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Abstract

In this paper, we investigate the continual learning of Vi-
sion Transformers (ViT) for the challenging exemplar-free
scenario, with special focus on how to efficiently distill the
knowledge of its crucial self-attention mechanism (SAM).
Our work takes an initial step towards a surgical investi-
gation of SAM for designing coherent continual learning
methods in ViTs. We first carry out an evaluation of es-
tablished continual learning regularization techniques. We
then examine the effect of regularization when applied to
two key enablers of SAM: (a) the contextualized embedding
layers, for their ability to capture well-scaled representa-
tions with respect to the values, and (b) the prescaled at-
tention maps, for carrying value-independent global con-
textual information. We depict the perks of each distilling
strategy on two image recognition benchmarks (CIFAR100
and ImageNet-32) – while (a) leads to a better overall accu-
racy, (b) helps enhance the rigidity by maintaining compet-
itive performances. Furthermore, we identify the limitation
imposed by the symmetric nature of regularization losses.
To alleviate this, we propose an asymmetric variant and ap-
ply it to the pooled output distillation (POD) loss adapted
for ViTs. Our experiments confirm that introducing asym-
metry to POD boosts its plasticity while retaining stability
across (a) and (b). Moreover, we acknowledge low forget-
ting measures for all the compared methods, indicating that
ViTs might be naturally inclined continual learners.1

*Equal Contribution
1Code will be made available at https://github.com/

srvCodes/continual_learning_with_vit.

1. Introduction
Transformers have shown excellent results for a wide

range of language tasks [6, 40] over the course of the last
couple of years. Influenced by their initial results, Dosovit-
skiy et al. [13] proposed Vision Transformers (ViTs) as the
first firm yet competitive application of transformers within
the computer vision community.2 ViTs’ applications have
since spanned a range of vision tasks, including, but not
limited to image classification [44], object recognition [25],
and image segmentation [46]. The singlemost essential el-
ement of their architecture remains the self-attention mech-
anism (SAM) that allows the learning of long-range inter-
dependence between the elements of a sequence (or patches
of an image). Another feature vital to their performance is
the way they are pretrained in an often unsupervised or self-
supervised manner over a large amount of data. This is then
followed by the finetuning stage where they are adapted to
a downstream task [12].

For ViTs to be able to operate in real-world scenarios,
they must exploit streaming data, i.e., sequential availabil-
ity of training data for each task.3 Storage limitations or
privacy constraints further imply the restrictions on the stor-
age of data from previous tasks. Task-incremental con-
tinual learning (CL) seeks to find solutions to such con-
straints by alleviating the event of catastrophic forgetting
- a phenomena where the network has a dramatic drop in
performance on data from previous tasks. Several solutions
have been proposed to address forgetting, including regu-
larization [1, 21, 39, 53], data replay [2, 8, 27] and parame-
ter isolation [3, 20, 31, 41]. Nowadays most works on CL
study recurrent [9, 43] and convolutional neural networks

2By firmness, we refer to the non-reliance on convolutional operations.
3A task may encompass training data of one or more classes.
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(CNNs) [19]. However, little has been done to investigate
different CL settings in the domain of ViTs. We, therefore,
mark the first step for the domain by considering the further
restrictive setting of exemplar-free CL with a zero overhead
of storing any data from previous tasks. We consider this
restriction for its real-world aptness to scenarios involving
privacy regulations and/or data security considerations.

Given that regularization-based methods form one of
the main techniques for exemplar-free CL, we consider
an in-depth analysis of these for ViTs. Regularization-
based techniques are mainly organized along two branches:
weight regularization methods (such as EWC [19], SI [53],
MAS [1]) and functional regularization methods ( such as
LwF [23], PODNET [14]). As discussed above, the archi-
tectural novelty of transformers lies in the SAM building a
representation of a sequence by exhaustively learning re-
lations among query-key pairs of its elements [45]. We
show that for ViTs (and subsequently, all other architectures
leveraging SAM), this property allows for a third form of
regularization, which we coin as Attention Regularization
(see Figure 1). We ground our idea in the hypothesis that
when learning new tasks, the attention of the new model
should still remain in the neighborhood of the attention of
the previous model. As another contribution, we question
the temporal symmetry currently applied to regularization
losses; referring to the fact that they penalize the forgetting
of previous knowledge and the acquiring of new knowledge
equally (see Figure 2). With the aim of countering forget-
ting while mitigating the loss of plasticity, we then propose
an asymmetric regularization loss that penalizes the loss of
previous knowledge but not the acquiring of new knowl-
edge. We index the major contributions of our work below:

• We are the first to investigate continual learning in vi-
sion transformers in the more challenging exemplar-
free setting. We perform a full analysis of regulariza-
tion techniques to counter catastrophic forgetting.

