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Abstract

GANs have matured in recent years and are able to gen-
erate high-resolution, realistic images. However, the com-
putational resources and the data required for the training
of high-quality GANs are enormous, and the study of trans-
fer learning of these models is therefore an urgent topic.
Many of the available high-quality pretrained GANs are un-
conditional (like StyleGAN). For many applications, how-
ever, conditional GANs are preferable, because they pro-
vide more control over the generation process, despite often
suffering more training difficulties. Therefore, in this pa-
per, we focus on transferring from high-quality pretrained
unconditional GANs to conditional GANs. This requires ar-
chitectural adaptation of the pretrained GAN to perform the
conditioning. To this end, we propose hyper-modulated gen-
erative networks that allow for shared and complementary
supervision. To prevent the additional weights of the hyper-
network to overfit, with subsequent mode collapse on small
target domains, we introduce a self-initialization procedure
that does not require any real data to initialize the hyper-
network parameters. To further improve the sample effi-
ciency of the transfer, we apply contrastive learning in the
discriminator, which effectively works on very limited batch
sizes. In extensive experiments, we validate the efficiency of
the hypernetworks, self-initialization and contrastive loss
for knowledge transfer on standard benchmarks. Our code
is available at https://github.com/hecoding/
Hyper-Modulation.

1. Introduction
Generative Adversarial Networks (GANs) have become

ubiquitous in a vast array of applications due to their mod-
elling and synthesis power. Current high-quality GANs
consist of several millions of parameters [23]. In this mag-
nitude range, the training of these models quickly become
prohibitive in terms of computing resources and amount
of training data required. Transfer learning for generative
models explores how the knowledge of pretrained GANs
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Figure 1. Transfer learning from unconditional (a) to conditional
GAN (b), via on-the-fly modulation of the pre-trained weights.
The class network C outputs a point v in the class space given a
label i, which is then fed into the modulator g for domain-specific
generation.

can be transferred to new domains potentially with much
fewer training samples.

In the transfer learning area of generative models, Wang
et al. [49] initially investigated unconditional transferring
by finetuning a pre-trained GAN to a target domain. Fur-
ther research improved the quality of transfer learning to
small domains by reducing the number of learnable param-
eters [31, 34, 55] or by identifying the subspace of a pre-
trained GAN that best models the target data [46]. The
majority of efforts (see Table 1) have been driven towards
transferring knowledge from unconditional GANs to also
unconditional GANs (single source and target), from con-
ditional to unconditional [46] (multiple sources, single tar-
get), which considers transferring a pre-trained cGAN to a
single-class target domain, and from conditional to condi-
tional [40] (multiple sources and targets), which proposes a
method to transfer between conditional GANs through lin-
ear combination of conditionings.

In this work, we investigate the knowledge transfer
from an unconditional to a conditional GAN. This setup
is especially relevant, because of the availability of many
high-quality unconditional pretrained GANs. There ex-
ist pretrained conditional models (cGANs), however, they
have not seen adoption as widely as unconditional ones
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since they suffer from unstable performance among train-
ing runs [5], data and computational resources needed are
higher, and do not employ an intermediate latent space,
which is essential for GAN-based image editing [38, 42,
43, 58]. On the other hand, for many applications, it is
required that the generation process should be conditional.
Therefore, we investigate the transfer from unconditional
pretrained GAN models to conditional GANs. An addi-
tional benefit of transferring to conditional GANs (when
compared to transferring to multiple unconditional GANs)
is the fact that they enable the sharing of weights between
the multiple classes, thereby exploiting the similarities be-
tween the various classes.

