv BN adjusts the running means to match the
shifted representations, i.e., adapts fBN to changed fConv ,
rather than correcting the intermediate representational shift
itself, which remains an issue.

Firstly, we give an intuition to prevent IRS during fine-
tuning. In a common fine-tuning manner, the classification
head is randomly initialized and jointly trained with the pre-
trained feature extractor. However, since the random head
may be far from its optimal value, the loss will be large at
the beginning, which also misleads the feature extractor and
forces it to change a lot. If we just fine-tune on a single task,
it will not cause a problem. But if we fine-tune continually,
the massively changed feature extractor may lead to IRS on
previous tasks.

To formulate this intuition, we now analyze a simple
overparametrized model with linear feature extractor fol-
lowing previous work [22, 37]. Consider a regression task
y = v⊤Bx, in which v ∈ Rk is classifier and B ∈ Rk×d

is feature extractor, and the number of inputs is n which
satisfies 1 ≤ k < n < d. We use v∗

t and B∗
t to denote a

zero-loss minimum point of task Tt. The MSE loss of task
Tt is denoted as Lt(B,v). For a previous task Tt′ , since its
data could be arbitrary, we consider the worst case in which

Lt′(B,v) = max∥x∥≤1

(
v⊤Bx− v∗

t′
⊤B∗

t′x
)2

. For sim-
plicity, we first analyze the loss of previous tasks in single-
head setting, i.e., the model is initialized with (B∗

t−1,v
∗
t−1)

and finally updated to (B∗
t ,v

∗
t). We here give a proposition

which is a deduction of the theorem in [22].

3813

Conv

ReLU

Conv

ReLU

BN
Xconv

BN
Momentum

Update

Momentum Update

Momentum
Update

BNµ

BNσ
rµ

rσ BNµ
BNσ

rµPreµ

rσ
rµ

Conv

ReLU

Xconv
BN

���

���

FC

Conv

ReLU

Xconv
BN

���

���

FC

Conv

ReLU

Xconv
BN

���

���

FC

Broadcast

AvgPool

Figure 4. Hierarchical fine-tuning. Colored layers are trainable
and dashed layers are task-specific.

Proposition 2 Let X = {x|x ∈ Tt} be the training data
in Tt, S and R be the orthogonal basis of SpanSpace(X)
and RowSpace(B∗

t−1) respectively, and (B∗,v∗) be the
optimal parameters on both current task Tt and previous
task Tt′ . If σk

(
R⊤S⊥

)
> 0, after fine-tuning on Tt, the

loss on Tt′ is lower bounded as√
Lt′ (B

∗
t ,v

∗
t) ≥

σk

(
R⊤S⊥

)
√
k

min(ϕ, ϕ2/ ∥B∗v∗∥2)
(1 + ∥B∗v∗∥2)

2 − ϵ

(12)

where σk denotes the k-th largest singular value, ϕ2 =∣∣∣∣(v∗
t−1

⊤v∗

)2

−
(
v⊤
∗ v∗

)2∣∣∣∣ is the alignment between v∗
t−1

and v∗, and ϵ = minU
∥∥B∗

t−1 −UB∗
∥∥2
2

is the distance
between B∗

t−1 and B∗ under a rotation.

This proposition can be easily generalized to multi-head
setting, which will be introduced in Appendix. This propo-
sition indicates that the loss of previous tasks is lower-
bounded by the alignment between the initial and optimal
classification head. Moreover, the bound is tighter when
the feature extractor is better, such as pre-trained as we use.
It indicates that it is important to use a “good” initialization
for the classification head when using a pre-trained feature
extractor.

Along this line of thinking, we propose to fine-tune the
classification head first (a.k.a. linear probing) before fine-
tuning the entire network, which provides a well-initialized
head. To be more specific, when task Tt arrives, we freeze
the feature extractor B∗

t−1 and only fine-tune the head to

vlp
t . Then the model is initialized with

(
B∗

t−1,v
lp
t

)
and

fine-tune to the optimal point (B∗
t ,v

∗
t) on Tt. We show

that if pre-trained B∗
0 is “good enough”, fine-tuning on new

task with this proposed strategy will not degrade the perfor-
mance on previous tasks in multi-head setting.