• Given the distinct role of self-attention in modeling
short and long-range dependencies [49], we propose
distilling the attention-level matrices of ViTs. Our
findings show that such distillation offers accuracy
scores on par with that of their more common func-
tional counterpart while offering superior plasticity
and forgetting. Motivated by the work of Douillard
et al. [14], we pool spatiality-induced attention distil-
lation across our network layers.

• We propose an asymmetric variant of functional
and attention regularization which prevents forgetting
while maintaining higher plasticity. Through our ex-
tensive experiments, we show that the proposed asym-
metric loss surpasses its symmetric variant across a
range of task incremental settings.

Figure 1. Self-attention mechanism comprising a vision trans-
former encoder. We compare Attention-based approaches com-
puted prior to the softmax operation and Functional-based ap-
proaches computed on the contextualized embeddings.

2. Related Works
Continual learning has been gaining contributions from

the deep learning research community during the last few
years [11, 32]. In the following, we list the most prominent
ones:

• Weight-based: these methods operate in the parameter
space of the model through gradient updates. Elastic
Weight Consolidation (EWC) [19] and Synaptic Intel-
ligence (SI) [54] are two widely used methods in this
family with the former being probably, the most well-
known. EWC uses Fisher information [36] to identify
the parameters important to individual tasks and penal-
izes their updates to preserve knowledge from older
tasks. SI makes the neurons accumulate and exploit
old task-specific knowledge to contrast forgetting.

• Functional-based: these methods rely upon trading
the plasticity for stability by training either the cur-
rent (new) model on older data or vice-versa. Learn-
ing Without Forgetting (LWF) [23] remains among the
most widely known approaches in this family. It em-
ploys Knowledge Distillation [17] upon the logits of
the network.

• Parameter Isolation-based: also known as architectural
approaches, these methods tackle CF through a dy-
namic expansion of the network’s parameters as the
number of tasks grow. Among the well known meth-
ods in this family remain Progressive Neural Network
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(PNN) [42] followed by Dynamically Expandable Net-
work (DEN) [50] and Reinforced Continual Learning
(RCL) [48].

The majority of the aforementioned works target CL in
CNNs mainly due to their inductive bias allowing them to
solve almost all problems that involve visual data. This can
also be seen in several reviews [4,5,11,29,30,35] reporting
few approaches that consider architectures besides CNNs,
despite the attempts to investigate CL in RNNs [9, 43].

Only recently have some works analyzed catastrophic
forgetting in transformers. Among the earliest to do so re-
mains that of Li et al. [22] proposing the continual learning
with transformers (COLT) framework for object detection
in autonomous driving scenarios. Using the Swin Trans-
former [26] as the backbone for a CascadeRCNN detector,
the authors show that the extracted features generalize better
to unseen domains hence achieving lesser forgetting rates
compared to ResNet50 and ResNet101 [16] backbones. In
case of ViTs, Yu et al. [52] show that their vanilla coun-
terparts are more prone to forgetting when trained from
scratch. Alongside heavy augmentations, they employ a set
of techniques to mitigate forgetting: (a) knowledge distilla-
tion, (b) balanced re-training of the head on exemplars (in-
spired by LUCIR [18]), and (c) prepending a convolutional
stem to improve low-level feature extraction of ViTs.

In their work studying the impact of model architectures
in CL, Mirzadeh et al. [33] also experiment with ViTs in
brief (with the rest of the work focusing mainly on CNNs).
While they vary the number of attention heads of ViTs to
show that this has little effect on the accuracy and forget-
ting scores, they further conclude that ViTs do offer more
robustness to forgetting arising from distributional shifts
when compared with their CNN-based counterparts with
an equivalent number of parameters. The conclusion re-
mains in line with previous works [37]. Finally, Douillard
et al. [15] attempt to overcome forgetting in ViTs through
a parameter-isolation approach which dynamically expands
the tokens processed by the last layer. For each task, they
learn a new task-specific token per head. They then couple
such approach with the usage of exemplars and knowledge
distillation on backbone features. It is worth noting that
these works rely either on pretrained feature extractors [22]
or rehearsal [15,52] to defy forgetting. Thus the challenging
scenario of exemplar-free CL in ViTs remains unmarked.

