
Continual Learning Based on OOD Detection and Task Masking

Gyuhak Kim
University of Illinois at Chicago

gkim87@uic.edu

Sepideh Esmaeilpour
University of Illinois at Chicago

sesmae2@uic.edu

Changnan Xiao
ByteDance

xiaochangnan@bytedance.com

Bing Liu
University of Illinois at Chicago

liub@uic.edu

Abstract

Existing continual learning techniques focus on either
task incremental learning (TIL) or class incremental learn-
ing (CIL) problem, but not both. CIL and TIL differ mainly
in that the task-id is provided for each test sample during
testing for TIL, but not provided for CIL. Continual learn-
ing methods intended for one problem have limitations on
the other problem. This paper proposes a novel unified ap-
proach based on out-of-distribution (OOD) detection and
task masking, called CLOM, to solve both problems. The
key novelty is that each task is trained as an OOD detec-
tion model rather than a traditional supervised learning
model, and a task mask is trained to protect each task to
prevent forgetting. Our evaluation shows that CLOM out-
performs existing state-of-the-art baselines by large mar-
gins. The average TIL/CIL accuracy of CLOM over six
experiments is 87.6/67.9% while that of the best baselines
is only 84.4/55.0%. The code of our system is available at
https://github.com/k-gyuhak/CLOM .

1. Introduction
Continual learning (CL) learns a sequence of tasks

<1, 2, ..., k, ...> incrementally [12]. Each task k has its
dataset Dk = {(xi

k, y
i
k)

nk
i=1}, where xi

k ∈X is a data sam-
ple in task k and yik ∈ Yk is the class label of xi

k and Yk is
the set of classes of task k. The key challenge of CL is catas-
trophic forgetting (CF) [46], which refers to the situation
where the learning of a new task may significantly change the
network weights learned for old tasks, degrading the model
accuracy for old tasks. Researchers have mainly worked
on two CL problems: class incremental/continual learning
(CIL) and task incremental/continual learning (TIL) [14,66].
The main difference between CIL and TIL is that in TIL, the
task-id k is provided for each test sample x during testing
so that only the model for task k is used to classify x, while

in CIL, the task-id k for each test sample is not provided.
Existing CL techniques focus on either CIL or TIL [12,

50]. In general, CIL methods are designed to function with-
out given task-id to perform class prediction over all classes
in the tasks learned so far, and thus tend to forget the pre-
vious task performance due to plasticity for the new task.
TIL methods are designed to function with a task-id for class
prediction within the task. They are more stable to retain
previous within-task knowledge, but incompetent if task-id
is unknown (see Sec. 4).

This paper proposes a novel and unified method called
CLOM (Continual Learning based on OOD detection and
Task Masking) to solve both problems by overcoming the
limitations of CIL and TIL methods. CLOM has two key
mechanisms: (1) a task mask mechanism for protecting each
task model to overcome CF, and (2) a learning method for
building a model for each task based on out-of-distribution
(OOD) detection. The task mask mechanism is inspired
by hard attention in the TIL system HAT [61]. The OOD
detection based learning method for building each task model
is quite different from the classic supervised learning used
in existing TIL systems. It is, in fact, the key novelty and
enabler for CLOM to work effectively for CIL.

OOD detection is stated as follows [4]: Given a training
set of n classes, called the in-distribution (IND) training data,
we want to build a model that can assign correct classes to
IND test data and reject or detect OOD test data that do not
belong to any of the n IND training classes. The OOD rejec-
tion capability makes a TIL model effective for CIL problem
because during testing, if a test sample does not belong to
any of the classes of a task, it will be rejected by the model of
the task. Thus, only the task that the test sample belongs to
will accept it and classify it to one of its classes. No task-id is
needed. The OOD detection algorithm in CLOM is inspired
by several recent advances in self-supervised learning, data
augmentation [21], contrastive learning [11, 48], and their
applications to OOD detection [18, 23, 65].

3856

The main contributions of this work are as follows:

• It proposes a novel CL method CLOM, which is es-
sentially a TIL system in training, but solves both TIL
and CIL problems in testing. Existing methods mainly
solve either TIL or CIL problem, but are weak on the
other problem.

• CLOM uses task masks to protect the model for each
task to prevent CF and OOD detection to build each
task model, which, to our knowledge, has not been
done before. More importantly, since the task masks
can prevent CF, continual learning performance gets
better as OOD models get better too.

• CLOM needn’t to save any replay data. If some past
data is saved for output calibration, it performs even
better.

Experimental results show that CLOM improves state-of-
the-art baselines by large margins. The average TIL/CIL
accuracy of CLOM over six different experiments is
87.6/67.9% while that of the best baseline is only
84.4/55.0%.

2. Related Work
Many approaches have been proposed to deal with CF

in CL. Using regularization [33] and knowledge distil-
lation [38] to minimize the change to previous models
are two popular approaches [6, 7, 14, 15, 25, 27, 30, 37,
40, 53, 55, 59, 60, 71, 75]. Memorizing some old exam-
ples and using them to adjust the old models in learn-
ing a new task is another popular approach (called re-
play) [5, 10, 13, 24, 41, 43, 51, 54, 56, 58, 70, 76]. Several
systems learn to generate pseudo training data of old tasks
and use them to jointly train the new task, called pseudo-
replay [17,20,25,28,30,49,57,60,62,69,69]. CLOM differs
from these approaches as it does not replay any old task data
to prevent forgetting and can function with/without saving
some old data. Parameter isolation is yet another popular ap-
proach, which makes different subsets (which may overlap)
of the model parameters dedicated to different tasks using
masks [15, 29, 61] or finding a sub-network for each task by
pruning [26, 45, 68]. CLOM uses parameter isolation, but
it differs from these approaches as it combines the idea of
parameter isolation and OOD detection, which can solve
both TIL and CIL problems effectively.

There are also many other approaches, e.g., orthogonal
projection [19, 32, 74], a network of experts [3] and gen-
eralized CL [47], etc. PASS [77] uses data rotation and
regularizes them. Co2L [8] is a replay method that uses
contrastive loss on old samples. CLOM also uses rotation
and constrative loss, but its CF handling is based on masks.
None of the existing methods uses OOD detection.

CLOM is a TIL method that can also solve CIL problems.
Many TIL systems exist [15], e.g., GEM [43], A-GEM [10],
UCL [2], ADP [72], CCLL [63], Orthog-Subspace [9],
HyperNet [67], PackNet [45], CPG [26], SupSup [68],
HAT [61], and CAT [29]. GEM is a replay based method
and UCL is a regularization based method. A-GEM [10]
improves GEM’s efficiency. ADP decomposes parameters
into shared and adaptive parts to construct an order robust
TIL system. CCLL uses task-adaptive calibration on convo-
lution layers. Orthog-Subspace learns each task in subspaces
orthogonal to each other. HyperNet initializes task-specific
parameters conditioned on task-id. PackNet, CPG and Sup-
Sup find an isolated sub-network for each task and use it at
inference. HAT and CAT protect previous tasks by masking
the important parameters. Our CLOM also uses this gen-
eral approach, but its model building for each task is based
on OOD detection, which has not been used by existing
TIL methods. It also performs well in the CIL setting (see
Sec. 4.2).