Proposition 3 If every task Tt′ with t′ ≤ t satisfies: (i)
while training on this task, v is initialized with vlp

t′ , and (ii)

there exists v0 such that Lt′(B
∗
0,v0) = Lt′(B

∗
t′ ,v

∗
t′) (i.e.,

B∗
0 is good enough), then for all task Tt′ with t′ ≤ t,

Lt′(B
∗
t ,v

∗
t′) = Lt′(B

∗
t′ ,v

∗
t′) (13)

Generalized from the overparametrized model, we can
fine-tune ordinary deep networks with a similar strategy.
Since Xconv BN stores task-specific moment estimates µ,
σ and affine parameters γ, β for each task, we can also
regard a Xconv BN layer as a “head” of a network frag-
ment fBN ◦ fConv , and hope that the Xconv BN layers are
well-initialized as well, so as to reduce changes of fConv .
Consequently, we also fine-tune the Xconv BN layers be-
fore fine-tuning the whole network, which finally raises a
three-step fine-tuning strategy illustrated in Fig. 4: when a
new task arrives, we first fine-tune the classification head,
and then the head as well as Xconv BNs, and finally all pa-
rameters.

4. Experiments
4.1. Setup

4.1.1 Datasets

We evaluate our method on four datasets: CIFAR100 [21],
CUB200 [39], Caltech101 [12], and Flowers102 [29]. CI-
FAR100 is the most widely used dataset in continual learn-
ing, which we also adopt in our experiments. However,
CIFAR100 is somewhat easy for a pre-trained model, so
we also use three harder datasets: CUB200, which is fine-
grained; Caltech101, which is unbalanced; and Flowers102,
both fine-grained and unbalanced.

We randomly divide CIFAR100 into 20 tasks where each
has 5 classes, and divide CUB200 into 10 tasks where each
has 20 classes. For Caltech101 and Flowers102, 100 classes
of each dataset are randomly selected and evenly split into
10 tasks. We do not involve Imagenet [9] as a benchmark
dataset since it has already been leveraged for pre-training
in our experiments. For a fair and clear comparison, the task
partitioning of each dataset, as well as its train-test split, is
fixed in all runs.

4.1.2 Baselines

Since our method does not need episodic memory to store
samples and thus is orthogonal to replay-based methods,
we compare our method with baselines that also do with-
out episodic memory, including regularization-based meth-
ods: EWC [20], SI [46], RWalk [8], MAS [1], CPR [7], and
AFEC [41]; and a parameter-isolation method: CCLL [36].
We also report two reference results: single-task learning
(STL), where each task is fine-tuned on an individual pre-
trained network, and linear probing (LP), where the pre-
trained feature extractor is frozen. Note that STL is not a
continual learning method.

3814

Methods CIFAR100 (T = 20) CUB200 (T = 10) Caltech101 (T = 10) Flowers102 (T = 10)

ACC ↑ FGT ↓ ACC ↑ FGT ↓ ACC ↑ FGT ↓ ACC ↑ FGT ↓
Fine-tuning 87.43±0.78 7.11±0.92 71.76±0.58 14.76±0.66 71.89±0.86 17.24±1.11 78.06±1.29 10.93±1.16

EWC [20] 88.04±0.59 6.40±0.58 79.30±0.43 7.20±0.52 76.10±1.12 12.35±1.46 79.94±0.68 8.56±0.56

SI [46] 88.20±0.44 6.42±0.46 77.94±0.53 8.42±0.51 76.26±1.32 12.28±1.10 79.61±0.62 8.77±0.36

RWalk [8] 87.75±0.74 6.82±0.78 77.27±0.64 9.24±0.64 76.14±1.15 12.51±1.03 79.48±0.61 9.06±0.68