3. Methodology
We start by shortly describing the two main existing reg-

ularization techniques for continual learning. We then pro-
pose attention regularization as an alternative approach tai-
lored for ViTs. Lastly, we put forward an adaptation for
functional and attention regularization which is designed to
elevate plasticity while retaining stability levels.

3.1. Functional and Weight Regularization

Functional Regularization: We include LwF [23] in this
component since it constitutes one of the most prominent,
and perhaps the most widely used regularization method
acting on data. The appealing property of LwF lies in the
fact it is exemplar-free, i.e., it uses only the data of the cur-
rent task and maintains only the model at task t−1 to exploit
Knowledge Distillation [17]. Formally, LwF is defined as:

  \mathcal {L}_{\text {LwF}}(\theta )=\xi _{o} \mathcal {L}_{\mathrm {KD}}\left (Y_{o}, \hat {Y}_{o}\right ) 





(1)

where LKD is the knowledge distillation loss incorporated
to impose stability on the outputs, Ŷo the predictions on the
current task data from the old model and Ŷo the ground truth
of such data. ξo remains the temperature annealing factor
for softmax logits. To ensure better plasticity, LKD is often
combined with the standard cross entropy loss LCE calcu-
lated upon the new task examples.

Some works have investigated the usage of functional
regularization at intermediate layers of the network [14, 24,
51]. This can be generalized to ViTs by applying a regular-
ization on the contextualized embeddings (see purple block
in Figure 1). In this case, the regularization loss could be
defined in terms of functional distillation (FD):

  \mathcal {L}_{FD}= \left \| \sum _{w=1}^{W} \sum _{h=1}^{H} z^{t-1}_{l, w, h}-\sum _{w=1}^{W} \sum _{h=1}^{H} z^{t}_{l, w, h} \right \| 




















 (2)

where ∥.∥ denotes the L2-norm, z
(t−1)
l refers to the l-th

layer output of the model trained at task t−1, and W and H
are the width and height of the SAM outputs, respectively.

Weight Regularization: These methods encourage the
network to adapt to the current task data mainly by using
those parameters of the network that are not considered im-
portant for previous tasks. As representative method we se-
lect EWC [19]. EWC exploits second-order information
to estimate the importance of parameters for the current
task. The importance is approximated by the diagonal of
the Fisher Information Matrix F :

  \mathcal {L}_{\text {EWC}}(\theta )=\mathcal {L}_{X}(\theta )+\sum _{j} \frac {\lambda }{2} F_{j}\left (\theta _{j}-\theta _{Y, j}^{*}\right )^{2}   









 


(3)

where LX(θ) is the loss for task X, λ the regularization
strength, and θ∗Y,j the optimal value of jth parameter after
having learned task Y.

3.2. Attention Regularization

Self-Attention Mechanism: The self-attention mecha-
nism (SAM) [45] forms the core of Transformer-based
models and can be defined as:
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Figure 2. Visual illustration of the asymmetric loss with two generated attention maps (a) and (b) while training on task 2. In scenario (a),
when previous knowledge is lost, both the symmetric and asymmetric regularization work correctly. However, in scenario (b), acquiring
new knowledge is penalized by the symmetric loss but not by the asymmetric loss.

  \mathbf {z} = \mathbf {softmax}\left ( \frac {\mathbf {QK}^T}{\sqrt {d_e}} \right )\mathbf {V} \label {functional_var} 








 (4)

where Q,K, and V are respectively the projections of the
Query, Key, and Values of the Rde input embeddings while
z constitutes the new contextualized embeddings. Our
novel attention-based regularization intervenes prior to the
computation of the softmax operation of the standard self-
attention mechanism as illustrated in Figure 1.

In particular, given a ViT model at incremental step t and
an SAM head k of layer l, we define the prescaled attention
matrix At

kl prior to the softmax operation as:

  \mathbf {A}^{t}_{k^{l}} = \frac {\mathbf {QK}^T}{\sqrt {d_e}} 







(5)

The attention matrix for time step (t − 1) can be similarly
computed as At−1

kl . We employ this predecessor in the cal-
culation of knowledge distillation in what follows.

Pooled Attention Distillation: Functional approaches
leverage network’s submodules typically to apply knowl-
edge distillation [17]. When the regularization takes place
in intermediate layers, the model can experience excessive
stability, therefore loosing in plasticity abilities [14,24,51].
Amongst these methods, PODNet [14] clearly identifies the
problem of excessive stability. We devise a regularization
approach which instead of regularizing functional submod-
ules targets attention maps, the core mechanisms of SAMs.