Related work on out-of-distribution (OOD) detection
(also called open set detection) is also extensive. Excel-
lent surveys include [4, 16]. The model building part of
CLOM is inspired by the latest method in [65] based on data
augmentation [21] and contrastive learning [11].

3. Proposed CLOM Technique

As mentioned earlier, CLOM is a TIL system that solves
both TIL and CIL problems. It takes the parameter isola-
tion approach for TIL. For each task k (task-id), a model is
built f(h(x, k)) for the task, where h and f are the feature
extractor and the task specific classifier, respectively, and
f(h(x, k)) is the output of the neural network for task k. We
omit task-id k in f to simplify notation. In learning each
task k, a task mask is also trained at the same time to protect
the learned model of the task.

In testing for TIL, given the test sample x with task-id k
provided, CLOM uses the model for task k to classify x,

ŷ = argmax f(h(x, k)) (1)

For CIL (no task-id for each test sample x), CLOM uses the
model of every task and predicts the class ŷ using

ŷ = argmax
⊕

1≤k≤t

f(h(x, k)), (2)

where
⊕

is the concatenation over the output space and
t is the last task that has been learned. Eq. (2) essentially
chooses the class with the highest classification score among
the classes of all tasks learned so far. This works because the
OOD detection model for a task will give very low score for
a test sample that does not belong to the task. An overview
of the prediction is illustrated in Fig. 1(a).

3857

cat dog
task 1

argmax()
task t

argmax()...

concatenation
cat dogargmax()...

...

TIL

CIL

(a)

(b)
et1 etL−2 etL−1

⊗B̃ ⊗
...

⊗

C
F

x

x1
x2

x1
0 x1

90x
1
180x

1
270 x2

0

...

...

Lc + Lr

Lft

Learning feature
extractor (step1)

Building classifier
(step 2)

augmentation

C
N
N N

N
C F

C C
F

sigmoid sigmoid sigmoid

Figure 1. (a) Overview of TIL and CIL prediction. For TIL pre-
diction, we consider only the output heads of the given task. For
CIL prediction, we obtain all the outputs from task 1 to current task
t, and choose the label over the concatenated output. (b) Training
overview for a generic backbone. Each CNN includes a convolution
layer with batch normalization, activation, or pooling depending
on the configuration. In our experiments, we use AlexNet [35] and
ResNet-18 [22]. We feed-forward augmented batch B̃ consisting
of rotated images of different views (x1

0,x
1
90, · · ·). We first train

feature extractor by using contrastive loss (step 1). At each layer,
binary mask is multiplied to the output of each convolution layer to
learn important parameters of current task t. After training feature
extractor, we fine-tune the OOD classifier (step 2).

Note that in fact any CIL model can be used as a TIL
model if task-id is provided. The conversion is made by
selecting the corresponding task classification heads in test-
ing. However, a conversion from a TIL method to a CIL
method is not obvious as the system requires task-id in test-
ing. Some attempts have been made to predict the task-id
in order to make a TIL method applicable to CIL problems.
iTAML [52] requires the test samples to come in batches
and each batch must be from a single task. This may not be
practical as test samples usually come one by one. CCG [1]
builds a separate network to predict the task-id, which is
also prone to forgetting. Expert Gate [3] constructs a sep-
arate autoencoder for each task. Our CLOM classifies one
test sample at a time and does not need to construct another
network for task-id prediction.

In the following subsections, we present (1) how to build
an OOD model for a task and use it to make a prediction,
and (2) how to learn task masks to protect each model. An
overview of the process is illustrated in Fig. 1(b).

3.1. Learning Each Task as OOD Detection

We borrow the latest OOD ideas based on contrastive
learning [11, 21] and data augmentation due to their excel-
lent performance [65]. Since this section focuses on how
to learn a single task based on OOD detection, we omit the
task-id unless necessary. The OOD training process is simi-
lar to that of contrastive learning. It consists of two steps: 1)
learning the feature representation by the composite g ◦ h,
where h is a feature extractor and g is a projection to con-

trastive representation, and 2) learning a linear classifier f
mapping the feature representation of h to the label space. In
the following, we describe the training process: contrastive
learning for feature representation learning (1), and OOD
classifier building (2). We then explain how to make a pre-
diction based on an ensemble method for both TIL and CIL
settings, and how to further improve prediction using some
saved past data.

3.1.1 Contrastive Loss for Feature Learning.

This is step 1 in Fig. 1(b). Supervised contrastive learning is
used to try to repel data of different classes and align data of
the same class more closely to make it easier to classify them.
A key operation is data augmentation via transformations.

Given a batch of N samples, each sample x is first du-
plicated and each version then goes through three initial
augmentations (also see Data Augmentation in Sec. 4.1)
to generate two different views x1 and x2 (they keep the
same class label as x). Denote the augmented batch by
B, which now has 2N samples. In [23, 65], it was shown
that using image rotations is effective in learning OOD de-
tection models because such rotations can effectively serve
as out-of-distribution (OOD) training data. For each aug-
mented sample x ∈ B with class y of a task, we rotate
x by 90◦, 180◦, 270◦ to create three images, which are as-
signed three new classes y1, y2, and y3, respectively. This
results in a larger augmented batch B̃. Since we generate
three new images from each x, the size of B̃ is 8N . For
each original class, we now have 4 classes. For a sample
x ∈ B̃, let B̃(x) = B̃\{x} and let P (x) ⊂ B̃\{x} be a
set consisting of the data of the same class as x distinct
from x. The contrastive representation of a sample x is
zx = g(h(x, t))/∥g(h(x, t))∥, where t is the current task.
In learning, we minimize the supervised contrastive loss [31]
of task t.

Lc =
1

8N

∑
x∈B̃

−1
|P (x)|

×

∑
p∈P (x)

log
exp(zx · zp/τ)∑

x′∈B̃(x) exp(zx · zx′/τ)
(3)

where τ is a scalar temperature, · is dot product, and × is
multiplication. The loss is reduced by repelling z of different
classes and aligning z of the same class more closely. Lc

basically trains a feature extractor with good representations
for learning an OOD classifier.

3.1.2 Learning the Classifier.

This is step 2 in Fig. 1(b). Given the feature extractor h
trained with the loss in Eq. (3), we freeze h and only fine-
tune the linear classifier f , which is trained to predict the

3858

classes of task t and the augmented rotation classes. f maps
the feature representation to the label space inR4|Ct|, where
4 is the number of rotation classes including the original data
with 0◦ rotation and |Ct| is the number of original classes in
task t. We minimize the cross-entropy loss,

Lft = −
1

|B̃|

∑
(x,y)∈B̃

log p̃(y|x, t) (4)

where ft indicates fine-tune, and

p̃(y|x, t) = softmax (f(h(x, t))) (5)

where f(h(x, t)) ∈ R4|Ct|. The output f(h(x, t)) includes
the rotation classes. The linear classifier is trained to predict
the original and the rotation classes.