MAS [1] 90.59±0.35 3.61±0.28 83.64±0.39 2.42±0.44 81.76±1.60 6.18±0.96 80.90±0.82 6.60±0.76

CPR [7] 91.17±0.21 2.89±0.16 83.64±0.36 2.49±0.36 81.85±1.47 5.68±0.86 80.97±0.90 6.53±0.92

AFEC [41] 90.68±0.11 3.55±0.04 83.70±0.31 2.60±0.35 82.55±0.89 5.34±0.72 81.26±0.64 6.38±0.57

ConFiT (Ours) 92.02±0.21 2.72±0.29 87.43±0.16 1.31±0.38 88.73±0.34 0.67±0.27 86.99±0.25 1.79±0.49

CCLL [36] 77.59 0.00 44.66 0.00 63.18 0.00 64.13 0.00
LP 91.48±0.12 0.00 86.03±0.08 0.00 77.07±0.40 0.00 71.14±0.72 0.00
STL 93.50±0.11 0.00 86.60±0.15 0.00 86.65±0.69 0.00 85.96±0.50 0.00

Table 1. Experimental results on benchmark datasets. Methods in the upper part permit update of shared parameters among tasks. For all
methods except CCLL, we report results averaged over 5 runs and their 95% confidence intervals. ↑ and ↓ stand for higher is better and
lower is better, respectively.

2 4 6 8 10 12 14 16 18 20
Task Number

81

84

87

90

93

96

AC
C

CIFAR100

1 2 3 4 5 6 7 8 9 10
Task Number

69
72
75
78
81
84
87
90 CUB200

1 2 3 4 5 6 7 8 9 10
Task Number

66
69
72
75
78
81
84
87
90 Caltech101

1 2 3 4 5 6 7 8 9 10
Task Number

78

81

84

87

90

93 Flower102

Fine-tuning EWC SI RWalk MAS CPR AFEC ConFiT (Ours)

Figure 5. Average Accuracy on all already learned tasks after learning each task. We report results averaged over 5 runs.

4.1.3 Implementation Details

In all experiments, including all baselines, LP, STL, and
ConFiT, we use a ResNet18 pre-trained on ImageNet as ini-
tialization. For all regularization-based baselines and our
ConFiT, we use a SGD optimizer with a learning rate of
0.01, and train the network with a mini-batch size of {128,
32, 32, 32} for {10, 50, 20, 10} epochs on each task of
{CIFAR100, CUB200, Caltech101, Flowers102}, respec-
tively. For CPR and AFEC which are plug-in approaches,
we report the performance of MAS-CPR and MAS-AFEC,
because MAS performs the best among {EWC, SI, RWalk,
MAS}. As for our hierarchical fine-tuning, we allocate
20%, 30% and 50% of the total epochs to the three stages,
respectively. For parameter-isolation CCLL, we follow the
setting in its original paper that trains the network for 150
epochs using SGD with an initial learning rate of 0.01,
and multiplies the learning rate by 0.1 at 50, 100 and 125
epochs. All experiments are in multi-head setting, i.e., task-
incremental scenario.

4.1.4 Evaluation Metrics

We measure the performance with two metrics, as in pre-
vious works [7, 8]: Average Accuracy (ACC) and Average

Forgetting (FGT). We denote the accuracy on task Ti after
training the model on task Tj as aij , and task TT is the final
task. Then ACC and FGT can be calculated as follows:

ACC =
1

T

T∑
i=1

aiT (14)

FGT =
1

T − 1

T−1∑
i=1

max
i≤j≤T

(aij − aiT) (15)

4.2. Results & Discussion

4.2.1 Comparisons with Baselines

The main results are shown inTab. 1. MAS performs bet-
ter than EWC, SI, and RWalk on all datasets, which is rea-
sonable since MAS will not underestimate the importance
of parameters for pre-trained knowledge, as [1] indicates.
Plug-in methods CPR and AFEC do not provide much im-
provement on MAS in this setting. CCLL performs poorly
since the added calibration modules significantly change the
structure of the pre-trained network and thus disrupt the pre-
trained knowledge.

On all the four datasets, ConFiT has higher ACC than
all continual learning baselines, and lower FGT than all

3815

EWC SI RWalk MAS CPR AFEC CCLL
(T=10)

CCLL
(T=20)

ConFiT
(T=10)

ConFiT
(T=20)

Methods

10 1

100

101

102

Ad
di

tio
na

l P
ar

am
et

er
s (

M
)

Figure 6. Additional parameters to be stored for each method.
ConFiT uses orders of magnitude fewer additional parameters than
other baselines.