More formally, given the attention maps at steps t and
(t− 1), we define LPAD

(
At−1

kl ,At
kl

)
[14] to be:

  \label {eqn:spatial} \mathcal {L}_{\text {PAD-width}}\left (\mathbf {A}^{t-1}_{k^l}, \mathbf {A}^{t}_{k^l}\right ) + \mathcal {L}_{\text {PAD-height}}\left (\mathbf {A}^{t-1}_{k^l}, \mathbf {A}^{t}_{k^l}\right ) 
















(6)

  \label {eqn:pod_width_height_sym} \begin {split} \text {where, } \mathcal {L}_{\text {PAD-width}}\left (\mathbf {A}^{t-1}_{k^l}, \mathbf {A}^{t}_{k^l}\right ) = \sum _{h=1}^{H} \mathcal {D}_W\left (\mathbf {A}^{t-1}_{k^l}, \mathbf {A}^{t}_{k^l}\right ), \\ \mathcal {L}_{\text {PAD-height}}\left (\mathbf {A}^{t-1}_{k^l}, \mathbf {A}^{t}_{k^l}\right ) = \sum _{w=1}^{W} \mathcal {D}_H\left (\mathbf {A}^{t-1}_{k^l}, \mathbf {A}^{t}_{k^l}\right ),\end {split}















































(7)

  \label {eqn:symdist} \mathcal {D}_X\left (\mathbf {A}^{t-1}_{k^l}, \mathbf {A}^{t}_{k^l}\right ) = \left \|\sum _{x=1}^{X} \mathbf {A}^{t-1}_{k^{l}_{w, h}}-\sum _{x=1}^{X} \mathbf {A}^{t}_{k^l_{w, h}} \right \|^2 































(8)

where, W and H indicate the width and height of the at-
tention maps, and DX(a, b) is the sum total of the distance
measure between maps a and b along the arbitrary dimen-
sion X. As shown in equation 8, the standard LPAD uses the
difference operator as the choice for D. We point out the
limitation of such symmetric D and introduce, in the next
section, the notion of asymmetry into our distance measure.

As previously mentioned, Douilllard el al. [14] propose
the pooled outputs distillation PODNet loss which lever-
ages the symmetric Euclidean distance between the L2-
normalized outputs of the convolutional layers of models at
t and (t−1) after pooling them along specific dimension(s).
They achieve the best results upon combining the pooling
along the spatial width and height axes which they term
as the POD-spatial loss. Given the generic correspondence
among the various pooling variants in their paper, our work
is particularly influenced by POD-spatial as we pool atten-
tion maps of ViTs along two dimensions. In fact, through-
out the experiments, we analyze this formulation when ap-
plied to the contextualized embeddings z resulting from a
SAM operation. We would like to highlight that PAD dif-
fers from PODNet in two important factors: it is applied to
the attention and not directly on the layer outputs, and its
marginalization is not on the spatial dimensions due to the
fact that A no longer encodes spatiality.
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3.3. Asymmetric Regularization

The proposed attention regularization prevents forgetting
of previous task by ensuring that the old attention maps are
retained while the model learns to attend to new regions
over tasks. However, the symmetric nature of DX (with re-
spect to the two attention maps) means that any differences
between the older and the newly learned attention maps lead
to increased loss values (see Equation 7). We agree that pe-
nalizing a loss in attention with respect to previous knowl-
edge is crucial in addressing forgetting. However, also pe-
nalizing a gain in attention for newly learned knowledge
is undesirable and may actually hurt the performance over
subsequently learned tasks. In other words, punishing ad-
ditional attention can be counterproductive. As a result, we
propose using an asymmetric variant of DX that can better
retain previous knowledge:

  \label {eqn:asym_dist} \mathcal {D}_X\left (\mathbf {A}^{t-1}_{k^l}, \mathbf {A}^{t}_{k^l}\right ) = \left \|\mathcal {F}_{\text {asym}}\left (\sum _{x=1}^{X} \mathbf {A}^{t-1}_{k^l_{w, h}}- \sum _{x=1}^{X}\mathbf {A}^{t}_{k^l_{w, h}} \right ) \right \| 































(9)

where, Fasym is as asymmetric function. We experimented
with ReLU [34], ELU [10] and Leaky ReLU [28] as choices
for Fasym and found that in general, ReLU performed the
best across our settings. The ReLU operation thus ensures
that the new attention generated by the current model at task
t is not penalized while the attention present at task t−1 but
missing in the current model t is penalized. An illustration
of the functioning of the new loss is provided in Figure 2.