In this paper, we leverage weight modulation from the
context of continual learning [9, 39] to transform an un-
conditional source GAN to a cGAN, as depicted in Fig. 1.
Our method allows for efficient transfer learning, where
frozen pre-trained weights are conditionally modulated to
yield target-specific outputs. However, a drawback of this
approach is that the class-specific modulation parameters
are learned independent of each other. To exploit the ex-
isting similarities among the multiple classes of the target
domain, we propose the use of hypernetworks [16]. Hyper-
networks have been proven efficient on diverse areas, from
multi-task learning [30, 37, 41] to continual learning [45],
delivering additional improvements on weight pruning [27]
over traditional networks. Yet to our knowledge, they have
not been applied to transfer learning. In this work, we
aim to show that hypernetworks can result in more efficient
knowledge transfer to multi-class domains, due to their in-
trinsic knowledge sharing among layers [16, 45]. However,
the hypernetwork introduces new parameters that need to
be trained from scratch to even regain the source gener-
ation power. To initialize these parameters, we propose
a self-alignment method that learns well-initialized hyper-
networks without getting access to any real data. Further-
more, we introduce contrastive learning in the discrimina-
tor for quality improvement like other generative methods
propose [18, 19, 52], except that this effectively works with
very limited batch sizes, i.e. 10 samples, contrary to current
literature [7, 15, 19].

In summary, we propose the following contributions.

• We are the first to investigate knowledge transfer from
unconditional to conditional GANs.

• We propose a new method based on hypernetworks
and adaptive weight modulation that efficiently trans-
fers unconditional to conditional GANs.

• In addition, we propose an approach for self-
initialization of the hypernetwork parameters, that fur-
ther allows applying a contrastive loss to the GAN dis-
criminator with tiny batch sizes. Both these novelties

Method Source Target

TransferGAN [49], MineGAN [46] U U
AdaFM [55],FreezeD [31], BSA [34]

EWCGAN [26], CDCGAN [36]

MineGAN [46] C U
cGANTransfer [40] C C

Hyper-Modulation (Ours) U C

Table 1. Overview of existing transfer learning methods for GANs
according to whether involved GANs for source and target domain
are unconditional (U) or conditional (C). Even though transfer
learning for GANs has seen an increased research activity, trans-
ferring unconditional to conditional has not been addressed before.
The existence of high-quality unsupervised models [23] – that are
the state of the art in high-resolution image generation – makes
their transfer to conditional target domains especially pertinent.

result in significant improvements of the knowledge
transfer.

• Results on several datasets show that we outperform
existing methods and that FID improves on several
datasets (including a notable drop of 30 points on the
AFHQ dataset).

2. Related work

Generative adversarial networks. GANs play a minimax
game [13] between a generator and discriminator. The dis-
criminator aims to tell the real distribution and the fake one
apart, while the generator tries to synthesize a data distri-
bution good enough to be mistaken by the real data distri-
bution. However, optimizing GANs faces two challenges:
mode collapsing and training instability. The former means
that the generated data distribution concentrates on a small
subset of outputs. The latter is due to the case that pre-
serving a Nash equilibrium for both discriminator and gen-
erator is non-trivial. GAN variants [1, 14, 28] propose im-
proved theory to address these problems. Another line of
work [5, 10, 22] investigates devising efficient architectures
to generate high-resolution images.
Transfer learning. This area aims to use the knowledge
of the model (i.e., source) trained on a large domain to
accelerate the training and reduce the amount of training
data required by a model (i.e., target). Related works study
knowledge transfer on generative models [26,34,46–50,55]
as well as discriminative models [12]. Regarding genera-
tive models, TransferGAN [49] is one of the first works that
explores transfer learning, using finetuning on pre-trained
GANs and denoting good performance on small dataset.
Hypernetworks. Hypernetworks are implicit generators
[16, 44] that aim to generate parameters for other models.
Hypernetworks have been applied to various tasks: archi-
tecture search [54], few-shot learning [2] and lifelong learn-
ing [45]. In this paper, we use Hypernetworks to gener-
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Figure 3. Conditioning interpolation on the modulation. Intro-
ducing a class projector on V results in smoother interpolation,
although some features of other classes keep leaking while travers-
ing. Additional interpolations can be found in the Supplementary
Material.