Ablation Cases Flowers102 Caltech101

Fine-tuning BN 78.06±1.29 71.89±0.86
Hierarchical FT BN 83.39±0.43 85.12±0.34

Fine-tuning Xconv BN 81.26±0.72 82.09±0.59
Hierarchical FT Xconv BN 86.99±0.25 88.73±0.34

Table 2. Ablation study for ConFiT. We report ACC on Flow-
ers102 and Caltech101.

regularization-based methods. Furthermore, ConFiT out-
performs STL on CUB200, Caltech101, and Flowers102.
Since STL uses an individual network for each task, it can
achieve zero forgetting, but will not benefit from task-level
knowledge transfer. It indicates that ConFiT also has the
ability to share knowledge among tasks. On CUB200 and
CIFAR100, LP even outperforms many baselines and has
good results close to STL. This reflects the great ability of
the pre-trained model — it has accumulated almost enough
knowledge during pre-training. Whereas ConFiT still per-
forms better than LP, which indicates the necessity to obtain
more task-specific knowledge via fine-tuning.

In Fig. 6 we illustrate that ConFiT uses orders of mag-
nitude fewer additional parameters than other baselines.
Methods like EWC need to store regularization weights for
each parameter (11.2M for ResNet18). In addition to these,
AFEC needs to store an extra network and its regulariza-
tion weights. CCLL stores parameters of calibration mod-
ules (0.17M/task). ConFiT, on the other hand, only stores
Xconv BN parameters for each task (0.02M/task). It is
worth noting that 0.02M/task is an extremely tiny require-
ment for continual learning, since the episodic memory will
take up about 0.15M/task even if only a single 224×224×3
image/task is stored for replay-based methods.

4.2.2 Ablation Study

We provide an ablation study on Flowers102 and Cal-
tech101. As shown in Tab. 2, both hierarchical fine-tuning
and Xconv BN can boost the average accuracy significantly.
ConFiT combines both of them and achieves the best per-
formance.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Layers

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

1

w/ Hierarchical FT (ConFiT)
w/o Hierarchical FT (FT + Xconv BN)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
Layers

0.0

0.2

0.4

0.6

0.8

2
-

0

w/ Xconv BN (ConFiT)
w/o Xconv BN (Hierarchical FT + BN)

Figure 7. ∆1 and ∆2 − ∆0 of the 20 Conv layers in ResNet18
(three of which are in shortcuts) on Flowers102. Layer 0 is closest
to input. Lower ∆1 and ∆2 −∆0 are better.

Moreover, to verify our motivation — ConFiT alleviates
IRS and corrects the BN running estimates, we record these
statistics for output of each Conv layer:

• µi
te: the true mean on test set of T1 after training on

task Ti;

• µi
r: the post-convolution running mean of BN/XConv

BN of T1 after training on Ti.

Note that for BN the running mean is shared across tasks,
whereas for Xconv BN it is specific for T1. All the means
are calculated along the axes of BHW as BN does. Based
on them, we calculate the following values on Flowers102:

• ∆1 = ∥µ1
te − µ10

te ∥2: the shift of the mean of T1’s
intermediate representations;

• ∆2 = ∥µ10
r − µ10

te ∥2: the gap between the running
mean and true mean of T1 when the training is over.

Note that the running estimates are not absolutely precise
even with Xconv BN, since Xconv BN inherits the intrinsic
inconsistency between running and true moments of BN.
For a clear comparison, we also calculate this intrinsic in-
consistency as

• ∆0 = ∥µ1
r−µ1

te∥2: the gap between the running mean
and true mean of T1 when the network has only been
trained on T1, which is a lower bound of ∆2.

We conduct experiments on ablation cases where hierarchi-
cal fine-tuning and Xconv BN are not used, and report the
∆1 and ∆2 −∆0 of each layer.