3.1.3 Ensemble Class Prediction.

We describe how to predict a label y ∈ Ct (TIL) and y ∈ C
(CIL) (C is the set of original classes of all tasks) We assume
all tasks have been learned and their models are protected by
masks, which we discuss in the next subsection.

We discuss the prediction of class label y for a test sam-
ple x in the TIL setting first. Note that the network f ◦ h
in Eq. (5) returns logits for rotation classes (including the
original task classes). Note also for each original class
label jk ∈ Ck (original classes) of a task k, we created
three additional rotation classes. For class jk, the clas-
sifier f will produce four output values from its four ro-
tation class logits, i.e., fjk,0(h(x0, k)), fjk,90(h(x90, k)),
fjk,180(h(x180, k)), and fjk,270(h(x270, k)), where 0, 90,
180, and 270 represent 0◦, 90◦, 180◦, and 270◦ rotations re-
spectively and x0 is the original x. We compute an ensemble
output fjk(h(x, k)) for each class jk ∈ Ck of task k,

fjk(h(x, k)) =
1

4

∑
deg

fjk,deg(h(xdeg, k)). (6)

The final TIL class prediction is made as follows (note, in
TIL, task-id k is provided in testing),

ŷ = argmax
jk∈Ck

{
fjk(h(x, k))

}
(7)

We use Eq. (2) to make the CIL class prediction, where the
final format f(h(x, k)) for task k is the following vector:

f(h(x, k)) =
[
f1(h(x, k), · · · , f|Ck|(h(x, k))

]
(8)

Our method so far memorizes no training samples and it
already outperforms baselines (see Sec. 4.2).

3.1.4 Output Calibration with Memory.

The proposed method can make incorrect CIL prediction
even with a perfect OOD model (rejecting every test sample
that does not belong any class of the task). This happens
because the task models are trained independently, and the
outputs of different tasks may have different magnitudes. We
use output calibration to ensure that the outputs are of similar
magnitudes to be comparable by using some saved examples
in a memoryMwith limited budget. At each task k, we store
a fraction of the validation data {(x, y)} intoMk for output
calibration and update the memoryM← update(M,Mk)
by maintaining an equal number of samples per class. We
will detail the memory budget in Sec. 4.3. Basically, we
save the same number as the existing replay-based TIL/CIL
methods.

After training the network f for the current task t, we
freeze the model and use the saved data inM to find the
scaling and shifting parameters (σ,µ) ∈ Rt × Rt to cal-
ibrate the after-ensemble classification output f(h(x, k))
(Eq. (8)) (i.e., using σkf(h(x, k)) + µk) for each task k by
minimizing the cross-entropy loss,

Lcal = −
1

|M|
∑

(x,y)∈M

log p(y|x) (9)

where p(c|x) is computed using softmax,

softmax
[
σ1f(h(x, 1)) + µ1; · · · ;σtf(h(x, t)) + µt

]
(10)

Clearly, parameters σk and µk do not change classification
within task k (TIL), but calibrates the outputs such that the
ensemble outputs from all tasks are in comparable magni-
tudes. For CIL inference at the test time, we make prediction
by (following Eq. (2)),

ŷ = argmax
⊕

1≤k≤t

[σkf(h(x, k)) + µk] (11)

3.2. Protecting OOD Model of Each Task Using
Masks

We now discuss the task mask mechanism based on hard
attentions [61] for protecting the OOD model of each task
to deal with CF. In learning the OOD model for each task,
CLOM at the same time also trains a mask or hard attention
for each layer. To protect the shared feature extractor from
previous tasks, their masks are used to block those important
neurons so that the new task learning will not interfere with
the parameters learned for previous tasks.

The main idea is to use sigmoid to approximate a 0-1
step function as hard attention to mask (or block) or unmask
(unblock) the information flow to protect the parameters
learned for each previous task.

3859

The hard attention (mask) at layer l and task t is defined
as

at
l = u

(
setl

)
(12)

where u is the sigmoid function, s is a scalar, and etl is a
learnable embedding of the task-id input t. The attention is
element-wise multiplied to the output hl of layer l as

h′
l = at

l ⊗ hl (13)

as depicted in Fig. 1(b). The sigmoid function u converges
to a 0-1 step function as s goes to infinity. Since the true
step function is not differentiable, a fairly large s is chosen
to achieve a differentiable pseudo step function based on
sigmoid (see Appendix 4 for choice of s). The pseudo binary
value of the attention determines how much information can
flow forward and backward between adjacent layers.

Denote hl = ReLU(Wlhl−1 + bl), where ReLU is the
rectifier function. For units (neurons) of attention at

l with
zero values, we can freely change the corresponding param-
eters in Wl and bl without affecting the output h′

l. For units
of attention with non-zero values, changing the parameters
will affect the output h′

l for which we need to protect from
gradient flow in backpropagation to prevent forgetting.

Specifically, during training the new task t, we update
parameters according to the attention so that the important
parameters for past tasks (1, ..., t−1) are unmodified. Denote
the accumulated attentions (masks) of all past tasks by

a<t
l = max(a<t−1

l ,at−1
l) (14)

where a<t
l is the hard attentions of layer l of all previous

tasks, and max is an element-wise maximum1 and a0
l is a

zero vector. Then the modified gradient is the following,

∇w′
ij,l =

(
1−min

(
a<t
i,l , a

<t
j,l−1

))
∇wij,l (15)

where a<t
i,l indicates i’th unit of a<t

l and l = 1, ..., L − 1.
This reduces the gradient if the corresponding units’ atten-
tions at layers l and l − 1 are non-zero2. We do not apply
hard attention on the last layer L because it is a task-specific
layer.

To encourage sparsity in at
l and parameter sharing with

a<t
l , a regularization (Lr) for attention at task t is defined as

Lr = λt

∑
l

∑
i a

t
i,l

(
1− a<t

i,l

)
∑

l

∑
i

(
1− a<t

i,l

) (16)

1Some parameters from different tasks can be shared, which means
some hard attention masks can be shared.

2By construction, if at
l becomes 1 for all layers, the gradients are zero

and the network is at maximum capacity. However, the network capacity
can increase by adding more parameters.

where λt is a scalar hyperparameter. For flexibility, we
denote λt for each task t. However, in practice, we use the
same λt for all t ̸= 1. The final objective to be minimized
for task t with hard attention is (see Fig. 1(b))

L = Lc + Lr (17)

where Lc is the contrastive loss function (Eq. (3)). By pro-
tecting important parameters from changing during training,
the neural network effectively alleviates CF.