3.2. Hyper-modulation

The method proposed in the previous section (Eq. 1) is
optimized for each class in the target domain separately,
and no parameters of the modulation are shared among the
classes. As a result, we do not exploit similarities among
classes in the target domains. To solve this, we propose the
usage of hypernetworks [16], allowing us to share informa-
tion and reduce memory usage by accumulating knowledge
in the newly introduced modules.

Neural networks f(x,Θ) are a family of functions that,
given an input x and an output y coming from a dataset
D = {(x,y)}, typically learn a set of parameters Θ to find
a function that maximizes the log likelihood of the data.
Hypernetworks [16,45] aim to learn the parameters Θh of a
metamodel, which then will generate the target parameters
Θtrg of the target model ftrg.

In this work, we apply a hypernetwork g to predict the
modulation parameters conditionally, which eventually en-
ables us to produce a generative model for each target. The
input of the hypernetwork is a vector coming from a class
embedding network C(i; Ψ) = v ∈ V where (i = 1, ..., Nc)
is the class label, V is the class embedding space, and Ψ are
network parameters. Figure 3 shows qualitative improve-
ment over learnable embeddings and Supplementary Mate-
rial includes metrics and more extensive visualizations. By
varying the number of parameters Ψ, we are able to vary the
class knowledge capacity of the system. The hypernetwork
g takes the embedding vector v and maps it to the modula-
tion parameters according to:

γv,βv = g(v; Φa), bv = gb(v; Φb) (3)

where g are affine projections of a point in the space V ,
with network parameters Φa and Φb. We use Φ to denote
the combination of all the parameters used by the hyper-
network, consisting of Φa and Φb for all the layers in the
network. Each modulated layer has a g projector, but layer-
wise, these are shared among target classes.

The modulation that produces target-specific activations

AdaFM Conv

Conva)

b)

Figure 4. a) Activations h from a generator convolution in the
source domain. b) Domain-specific activations from a hypermod-
ulator f , conditioned on a point v in the class space V .

hv(x) = Ŵ vx+ b̂v is of the form

Ŵ v = γv ⊙ W − µ

σ
+ βv, (4)

b̂v = b+ bv, (5)

where W and b are the frozen source weights. Ultimately,
a hypermodulator f will be given a class embedding v and
a normalized source weight w̃ to produce the desired target
weights as fw̃(v) = γv⊙w̃+βv = ŵv, following Eqs. (3)
and (4) and pictured in Fig. 4.

Traditionally, reusability can be introduced in hypernet-
works to reduce the number of trainable parameters. This
is achieved by reapplying the metamodel for different par-
titions of the target model parameters, also called chunk-
ing [45]. We do not use chunking since each generator can
be reduced to a minimum of a learned affine transformation
thanks to transfer learning and the enhanced domain space
V , constituting a rather shallow but performing hypernet-
work.

3.3. Self-alignment

The introduction of the new modules causes the aug-
mented source model to initially lose its learned synthesis
performance (see also Fig. 7a), mainly because the param-
eters Ψ,Φ have not been learned yet, as well as due to the
removal of domain-specific statistics prior to the introduc-
tion of new ones, as seen in Eq. (4). This procedure is not
necessarily bad, since new classes will only learn to pro-
duce their respective target statistics and not to compensate
for the source ones. However, general training times will be
affected since the network has to re-learn multi-scale fea-
ture statistics that produce real-world pixel distributions.

Therefore, we propose to self-align the parameters Ψ,Φ.
The alignment is performed between the pre-trained gener-
ator network without hypernetwork and the one with hyper-
network (see Fig. 5). The aim is to not simply recover the
original weight statistics, but also to initialize a sensible la-
tent space for the embedding vectors v that could be further
augmented by new classes.

We will perform this initialization as a first step before
the final finetuning on the target data takes place. The hi-
erarchical features extracted from the pre-trained model are
given by FPT(z) = {GPT(z)l} and the ones with hyper-
network by Fhyp(z) = {G′

PT(z, g(C(c0; Ψ); Φ))l} where
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Figure 5. Self-alignment of the pre-trained generator (left) and
the one with hypernetwork (right). Both networks are initialized
with the same pre-trained weights (green) that are frozen. The
new hypernetwork weights (yellow) are learned during the self-
alignment. This operation does not require any data, since it can
be performed by simply sampling a latent vector z.