3816

CUB200 Caltech101 Flowers102

87

88

89

90

AC
C

R-mean & R-var (ConFiT)
R-mean & T-var
T-mean & R-var
T-mean & T-var

Figure 8. Results when using transductive moment estimates. “R-
” and “T-” stand for “running” and “transductive”, respectively.
The R-mean has been corrected by Xconv BN.

Fig. 7 shows that, for the majority of layers, IRS has
been alleviated by hierarchical fine-tuning (lower ∆1), and
error of estimation has been reduced by Xconv BN (lower
∆2 −∆0). Moreover, the IRS of the final Conv layer’s out-
put also decreases via hierarchical fine-tuning, which means
the representational shift of features is also reduced. We
also find that Xconv BN is more effective on the shallow
layers (close to input), where the estimation error of Xconv
BN is almost 0. This is because the estimation error may ac-
cumulate layer by layer, which makes the inputs’ means of
deep layers not be fixed, potentially violating the assump-
tion in Sec. 3.2.

4.2.3 Is Running Variance Correction Necessary?

Xconv BN maintains pre-convolution running means in-
stead of post-convolution, but it still retains the post-
convolution running variances like BN. A straightforward
reason for using post-convolution running variances is that
the variance is a nonlinear secondary moment, so it is dif-
ficult to find a feasible mapping between pre- and post-
convolution variances under a linear Conv layer.

To figure out whether running variance correction is nec-
essary, we explore the best case of correction: using true
moments to normalize. We refer to this ideal setting as
“transductive” since the model has access to the whole test
set to determine parameters. As shown in Fig. 8, if the
mean and variance are both transductive, the normalization
is accurate, so the model outperforms ConFiT as expected,
whose mean and variance are both running. If only the
mean or only the variance is transductive, the performance
is also improved. However, the improvement brought about
by transductive variance is somewhat limited (less than 1%)
compared with the large improvement that ConFiT has al-
ready provided, not to mention that the transductive results
are just upper bounds in the ideal cases. Therefore, we argue
that running variance correction is insignificant for Xconv
BN.

4.2.4 Performance on Deeper Networks

Since our experiments are conducted on ResNet18, we
here deploy ConFiT on two other networks: ResNet34 and

Caltech101 Flowers102
65
70
75
80
85
90

AC
C

ResNet34
ResNet50

Fine-tuning
Xconv BN
Hierarchical FT
ConFiT

Figure 9. ACC on ResNet34 and ResNet50.

ResNet50 [16], which are much deeper than ResNet18.
These networks also use BN after Conv layers, so our Con-
FiT can be directly applied. Since deeper networks con-
verge more slowly, we train each network for 50 epochs on
Caltech101 and Flowers102, more than that for ResNet18.

As shown in Fig. 9, when directly fine-tuning the net-
work, both ResNet34 and ResNet50 perform poorly, and
the deeper ResNet50 even suffers from more forgetting.
ConFiT boosts the performance of both ResNet34 and
ResNet50, in which the ACC of ResNet50 with ConFiT is
higher than that of ResNet34. This illustrates that ConFiT
has great scalability and can be applied to deeper networks
according to actual demand.

5. Limitations

Firstly, the proposed hierarchical fine-tuning is based on
a strong assumption that the feature extractor has already
been good enough before continual fine-tuning. This as-
sumption makes it hard to generalize this method to a ran-
domly initialized network, or to cases when the tasks are
too complicated for the pre-trained model to handle well.

Secondly, Xconv BN needs to store a small number of
task-specific parameters, so the task identifiers are nec-
essary in testing for selecting the parameters of Xconv
BN. Consequently, Xconv BN cannot be used for class-
incremental learning and task-agnostic scenarios directly.
Xconv BN can also not be applied to models without BN,
such as Vision Transformers [11].

6. Conclusion

In this paper, we focus on fine-tuning continually on pre-
trained models. We reveal a crucial cause of catastrophic
forgetting — the IRS distorts BN. From this perspective, we
propose ConFiT, which corrects running means via Xconv
BN and alleviates IRS via hierarchical fine-tuning. These
two components are proven to be effective both empirically
and theoretically. Our ConFiT achieves superior perfor-
mance, surpassing current SOTA regularization-based and
parameter-isolation methods on several datasets.