4. Experiments
Evaluation Datasets: Four image classification CL

benchmark datasets are used in our experiments.
(1) MNIST :3 handwritten digits of 10 classes (digits)

with 60,000 examples for training and 10,000 examples for
testing.

(2) CIFAR-10 [34]:4 60,000 32x32 color images of 10
classes with 50,000 for training and 10,000 for testing.

(3) CIFAR-100 [34]:5 60,000 32x32 color images of 100
classes with 500 images per class for training and 100 per
class for testing.

(4) Tiny-ImageNet [36]:6 120,000 64x64 color images
of 200 classes with 500 images per class for training and 50
images per class for validation, and 50 images per class for
testing. Since the test data has no labels in this dataset, we
use the validation data as the test data as in [40].

Baseline Systems: We compare our CLOM with both
the classic and the most recent state-of-the-art CIL and TIL
methods. We also include CLOM(-c), which is CLOM with-
out calibration (which already outperforms the baselines).

For CIL baselines, we consider seven replay methods,
LwF.R (replay version of LwF [38] with better results [42]),
iCaRL [54], BiC [70], A-RPS [51], Mnemonics [42],
DER++ [5], and Co2L [8]; one pseudo-replay method
CCG [1]7; one orthogonal projection method OWM [74];
and a multi-classifier method MUC [40]; and a prototype
augmentation method PASS [77]. OWM, MUC, and PASS
do not save any samples from previous tasks.

TIL baselines include HAT [61], HyperNet [67], and
SupSup [68]. As noted earlier, CIL methods can also be
used for TIL. In fact, TIL methods may be used for CIL
too, but the results are very poor. We include them in our
comparison

3http://yann.lecun.com/exdb/mnist/
4https://www.cs.toronto.edu/ kriz/cifar.html
5https://www.cs.toronto.edu/ kriz/cifar.html
6http://tiny-imagenet.herokuapp.com
7iTAML [52] is not included as they require a batch of test data from

the same task to predict the task-id. When each batch has only one test
sample, which is our setting, it is very weak. For example, iTAML TIL/CIL
accuracy is only 35.2%/33.5% on CIFAR100 10 tasks. Expert Gate (EG) [3]
is also weak. For example, its TIL/CIL accuracy is 87.2/43.2 on MNIST 5
tasks. Both iTAML and EG are much weaker than many baselines.

3860

Method MNIST-5T CIFAR10-5T CIFAR100-10T CIFAR100-20T T-ImageNet-5T T-ImageNet-10T Average
TIL CIL TIL CIL TIL CIL TIL CIL TIL CIL TIL CIL TIL CIL

CIL Systems
OWM 99.7±0.03 95.8±0.13 85.2±0.17 51.7±0.06 59.9±0.84 29.0±0.72 65.4±0.07 24.2±0.11 22.4±0.87 10.0±0.55 28.1±0.55 8.6±0.42 60.1 36.5
MUC 99.9±0.02 74.6±0.45 95.2±0.24 53.6±0.95 76.9±1.27 30.0±1.37 73.7±1.27 14.4±0.93 55.8±0.26 33.6±0.18 47.2±0.22 17.4±0.17 74.8 37.3
PASS† 99.5±0.14 76.6±1.67 83.8±0.68 47.3±0.97 72.4±1.23 36.8±1.64 76.9±0.77 25.3±0.81 50.3±1.97 28.9±1.36 47.6±0.38 18.7±0.58 71.8 38.9
LwF.R 99.9±0.09 85.0±3.05 95.2±0.30 54.7±1.18 86.2±1.00 45.3±0.75 89.0±0.45 44.3±0.46 56.4±0.48 32.2±0.50 55.3±0.35 24.3±0.26 80.3 47.6
iCaRL∗ 99.9±0.09 96.0±0.42 94.9±0.34 63.4±1.11 84.2±1.04 51.4±0.99 85.7±0.68 47.8±0.48 54.3±0.59 37.0±0.41 52.7±0.37 28.3±0.18 78.6 54.0
Mnemonics†∗ 99.9±0.03 96.3±0.36 94.5±0.46 64.1±1.47 82.3±0.30 51.0±0.34 86.2±0.46 47.6±0.74 54.8±0.16 37.1±0.46 52.9±0.66 28.5±0.72 78.5 54.1
BiC 99.9±0.04 85.1±1.84 91.1±0.82 57.1±1.09 87.6±0.28 51.3±0.59 90.3±0.26 40.1±0.77 44.7±0.71 20.2±0.31 50.3±0.65 21.2±0.46 77.3 45.8
DER++ 99.7±0.08 95.3±0.69 92.2±0.48 66.0±1.27 84.2±0.47 55.3±0.10 86.6±0.50 46.6±1.44 58.0±0.52 36.0±0.42 59.7±0.6 30.5±0.30 80.1 55.0
A-RPS 60.8 53.5
CCG 97.3 70.1
Co2L 93.4 65.6

TIL Systems
HAT 99.9±0.02 81.9±3.73 96.7±0.18 62.7±1.46 84.0±0.23 41.1±0.93 85.0±0.85 26.0±0.83 61.2±0.72 38.5±1.85 63.8±0.41 29.8±0.65 81.8 46.6
HyperNet 99.7±0.05 49.1±5.52 94.9±0.54 47.4±5.78 77.3±0.45 29.7±2.19 83.0±0.60 19.4±1.44 23.8±1.21 8.8±0.98 27.8±0.86 5.8±0.56 67.8 26.7
SupSup 99.6±0.08 71.3±4.06 94.8±0.18 49.8±1.40 88.0±0.13 44.2±0.80 91.6±0.17 35.0±0.08 64.2±0.66 43.0±0.82 68.2±0.26 36.5±0.30 84.4 46.6
CLOM(-c) 99.9±0.00 94.4±0.26 98.7±0.06 87.8±0.71 92.0±0.37 63.3±1.00 94.3±0.06 54.6±0.92 68.4±0.16 45.7±0.26 72.4±0.21 47.1±0.18 87.6 65.5
CLOM 99.9±0.00 96.9±0.30 98.7±0.06 88.0±0.48 92.0±0.37 65.2±0.71 94.3±0.06 58.0±0.45 68.4±0.16 51.7±0.37 72.4±0.21 47.6±0.32 87.6 67.9

Table 1. Average accuracy over all classes after the last task is learned. -xT: x number of tasks. †: In their original paper, PASS and
Mnemonics use the first half of classes to pre-train before CL. Their results are 50.1% and 53.5% on CIFAR100-10T respectively, but they
are still lower than CLOM without pre-training. In our experiments, no pre-training is used for fairness. ∗: iCaRL and Mnemonics give
both the final average accuracy as here and the average incremental accuracy in the original papers. We report the average incremental
accuracy and network size in Appendix 1 and 2, respectively. The last two columns show the average TIL and CIL accuracy of each method
over all datasets.