G(·)l is the l-th convolution block output. During the self-
initialization, we set the class input to the class-embedding
network C as c0 = 1. The loss for this stage is:

Lali =
∑
l

∥FPT(z)− Fhyp(z)∥1. (6)

Note that this operation does not require any real data, since
we can align the two networks by simply sampling random
vectors z. After self-initialization, the network with the hy-
pernetwork generates high-quality images (compare Fig. 7b
and Fig. 7c).

In conclusion, the self-alignment initializes the hypernet-
work parameters Ψ,Φ. When we now finetune the network
on the multi-class target domain, we do not have to learn
these parameters from scratch. In the experimental section,
we verify that this significantly reduces the training time
and improves the quality of the generated results.

3.4. Contrastive learning

We further extend this work to achieve better sample ef-
ficiency by applying contrastive learning on the discrimina-
tor used during adversarial training. Recent works on self-
supervised learning have shown that by mapping different
views (generated by taking different data augmentations of
the same image) to the same point in latent space, strong
semantically-rich feature representations can be learned that
rival their supervised counterparts. Here, the idea is to ex-
ploit this fact to improve the quality of the discriminator
used in adversarial training. The underlying insight is that
if the discriminator can extract higher quality features, it can
also better distinguish fake from real images, and as a con-
sequence better challenge the generator, leading to higher
quality images.

Concretely, we make use of Barlow Twins [53] for its
simplicity and performance and apply it implicitly on the
discriminator as in Fig. 6. We reuse all transformations for
real and fake samples, but we employ no projector network
because it resulted in worse quality. The loss function is

aug(  )

aug(  )

Real 
image

Fake 
image

Empirical 
cross-corr.

Target 
cross-corr.

Figure 6. General scheme for contrastive learning on the discrim-
inator. Cross-correlation (cross-corr.) is computed between the
extracted features of two views of a real or fake image. Gradients
don’t flow back to the generator.

also left unchanged:

Lcontr =
∑
i

(1− Cii)2 + λ
∑
i

∑
j ̸=i

Cij2 (7)

with the scaling factor λ and the cross-correlation matrix C
computed between the intermediate representations before
the final layer.

We employ GAN [13] to optimize this problem:

Lgan = Ex∼X ,c∼p(c) [logD (x, c)]

+ Ez∼p(z),c∼p(c) [log(1−D (G (z, c) , c)] ,
(8)

where p (z) follows the normal distribution, and p (c) is the
domain label distribution.

The final training objective is

LGAN = Lgan + λcontrLcontr (9)

where λcontr is a balancing hyperparameter set to λcontr =
1e − 3 in all our experiments. In the experimental section,
we verify that contrastive learning can significantly improve
the quality of the generated images.

4. Experiments
4.1. Settings

Training details. Our method is applied to a pre-trained
StyleGAN [22]. Concretely, both the generator and discrim-
inator are direct copies of the architecture, except for the top
layer of the discriminator, for which the last fully connected
layer has been replaced by a convolutional layer with 3× 3
filter size, stride of 1 and output channel dimensionality of
Nc number (classes in target domain). The hypernetwork
class network C(·) consists of an embedding layer for all
domains, followed by four fully connected layers. The di-
mensionality of the whole branch is 64. The hypernetwork
modulators are implemented by a single fully connected
layer that maps the class branch output to a dimensionality
of 512. Hyperparameters from the original model are kept,
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Figure 7. Self-initialization details. Generator outputs of a hypermodulator (a, b). Source pre-trained generator (c) for comparison.
Training efficiency of self-alignment (d).