3817

References
[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,

Marcus Rohrbach, and Tinne Tuytelaars. Memory aware
synapses: Learning what (not) to forget. In ECCV, 2018.
1, 2, 5, 6

[2] Rahaf Aljundi, Eugene Belilovsky, Tinne Tuytelaars, Lau-
rent Charlin, Massimo Caccia, Min Lin, and Lucas Page-
Caccia. Online continual learning with maximal interfered
retrieval. In NeurIPS, 2019. 2

[3] Rahaf Aljundi, Min Lin, Baptiste Goujaud, and Yoshua Ben-
gio. Gradient based sample selection for online continual
learning. In NeurIPS, 2019. 2

[4] Magdalena Biesialska, Katarzyna Biesialska, and Marta R.
Costa-jussà. Continual lifelong learning in natural language
processing: A survey. In Donia Scott, Núria Bel, and
Chengqing Zong, editors, COLING, 2020. 1

[5] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide
Abati, and Simone Calderara. Dark experience for general
continual learning: a strong, simple baseline. In NeurIPS,
2020. 2

[6] Pengfei Cao, Yubo Chen, Jun Zhao, and Taifeng Wang. In-
cremental event detection via knowledge consolidation net-
works. In EMNLP, 2020. 1, 2

[7] Sungmin Cha, Hsiang Hsu, Taebaek Hwang, Flávio P. Cal-
mon, and Taesup Moon. CPR: classifier-projection regular-
ization for continual learning. In ICLR, 2021. 1, 2, 5, 6

[8] Arslan Chaudhry, Puneet Kumar Dokania, Thalaiyasingam
Ajanthan, and Philip H. S. Torr. Riemannian walk for in-
cremental learning: Understanding forgetting and intransi-
gence. In ECCV, 2018. 2, 5, 6

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009. 5

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: pre-training of deep bidirectional trans-
formers for language understanding. In NAACL-HLT, 2019.
1, 2

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 8

[12] Li Fei-Fei, Robert Fergus, and Pietro Perona. Learning gen-
erative visual models from few training examples: An incre-
mental bayesian approach tested on 101 object categories.
Comput. Vis. Image Underst., 2007. 5

[13] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori
Zwols, David Ha, Andrei A. Rusu, Alexander Pritzel, and
Daan Wierstra. Pathnet: Evolution channels gradient descent
in super neural networks. CoRR, abs/1701.08734, 2017. 2

[14] Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville,
and Yoshua Bengio. An empirical investigation of catas-
trophic forgetting in gradient-based neural networks. In
ICLR, 2014. 1

[15] Xu Han, Yi Dai, Tianyu Gao, Yankai Lin, Zhiyuan Liu, Peng
Li, Maosong Sun, and Jie Zhou. Continual relation learning

via episodic memory activation and reconsolidation. In ACL,
2020. 1, 2

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 2, 8

[17] Sergey Ioffe. Batch renormalization: Towards reducing
minibatch dependence in batch-normalized models. In Is-
abelle Guyon, Ulrike von Luxburg, Samy Bengio, Hanna M.
Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett, editors, NIPS, 2017. 3

[18] Sergey Ioffe and Christian Szegedy. Batch normalization:
Accelerating deep network training by reducing internal co-
variate shift. In ICML, 2015. 2

[19] Ronald Kemker and Christopher Kanan. Fearnet: Brain-
inspired model for incremental learning. In ICLR, 2018. 1

[20] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, et al. Overcoming catas-
trophic forgetting in neural networks. PNAS, 2017. 1, 2,
5, 6

[21] A. Krizhevsky and G. Hinton. Learning multiple layers of
features from tiny images. Computer Science Department,
University of Toronto, Tech. Rep, 1, 2009. 5

[22] Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones,
Tengyu Ma, and Percy Liang. Fine-tuning can distort pre-
trained features and underperform out-of-distribution. In
ICLR, 2022. 4

[23] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah
Parisot, Xu Jia, Alevs. Leonardis, Gregory G. Slabaugh, and
Tinne Tuytelaars. A continual learning survey: Defying for-
getting in classification tasks. IEEE transactions on pattern
analysis and machine intelligence, 2021. 2