Based on our choice for DX from equations 8 and 9,
we classify our final PAD attention loss as asymmetric
LPAD-asym-att or symmetric LPAD-sym-att, respectively. Each of
these losses are computed separately for each of the SAM
head k and model layer lL. The final asymmetric variant
for attention regularization can be stated as:

  \label {eqn:asym_final} \begin {split} \mathcal {L}_{\text {PAD-asym-att}}(\mathbf {A}^{t-1}_{k^l}, \mathbf {A}^{t}_{k^l}) =\\ \frac {1}{L}\sum _{l=1}^{L} \frac {1}{K} \sum _{k=1}^{K}\mathcal {L}_{\text {PAD }}(\mathbf {A}^{t-1}_{k^l}, \mathbf {A}^{t}_{k^l}) \end {split} 























(10)

where, K and L denote the total number of heads per layer
and the total number of layers in the model, respectively.
We now show that LPAD-asym-att can accommodate functional
distillation (FD) when applied to the contextualized global
embeddings. To do so, we first replace the attention maps
At

kl in Equation 6 by the contextualized vectors ztkl from
Equation 4. We denote the resulting functional counterpart
of LPAD by LFD. The final asymmetric variant for func-
tional regularization can therefore be defined as:

  \label {eqn:asym_final_functional} \begin {split} \mathcal {L}_{\text {FD-asym-func}}(z^{t-1}_{k^l}, z^{t}_{k^l}) =\\ \frac {1}{L}\sum _{l=1}^{L} \frac {1}{K} \sum _{k=1}^{K}\mathcal {L}_{\text {FD }}(z^{t-1}_{k^l}, z^{t}_{k^l}) \end {split} 

  
















 

(11)

Figure 3. Illustration of a task accuracy matrix: we fix stability to
be the performance of the first task across the time steps while we
define plasticity to be the performance at the current step.

To avoid verbosity, we use the notation Lasym to symbol-
ize the respective asymmetric losses from equations 10 and
11. Note that these equations can then be adapted to the
symmetric variant Lsym without loss of generality.

Overall loss: We augment the PAD losses from equations
10 and 11 with knowledge distillation loss LLwF [23] and
standard cross entropy loss LCE . The overall loss term thus
takes the form:

  \label {eqn:total_loss} \mathcal {L} = \mu \mathcal {L}_{\text {(a)sym}} + \lambda \mathcal {L}_\mathrm {LwF} + \mathcal {L}_{CE}       (12)

where µ, λ ∈ [0, 1] are two hyperparameters regulating the
respective contributions. Note that when µ = 0, L degener-
ates to baseline finetuning for λ = 0 and to LwF for λ = 1.

Stability-Plasticity Curves: Several measures have been
proposed in the CL literature to assess the performance
of an incremental learner. Besides the standard incre-
mental accuracy, Lopez-Paz et al. [27] introduce the no-
tion of Backward Transfer (BWT) and Forward Transfer
(FWT). BWT measures the ability of a system to propa-
gate knowledge to past tasks, while FWT assesses the abil-
ity to generalize to future tasks. The CL community, how-
ever, still lacks consensus on a specific definition of the
stability-plasticity dilemma. An elemental formulation for
such quantification is thus desirable for allowing us to bet-
ter grasp the trading capabilities of an incremental learner
between acquiring new knowledge and discarding previ-
ous concepts. To this end, we introduce stability-plasticity
curves computed using task accuracy matrices.

A task accuracy matrix M for an incremental learning
setting composed of T tasks is defined to be a [0, 1]T×T

matrix, whose entries are the accuracies computed at each
incremental step.4 For instance, Mi,j would constitute the
test accuracy of task j when the system is learning task i.
Subsequently, the diagonal entries Mi,i give us the accura-
cies at the respective current tasks while the entries below
the diagonal, i.e., j < i, give the performance of the model
on past tasks. A visual depiction can be seen in Figure 3.

4This calls for M to be lower trapezoidal.
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Figure 4. Mean and standard deviation of task-aware accuracy and forgetting scores for CIFAR100/10 and ImageNet/6 settings (over 3
random runs). Asymmetric approaches depict higher accuracy with respect to their symmetric counterparts. The low forgetting scores
across all methods suggest an intrinsic forgetting resilience in vision transformer architectures.