4.1. Training Details

For all experiments, we use 10% of training data as the
validation set to grid-search for good hyperparameters. For
minimizing the contrastive loss, we use LARS [73] for 700
epochs with initial learning rate 0.1. We linearly increase the
learning rate by 0.1 per epoch for the first 10 epochs until 1.0
and then decay it by cosine scheduler [44] after 10 epochs
without restart as in [11, 65]. For fine-tuning the classifier
f , we use SGD for 100 epochs with learning rate 0.1 and
reduce the learning rate by 0.1 at 60, 75, and 90 epochs. The
full set of hyperparameters is given in Appendix 4.

We follow the recent baselines (A-RPS, DER++, PASS
and Co2L) and use the same class split and backbone archi-
tecture for both CLOM and baselines.

For MNIST and CIFAR-10, we split 10 classes into 5
tasks where each task has 2 classes in consecutive order. We
save 20 random samples per class from the validation set for
output calibration. This number is commonly used in replay
methods [42, 51, 54, 70]. MNIST consists of single channel
images of size 1x28x28. Since the contrastive learning [11]
relies on color changes, we copy the channel to make 3-
channels. For MNIST and CIFAR-10, we use AlexNet-like
architecture [35] and ResNet-18 [22] respectively for both
CLOM and baselines.

For CIFAR-100, we conduct two experiments. We split
100 classes into 10 tasks and 20 tasks where each task has
10 and 5 classes, respectively, in consecutive order. We use
2000 memory budget as in [54], saving 20 random samples
per class from the validation set for output calibration. We

use the same ResNet-18 structure for CLOM and baselines,
but we increase the number of channels twice to learn more
tasks.

For Tiny-ImageNet, we follow [40] and resize the original
images of size 3x64x64 to 3x32x32 so that the same ResNet-
18 of CIFAR-100 experiment setting can be used. We split
200 classes into 5 tasks (40 classes per task) and 10 tasks
(20 classes per task) in consecutive order, respectively. To
have the same memory budget of 2000 as for CIFAR-100,
we save 10 random samples per class from the validation set
for output calibration.

Data Augmentation. For baselines, we use data aug-
mentations used in their original papers. For CLOM, fol-
lowing [11, 65], we use three initial augmentations (see
Sec. 3.1) (i.e., horizontal flip, color change (color jitter and
grayscale), and Inception crop [64]) and four rotations (see
Sec. 3.1). Specific details about these transformations are
given in Appendix 3.

4.2. Results and Comparative Analysis

As in existing works, we evaluate each method by two
metrics: average classification accuracy on all classes after
training the last task, and average forgetting rate [42], F t =
1

t−1

∑t−1
j=1 A

init
j −At

j , where Ainit
j is the j’th task’s accuracy

of the network right after the j’th task is learned and At
j

is the accuracy of the network on the j’th task data after
learning the last task t. We report the forgetting rate after the
final task t. Our results are averages of 5 random runs.

We present the main experiment results in Tab. 1. The last

3861

two columns give the average TIL/CIL results of each sys-
tem/row. For A-RPS, CCG, and Co2L, we copy the results
from their original papers as their codes are not released to
the public or the public code cannot run on our system. The
rows are grouped by CIL and TIL methods.

CIL Results Comparison. Tab. 1 shows that CLOM and
its memory free method CLOM(-c) achieve much higher
CIL accuracy except for MNIST for which CLOM is slightly
weaker than CCG by 0.4%, but CLOM’s result on CIFAR10-
5T is about 18% greater than CCG. For other datasets,
CLOM improves by similar margins. This is in contrast to
the baseline TIL systems that are incompetent at the CIL set-
ting when classes are predicted using Eq. (2). Even without
calibration, CLOM(-c) already outperforms all the baselines
by large margins.

TIL Results Comparison. The gains by CLOM and
CLOM(-c) over the baselines are also great in the TIL setting.
CLOM and CLOM(-c) are the same as the output calibration
does not affect TIL performance. For the two large datasets
CIFAR100 and T-ImageNet, CLOM gains by large margins.
This is due to contrastive learning and the OOD model. The
replay based CIL methods (LwF.R, iCaRL, Mnemonics, BiC,
and DER++) perform reasonably in the TIL setting, but our
CLOM and CLOM(-c) are much better due to task masks
which can protect previous models better with little CF.

CIFAR100-10T CIFAR100-20T T-ImageNet-5T T-ImageNet-10T
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

A
ve

ra
ge

 F
or

ge
tti

ng

OWM
MUC
PASS

LwF.R
iCaRL
Mnemonics

BiC
DER++
HAT

HyperNet
SupSup
CLOM

OWM
MUC
PASS

LwF.R
iCaRL
Mnemonics

BiC
DER++
HAT

HyperNet
SupSup
CLOM

Figure 2. Average forgetting rate (%) in the TIL setting as CLOM
is a TIL system. The lower the value, the better the method is.
CIL/TIL systems are shaded in blue/red, respectively (best viewed
in color). A negative value indicates the task accuracy has increased
from the initial accuracy.

Comparison of Forgetting Rate. Fig. 2 shows the aver-
age forgetting rate of each method in the TIL setting. The
CIL systems suffer from more forgetting as they are not
designed for the TIL setting, which results in lower TIL
accuracy (Tab. 1). The TIL systems are highly effective at
preserving previous within-task knowledge. This results in
higher TIL accuracy on large dataset such as T-ImageNet,
but they collapse when task-id is not provided (the CIL set-
ting) as shown in Tab. 1. CLOM is robust to forgetting as a
TIL system and it also functions well without task-id.

We report only the forgetting rate in the TIL setting be-

CIFAR10-5T CIFAR100-10T
AUC TaskDR TIL CIL AUC TaskDR TIL CIL

SupSup 78.9 26.2 95.3 26.2 76.7 34.3 85.2 33.1
SupSup (OOD in CLOM) 88.9 82.3 97.2 81.5 84.9 63.7 90.0 62.1

CLOM (ODIN) 82.9 63.3 96.7 62.9 77.9 43.0 84.0 41.3
CLOM 92.2 88.5 98.7 88.0 85.0 66.8 92.0 65.2

CLOM (w/o OOD) 90.3 83.9 98.1 83.3 82.6 59.5 89.8 57.5

Table 2. TIL and CIL results improve with better OOD detection.
Column AUC gives the average AUC score for the OOD detection
method as used within each system on the left. Column TaskDR
gives task detection rate. TIL and CIL results are average accuracy
values. SupSup and CLOM variants are calibrated with 20 samples
per class.

cause our CLOM is essentially a TIL method and not a CIL
system by design. The degrading CIL accuracy of CLOM is
mainly because the OOD model for each task is not perfect.