[24] Matthias De Lange and Tinne Tuytelaars. Continual pro-
totype evolution: Learning online from non-stationary data
streams. CoRR, abs/2009.00919, 2020. 2

[25] Vincenzo Lomonaco and Davide Maltoni. Core50: a new
dataset and benchmark for continuous object recognition. In
CoRL, 2017. 2

[26] Vincenzo Lomonaco, Davide Maltoni, and Lorenzo Pelle-
grini. Rehearsal-free continual learning over small non-i.i.d.
batches. In CVPR Workshops, 2020. 1, 2, 3

[27] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggy-
back: Adapting a single network to multiple tasks by learn-
ing to mask weights. In Vittorio Ferrari, Martial Hebert,
Cristian Sminchisescu, and Yair Weiss, editors, ECCV, 2018.
1, 2

[28] Michael McCloskey and Neal J Cohen. Catastrophic inter-
ference in connectionist networks: The sequential learning
problem. In Psychology of learning and motivation. Else-
vier, 1989. 1

[29] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In
ICVGIP, 2008. 5

[30] Quang Pham, Chenghao Liu, and Steven HOI. Continual
normalization: Rethinking batch normalization for online
continual learning. In ICLR, 2022. 3

[31] Ameya Prabhu, Philip H. S. Torr, and Puneet K. Dokania.
Gdumb: A simple approach that questions our progress in
continual learning. In ECCV, 2020. 2

3818

[32] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, and Ilya Sutskever. Language models are unsuper-
vised multitask learners. 2018. 1, 2

[33] Jathushan Rajasegaran, Munawar Hayat, Salman H. Khan,
Fahad Shahbaz Khan, and Ling Shao. Random path selection
for continual learning. In NeurIPS, 2019. 2

[34] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. icarl: Incremental classifier
and representation learning. In CVPR, 2017. 2

[35] Anthony V. Robins. Catastrophic forgetting, rehearsal and
pseudorehearsal. Connect. Sci., 7(2), 1995. 2

[36] Pravendra Singh, Vinay Kumar Verma, Pratik Mazumder,
Lawrence Carin, and Piyush Rai. Calibrating cnns for life-
long learning. In NeurIPS, 2020. 1, 2, 5, 6

[37] Nilesh Tripuraneni, Michael I. Jordan, and Chi Jin. On the
theory of transfer learning: The importance of task diversity.
In NeurIPS, 2020. 4

[38] Gido M. van de Ven, Zhe Li, and Andreas S. Tolias. Class-
incremental learning with generative classifiers. In CVPR
Workshops, 2021. 1

[39] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.
The caltech-ucsd birds-200-2011 dataset. Technical report,
California Institute of Technology, 2011. 2, 5

[40] Hong Wang, Wenhan Xiong, Mo Yu, Xiaoxiao Guo, Shiyu
Chang, and William Yang Wang. Sentence embedding align-
ment for lifelong relation extraction. In NAACL-HLT, 2019.
1, 2

[41] Liyuan Wang, Mingtian Zhang, Zhongfan Jia, Qian Li,
Chenglong Bao, Kaisheng Ma, Jun Zhu, and Yi Zhong.
AFEC: Active forgetting of negative transfer in continual
learning. In NeurIPS, 2021. 1, 2, 5, 6

[42] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,
Zicheng Liu, Yandong Guo, and Yun Fu. Large scale in-
cremental learning. In CVPR, 2019. 2

[43] Haiyan Yin, peng yang, and Ping Li. Mitigating forget-
ting in online continual learning with neuron calibration. In
NeurIPS, 2021. 1, 2

[44] Lu Yu, Bartlomiej Twardowski, Xialei Liu, Luis Herranz,
Kai Wang, Yongmei Cheng, Shangling Jui, and Joost van de
Weijer. Semantic drift compensation for class-incremental
learning. In CVPR, 2020. 1, 2

[45] Matthew D. Zeiler and Rob Fergus. Visualizing and under-
standing convolutional networks. In ECCV, 2014. 1

[46] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-
ual learning through synaptic intelligence. In ICML, 2017.
2, 5, 6

3819