Method
Dataset Close domain Far domain

FFHQ→AFHQ AFHQ→CelebA FFHQ→Flower102 FFHQ→Places365
Hyper-Mod-S 498.41 498.41 498.41 498.41
GAN Memory 61.84 49.30 144.93 229.49
cGANTransfer 112.64 105.95 - -
Hyper-Mod-FT 30.11 24.54 40.07 98.24

Hyper-Mod 45.28 45.54 127.78 132.42

Table 4. Comparison with baselines on mean FID. A→B: From
source A to target B. S: From scratch. FT: finetune source weights.

Configuration mFID ↓ mKID ↓ P ↑ R ↑ D ↑ C ↑
GAN Memory [9] 61.84 3.75 8.89 22.77 2.37 1.33
cGANTransfer [40] 112.64 9.90 2.93 18.95 0.73 2.10
Hyper-Mod 45.28 2.28 12.12 40.18 3.67 3.31
Hyper-Mod-FT 30.11 1.09 16.99 62.68 5.76 6.49

Hyper-Mod + DCL [52] (bs 60) 42.28 2.00 19.82 42.05 7.31 5.67
Hyper-Mod + BT [53] (bs 60) 26.74 0.92 28.02 55.19 10.13 11.95

Table 5. Comparison with baselines on several metrics on AFHQ.
P: Precision, R: Recall, D: Density and C: Coverage.

computational constraints. These are expected to further
improve with larger batch sizes, as in [53]. Unfortunately,
contrastive learning in the generator did not result in im-
proved quality.

Domain information injection. Is weight modulation the
best method to incorporate target information during the
transfer learning? We could think about style transfer tech-
niques such as Adaptive Instance Normalization (AdaIN)
[22], which modulates at the activation level. In Appendix
E we provide specifications on the implementation of this
method in place of modulation. This modification can be
compared to config. B and yields an FID and KID of 110.55
and 9.26 respectively (compared to our proposed architec-
ture with 45.28 and 2.28). Thus, we conclude that weight
modulation is favorable over other style transfer methods.

4.3. Result

Quantitative results. To evaluate the performance of the
proposed method, we test our method on both close do-
main transfer and far domain transfer. The former means
both source and target domain have small domain shift, and

the latter is they have a large domain gap. These two set-
tings are used to validate the effectiveness of the proposed
method on different target domains.

Close domain transfer. Here, we use both the AFHQ ani-
mal dataset and CelebA human face as our target domains.
For the former, the pretrained StyleGAN is optimized on
FFHQ human face. We use the pretrained StyleGAN op-
timized on AFHQ animal face when the target domain is
CelebA human face. As reported in Table 4 (close do-
main column), training the network from scratch obtains
catastrophic results (e.g., 498.41 FID). Using the transfer
learning method (like GAN Memory) largely improves the
performance (e.g., 61.84 FID for GAN Memory). The
proposed method achieves better performance (denoted as
Hyper-Mod in the table), we generate more realistic and
correct class-specific images among the compared methods.
In addition, we also conduct an experiment with updating
all parameters (denoted as Hyper-Mod-FT). Hyper-Mod-FT
further improves the performance.

We also evaluate our method and the baselines on sev-
eral other metrics. As reported in Table 5, we achieve the
best score on all metrics, which indicates that we not only
generate high-quality images (corresponding to P. and D.),
but also diverse images (corresponding to R. and C.).

Far domain transfer. We also consider the challenging set-
ting by using a target dataset which has a large domain
gap with the source domain. Here we consider two tar-
get domains: Flower102 and Places365. For the two tar-
get datasets, we use the same source pre-trained StyleGAN,
which is optimized on FFHQ. As reported in Table 4 (far
domain column), in the far domain setting our method still
obtains a large advantage when compared to the baselines
(e.g., 127.78 FID (ours) vs 144.93 FID (GAN Memory)
on Flower102). What is more interesting is that we are
able to greatly improve the performance when further up-
dating all parameters. Finally, like for the close domain
transfer, the proposed techniques (i.e., hypernetwork, self-
alignment and contrastive learning) are effective when per-
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