4.3. Ablation Studies

Better OOD for better continual learning. We show
that (1) an existing CL model can be improved by a good
OOD model and (2) CLOM’s results will deteriorate if a
weaker OOD model is applied. To isolate effect of OOD
detection on changes in CIL performance, we further define
task detection and task detection rate. For a test sample
from a class of task j, if it is predicted to a class of task
m and j = m, the task detection is correct for this test
instance. The task detection rate

∑
x∈Dtest 1j=m/N , where

N is the total number of test instances in Dtest, is the rate of
correct task detection. We measure the performance of OOD
detection using AUC (Area Under the ROC Curve) averaged
over all tasks. AUC is the main measure used in OOD
detection papers. We conduct experiments on CIFAR10-5T
and CIFAR100-10T.

For (1), we use the TIL baseline SupSup as it displays
a strong TIL performance and is robust to forgetting like
CLOM. We replace SupSup’s task learner with the OOD
model in CLOM. Tab. 2 shows that the OOD method in
CLOM improves SupSup (SupSup (OOD in CLOM)) greatly.
It shows that our approach is applicable to different TIL
systems.

For (2), we replace CLOM’s OOD method with a weaker
OOD method ODIN [39]. We see in Tab. 2 that task detection
rate, TIL, and CIL results all drop markedly with ODIN
(CLOM (ODIN)).

CLOM without OOD detection. In this case, CLOM
uses contrastive learning and data augmentation, but does
not use the rotation classes in classification. Note that the
rotation classes are basically regarded as OOD data in train-
ing and for OOD detection in testing. CLOM (w/o OOD) in
Tab. 2 represents this CLOM variant. We see that CLOM
(w/o OOD) is much weaker than the full CLOM. This indi-
cates that the improved results of CLOM over baselines are
not only due to contrastive learning and data augmentation

3862

|M| (a) (b)

0 63.3±1.00 54.6±0.92
5 64.9±0.67 57.7±0.50
10 65.0±0.71 57.8±0.53
15 65.1±0.71 57.9±0.44
20 65.2±0.71 58.0±0.45

s F 5 AUC CIL

1 48.6 58.8 10.0
100 13.3 82.7 67.7
300 8.2 83.3 72.0
500 0.2 91.8 87.2
700 0.1 92.2 88.0

Table 3. (Left) shows changes of accuracy with the number of
samples saved per class for output calibration. (a) and (b) are
CIFAR100-10T and CIFAR100-20T, respectively. |M| = k in-
dicates k samples are saved per class. (Right) shows that weaker
forgetting avoidance mechanism results in larger forgetting and
lower AUC, thus lower CIL. For s = 1, the pseudo-step function
becomes the standard sigmoid, thus parameters are hardly protected.
F 5 is the forgetting rate over 5 tasks.

CIFAR10-5T CIFAR100-10T
Aug. TIL CIL TIL CIL

Hflip (93.1, 95.3) (49.1, 72.7) (77.6, 84.0) (31.1, 47.0)
Color (91.7, 94.6) (50.9, 70.2) (67.2, 77.4) (28.7, 41.8)
Crop (96.1, 97.3) (58.4, 79.4) (84.1, 89.3) (41.6, 60.3)
All (97.6, 98.7) (74.0, 88.0) (88.1, 92.0) (50.2, 65.2)

Table 4. Accuracy of CLOM variants when a single or all augmen-
tations are applied. Hflip: horizontal flip; Color: color jitter and
grayscale; Crop: Inception [64]. (num1, num2): accuracy without
and with rotation.

but also significantly due to OOD detection.
Effect of the number of saved samples for calibration.

Tab. 3 (left) reveals that the output calibration is still effective
with a small number of saved samples per class (|M|). For
both CIFAR100-10T and CIFAR100-20T, CLOM achieves
competitive performance by using only 5 samples per class.
The accuracy improves and the variance decreases with the
number of saved samples.

Effect of s in Eq. (12) on forgetting of CLOM. We
need to use a strong forgetting avoidance mechanism for
CLOM to be functional. Using CIFAR10-5T, we show how
CLOM performs with different values of s in hard attention
or masking. The larger s value, the stronger protection
is used. Tab. 3 (right) shows that average AUC and CIL
decrease as the forgetting rate increases. This also supports
the result in Tab. 2 that SupSup improves greatly with the
OOD method in CLOM as it is also robust to forgetting.
PASS and Co2L underperform despite they also use rotation
or constrastive loss as their forgetting avoidance mechanisms
are weak.

Effect of data augmentations. For data augmentation,
we use three initial augmentations (i.e., horizontal flip, color
change (color jitter and grayscale), Inception crop [64]),
which are commonly used in contrastive learning to build a
single model. We additionally use rotation for OOD data in
training. To evaluate the contribution of each augmentation

when task models are trained sequentially, we train CLOM
using one augmentation. We do not report their effects on
forgetting as we experience rarely any forgetting (Fig. 2 and
Tab. 3). Tab. 4 shows that the performance is lower when
only a single augmentation is applied. When all augmenta-
tions are applied, the TIL/CIL accuracies are higher. The
rotation always improves the result when it is combined with
other augmentations. More importantly, when we use crop
and rotation, we achieve higher CIL accuracy (79.4/60.3%
for CIFAR10-5T/CIFAR100-10T) than we use all augmenta-
tions without rotation (74.0/50.2%). This shows the efficacy
of rotation in our system.

5. Conclusions
This paper proposed a novel continual learning (CL)

method called CLOM based on OOD detection and task
masking that can perform both task incremental learning
(TIL) and class incremental learning (CIL). Regardless
whether it is used for TIL or CIL in testing, the training
process is the same, which is an advantage over existing CL
systems as they focus on either CIL or TIL and have limi-
tations on the other problem. Experimental results showed
that CLOM outperforms both state-of-the-art TIL and CIL
methods by very large margins. In our future work, we will
study ways to improve efficiency and also accuracy.

Limitation of our work: One limitation of this work is
that since CLOM needs to build a good OOD model, it is
unclear whether it can be effectively applied to the online
continual learning setting where the data comes in a stream
and can be visited once. Incrementally building an accurate
OOD model can be challenging as the current method needs
to train in a large number of epochs. This is a direction that
we plan to explore in our future work.

Potential negative societal impact: We do not see any
except that like many other machine learning algorithms, our
proposed method could be affected by bias in the input data
as CLOM does not deal with fairness or bias in the data.

References
[1] Davide Abati, Jakub Tomczak, Tijmen Blankevoort, Simone

Calderara, Rita Cucchiara, and Ehteshami Bejnordi. Condi-
tional channel gated networks for task-aware continual learn-
ing. In CVPR, pages 3931–3940, 2020. 3, 5

[2] Hongjoon Ahn, Sungmin Cha, Donggyu Lee, and Taesup
Moon. Uncertainty-based continual learning with adaptive
regularization. In NeurIPS, 2019. 2

[3] Rahaf Aljundi, Punarjay Chakravarty, and Tinne Tuytelaars.
Expert gate: Lifelong learning with a network of experts. In
CVPR, 2017. 2, 3, 5

[4] Saikiran Bulusu, Bhavya Kailkhura, Bo Li, Pramod K Varsh-
ney, and Dawn Song. Anomalous instance detection in deep
learning: A survey. arXiv preprint arXiv:2003.06979, 2020.
1, 2

3863

[5] Pietro Buzzega, Matteo Boschini, Angelo Porrello, Davide
Abati, and SIMONE CALDERARA. Dark experience for
general continual learning: a strong, simple baseline. In
NeurIPS, 2020. 2, 5

[6] Raffaello Camoriano, Giulia Pasquale, Carlo Ciliberto,
Lorenzo Natale, Lorenzo Rosasco, and Giorgio Metta. Incre-
mental robot learning of new objects with fixed update time.
In ICRA, 2017. 2

[7] Francisco M Castro, Manuel J Marı́n-Jiménez, Nicolás Guil,
Cordelia Schmid, and Karteek Alahari. End-to-end incremen-
tal learning. In ECCV, pages 233–248, 2018. 2

[8] Hyuntak Cha, Jaeho Lee, and Jinwoo Shin. Co2l: Contrastive
continual learning. In ICCV, 2021. 2, 5

[9] Arslan Chaudhry, Naeemullah Khan, Puneet K. Dokania, and
Philip H. S. Torr. Continual learning in low-rank orthogonal
subspaces, 2020. 2

[10] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,
and Mohamed Elhoseiny. Efficient lifelong learning with
a-gem. In ICLR, 2019. 2

[11] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-
frey Hinton. A simple framework for contrastive learning of
visual representations. In ICML, 2020. 1, 2, 3, 6

[12] Zhiyuan Chen and Bing Liu. Lifelong Machine Learning.
Morgan & Claypool Publishers, 2018. 1

[13] Cyprien de Masson d’Autume, Sebastian Ruder, Lingpeng
Kong, and Dani Yogatama. Episodic memory in lifelong
language learning. In NeurIPS, 2019. 2

[14] Prithviraj Dhar, Rajat Vikram Singh, Kuan-Chuan Peng,
Ziyan Wu, and Rama Chellappa. Learning without mem-
orizing. In CVPR, 2019. 1, 2

[15] Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori
Zwols, David Ha, Andrei A Rusu, Alexander Pritzel, and
Daan Wierstra. Pathnet: Evolution channels gradient descent
in super neural networks. arXiv preprint arXiv:1701.08734,
2017. 2

[16] Chuanxing Geng, Sheng-jun Huang, and Songcan Chen. Re-
cent advances in open set recognition: A survey. IEEE trans-
actions on pattern analysis and machine intelligence, 2020.
2

[17] Alexander Gepperth and Cem Karaoguz. A bio-inspired incre-
mental learning architecture for applied perceptual problems.
Cognitive Computation, 8(5):924–934, 2016. 2

[18] Izhak Golan and Ran El-Yaniv. Deep anomaly detection using
geometric transformations. In NeurIPS, 2018. 1

[19] Yiduo Guo, Wenpeng Hu, Dongyan Zhao, and Bing Liu.
Adaptive orthogonal projection for batch and online continual
learning. In Proceedings of AAAI-2022, 2022. 2

[20] Tyler L Hayes, Kushal Kafle, Robik Shrestha, Manoj Acharya,
and Christopher Kanan. Remind your neural network to pre-
vent catastrophic forgetting. arXiv preprint arXiv:1910.02509,
2019. 2

[21] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual repre-
sentation learning. In CVPR, 2020. 1, 2, 3

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, 2016.
3, 6

[23] Dan Hendrycks, Mantas Mazeika, Saurav Kadavath, and
Dawn Song. Using self-supervised learning can improve
model robustness and uncertainty. In NeurIPS, pages 15663–
15674, 2019. 1, 3

[24] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and
Dahua Lin. Learning a unified classifier incrementally via
rebalancing. In CVPR, pages 831–839, 2019. 2

[25] Wenpeng Hu, Zhou Lin, Bing Liu, Chongyang Tao, Zhengwei
Tao, Jinwen Ma, Dongyan Zhao, and Rui Yan. Overcoming
catastrophic forgetting for continual learning via model adap-
tation. In ICLR, 2019. 2

[26] Ching-Yi Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung
Chen, Yi-Ming Chan, and Chu-Song Chen. Compacting,
picking and growing for unforgetting continual learning. In
NeurIPS, volume 32, 2019. 2

[27] Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim.
Less-forgetting learning in deep neural networks. arXiv
preprint arXiv:1607.00122, 2016. 2

[28] Nitin Kamra, Umang Gupta, and Yan Liu. Deep Genera-
tive Dual Memory Network for Continual Learning. arXiv
preprint arXiv:1710.10368, 2017. 2

[29] Zixuan Ke, Bing Liu, and Xingchang Huang. Continual
learning of a mixed sequence of similar and dissimilar tasks.
In NeurIPS, 2020. 2

[30] Ronald Kemker and Christopher Kanan. FearNet: Brain-
Inspired Model for Incremental Learning. In ICLR, 2018.
2

[31] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,
Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and
Dilip Krishnan. Supervised contrastive learning. arXiv
preprint arXiv:2004.11362, 2020. 3

[32] Gyuhak Kim and Bing Liu. Continual learning via principal
components projection, 2020. 2

[33] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel
Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan,
John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,
and Others. Overcoming catastrophic forgetting in neural
networks. Proceedings of the National Academy of Sciences,
114(13):3521–3526, 2017. 2

[34] Alex Krizhevsky and Geoffrey Hinton. Learning multiple
layers of features from tiny images. Technical Report TR-
2009, University of Toronto, Toronto., 2009. 5

[35] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
agenet classification with deep convolutional neural networks.
In NIPS, 2012. 3, 6

[36] Y. Le and X. Yang. Tiny imagenet visual recognition chal-
lenge, 2015. 5

[37] Kibok Lee, Kimin Lee, Jinwoo Shin, and Honglak Lee. Over-
coming catastrophic forgetting with unlabeled data in the wild.
In CVPR, 2019. 2

[38] Zhizhong Li and Derek Hoiem. Learning Without Forgetting.
In ECCV, pages 614–629. Springer, 2016. 2, 5

[39] Shiyu Liang, Yixuan Li, and R. Srikant. Enhancing the re-
liability of out-of-distribution image detection in neural net-
works. In ICLR, 2018. 7

[40] Yu Liu, Sarah Parisot, Gregory Slabaugh, Xu Jia, Ales
Leonardis, and Tinne Tuytelaars. More classifiers, less for-
getting: A generic multi-classifier paradigm for incremental

3864

learning. In ECCV, pages 699–716. Springer International
Publishing, 2020. 2, 5, 6

[41] Yaoyao Liu, Bernt Schiele, and Qianru Sun. Adaptive ag-
gregation networks for class-incremental learning. In CVPR,
2021. 2

[42] Yaoyao Liu, Yuting Su, An-An Liu, Bernt Schiele, and Qianru
Sun. Mnemonics training: Multi-class incremental learning
without forgetting. In CVPR, 2020. 5, 6

[43] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient
Episodic Memory for Continual Learning. In NeurIPS, pages
6470–6479, 2017. 2

[44] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient
descent with warm restarts. arXiv preprint arXiv:1608.03983,
2016. 6

[45] Arun Mallya and Svetlana Lazebnik. PackNet: Adding Mul-
tiple Tasks to a Single Network by Iterative Pruning. arXiv
preprint arXiv:1711.05769, 2017. 2

[46] Michael McCloskey and Neal J Cohen. Catastrophic interfer-
ence in connectionist networks: The sequential learning prob-
lem. In Psychology of learning and motivation, volume 24,
pages 109–165. Elsevier, 1989. 1

[47] Fei Mi, Lingjing Kong, Tao Lin, Kaicheng Yu, and Boi Falt-
ings. Generalized class incremental learning. In CVPR, 2020.
2

[48] Aaron Oord, Yazhe Li, and Oriol Vinyals. Rep-
resentation learning with contrastive predictive coding.
arXiv:1807.03748, 2018. 1

[49] Oleksiy Ostapenko, Mihai Puscas, Tassilo Klein, Patrick Jah-
nichen, and Moin Nabi. Learning to remember: A synaptic
plasticity driven framework for continual learning. In CVPR,
pages 11321–11329, 2019. 2

[50] German Ignacio Parisi, Ronald Kemker, Jose L. Part, Christo-
pher Kanan, and Stefan Wermter. Continual lifelong learning
with neural networks: A review. Neural Networks, 2019. 1

[51] Jathushan Rajasegaran, Munawar Hayat, Salman Khan, Fa-
had Shahbaz Khan, Ling Shao, and Ming-Hsuan Yang. An
adaptive random path selection approach for incremental
learning, 2020. 2, 5, 6

[52] Jathushan Rajasegaran, Salman Khan, Munawar Hayat, Fa-
had Shahbaz Khan, and Mubarak Shah. itaml: An incremental
task-agnostic meta-learning approach. In CVPR, 2020. 3, 5

[53] Amal Rannen Ep Triki, Rahaf Aljundi, Matthew Blaschko,
and Tinne Tuytelaars. Encoder based lifelong learning. In
ICCV, 2017. 2

[54] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, and
Christoph H Lampert. iCaRL: Incremental classifier and
representation learning. In CVPR, pages 5533–5542, 2017. 2,
5, 6

[55] Hippolyt Ritter, Aleksandar Botev, and David Barber. On-
line structured laplace approximations for overcoming catas-
trophic forgetting. In NeurIPS, 2018. 2

[56] David Rolnick, Arun Ahuja, Jonathan Schwarz, Timothy P.
Lillicrap, and Greg Wayne. Experience replay for continual
learning. In NeurIPS, 2019. 2

[57] Mohammad Rostami, Soheil Kolouri, and Praveen K. Pilly.
Complementary learning for overcoming catastrophic forget-
ting using experience replay. In IJCAI, 2019. 2

[58] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,
Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-
van Pascanu, and Raia Hadsell. Progressive neural networks.
arXiv preprint arXiv:1606.04671, 2016. 2

[59] Jonathan Schwarz, Jelena Luketina, Wojciech M Czarnecki,
Agnieszka Grabska-Barwinska, Yee Whye Teh, Razvan Pas-
canu, and Raia Hadsell. Progress & compress: A scal-
able framework for continual learning. arXiv preprint
arXiv:1805.06370, 2018. 2

[60] Ari Seff, Alex Beatson, Daniel Suo, and Han Liu. Contin-
ual learning in generative adversarial nets. arXiv preprint
arXiv:1705.08395, 2017. 2

[61] Joan Serrà, Dı́dac Surı́s, Marius Miron, and Alexandros Karat-
zoglou. Overcoming catastrophic forgetting with hard atten-
tion to the task. In ICML, 2018. 1, 2, 4, 5

[62] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.
Continual learning with deep generative replay. In NIPS,
pages 2994–3003, 2017. 2

[63] Pravendra Singh, Vinay Kumar Verma, Pratik Mazumder,
Lawrence Carin, and Piyush Rai. Calibrating cnns for lifelong
learning. NeurIPS, 2020. 2

[64] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent
Vanhoucke, and Andrew Rabinovich. Going deeper with
convolutions. In CVPR, 2015. 6, 8

[65] Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo
Shin. Csi: Novelty detection via contrastive learning on
distributionally shifted instances. In NeurIPS, 2020. 1, 2, 3, 6

[66] Gido M van de Ven and Andreas S Tolias. Three scenarios for
continual learning. arXiv preprint arXiv:1904.07734, 2019. 1

[67] Johannes von Oswald, Christian Henning, João Sacramento,
and Benjamin F Grewe. Continual learning with hypernet-
works. ICLR, 2020. 2, 5

[68] Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Anirud-
dha Kembhavi, Mohammad Rastegari, Jason Yosinski, and
Ali Farhadi. Supermasks in superposition. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
NeurIPS, volume 33, pages 15173–15184. Curran Associates,
Inc., 2020. 2, 5

[69] Chenshen Wu, Luis Herranz, Xialei Liu, Joost van de Weijer,
Bogdan Raducanu, et al. Memory replay gans: Learning to
generate new categories without forgetting. In NeurIPS, 2018.
2

[70] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,
Zicheng Liu, Yandong Guo, and Yun Fu. Large scale in-
cremental learning. In CVPR, 2019. 2, 5, 6

[71] Ju Xu and Zhanxing Zhu. Reinforced continual learning. In
NeurIPS, 2018. 2

[72] Jaehong Yoon, Saehoon Kim, Eunho Yang, and Sung Ju
Hwang. Scalable and order-robust continual learning with
additive parameter decomposition. In ICLR, 2020. 2

[73] Yang You, Igor Gitman, and Boris Ginsburg. Large
batch training of convolutional networks. arXiv preprint
arXiv:1708.03888, 2017. 6

[74] Guanxiong Zeng, Yang Chen, Bo Cui, and Shan Yu. Con-
tinuous learning of context-dependent processing in neural
networks. Nature Machine Intelligence, 2019. 2, 5

3865

[75] Friedemann Zenke, Ben Poole, and Surya Ganguli. Continual
learning through synaptic intelligence. In ICML, pages 3987–
3995, 2017. 2

[76] Bowen Zhao, Xi Xiao, Guojun Gan, Bin Zhang, and Shu-
Tao Xia. Maintaining discrimination and fairness in class
incremental learning. In CVPR, pages 13208–13217, 2020. 2

[77] Fei Zhu, Xu-Yao Zhang, Chuang Wang, Fei Yin, and Cheng-
Lin Liu. Prototype augmentation and self-supervision for
incremental learning. In CVPR, 2021. 2, 5

3866