We define the stability to be the performance on the
first experienced task at any given time and plasticity to
be the ability of the model to adapt to the current task.
Namely, these constitute the first column M:,0 and the di-
agonal of the matrix diag(M). We employ the curves de-
rived from these definitions to better dissect the stability-
plasticity dilemma of the methods analyzed in our work.

4. Experiments
In this section, we compare regularization-based meth-

ods for exemplar-free continual learning. We evaluate the
newly proposed attention regularization and compare it with
the existing functional (LwF) and weight (EWC) regular-
ization methods. We then ablate the usefulness of the newly
proposed asymmetric loss as well as the importance of pool-
ing prior to applying the regularization.

4.1. Experimental Setup

Setting: For our experiments, we adopt the variation of
ViTs introduced by Xiao et al. [47]. Here, the standard lin-
ear embedder of a ViT model is replaced by a smaller con-
volutional stem which helps build more resilient low-level
features. Convolutional stems have previously been shown
to improve performance and convergence speed in incre-
mental learning settings [52]. We therefore define our archi-
tecture to be a lightweight variation of a ViT-Base by setting
L = 12 layers, K = 12 heads per layer and a de = 192 em-
bedding size. The choice of a small embedding size has
been made to speed up the training procedure and unlock
the ability to handle larger batch sizes (1024 for our work).

We analyze our task-incremental setting on two widely
used image recognition datasets - namely CIFAR100 and
ImageNet-32 with 100, and 300 classes each. Both datasets
host 32 × 32 images. On CIFAR100, we consider a split
of 10 tasks (denoted as CIFAR100/10 setting) where each
incremental task is composed of 10 disjoint set of classes.
On ImageNet-32, we split 6 tasks with 50 disjoint set of
classes each (denoted as ImageNet/6 setting).5

5Refer to Appendix A for experiments on additional settings.

Our total training epochs remain 200 (per task) for CI-
FAR100 and 100 for ImageNet32 with an initial learning
rate of 0.01 and patience set of 20 epochs. We report our
scores averaged over 3 random runs. We apply a constant
padding of size 4 across all our datasets. The train images
are augmented using random crops of sizes 32×32 and ran-
dom horizontal flips with a flipping probability of 50%. For
test images, we only apply center crops of sizes 32× 32.

We compare the attention and functional symmetric and
asymmetric versions of L(a)sym. Our basic functional and
weight regularization approaches include LwF [23] and
EWC [19], respectively. For all our experiments relying
on PAD losses, we performed a hyperparemeter search (us-
ing equation 12) for µ and λ by varying each in the range
[0.5, 1.0] and found µ = λ = 1.0 to perform reasonably
well. We thus stick to these values unless otherwise spec-
ified. For the sake of readability, the functional and atten-
tional variants of Lasym are indicated as FUNC(asym) and
ATT(asym), respectively. Similarly, those corresponding
to Lsym are denoted by FUNC(sym) and ATT(sym). Note
that all these four losses specify instantiations of equation
12. The functional approaches regularize the contextual-
ized embeddings while the attention approaches leverage
prescaled attention maps (see Figure 1).

4.2. Results

We report accuracy as well as forgetting [7] scores in
task aware (taw) setting.6 We further report taw plasticity-
stability curves (based on Figure 3) to provide insights upon
how well the different models trade the dilemma.

Accuracy and Forgetting: As seen in Figure 4, all asym-
metric approaches show better performances with respect
to their symmetric counterparts on CIFAR100/10 with
ATT(asym) offering the best accuracy of 57.3% on the last
task. The trend continues for ImageNet/6 with an excep-
tion of asymmetric functional approach with an accuracy of

6The corresponding task agnostic scores can be found in Figure 8, Ap-
pendix A.
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Figure 5. Mean and standard deviation of task-aware plasticity-stability scores for CIFAR100/10 and ImageNet/6 settings (over 3 random
runs). Asymmetric approaches are more plastic compared to their symmetric counterparts while retaining competitive stability.

27.55% falling behind its symmetric counterpart by 0.44%.
In general, the asymmetric and symmetric losses lead to
improved accuracy scores with respect to other methods.
Moreover, we observe that all the methods depict good
forgetting resilience with their forgetting scores running at
≈0.01% except for EWC. This suggests us that vision trans-
formers are better incremental learners but require more
training and tuning efforts to achieve reasonable accura-
cies. This remark remains in accordance with prior stud-
ies [33,37]. In the particular case of EWC, we observe poor
compatibility in terms of accuracy as well as forgetting –
with the scores falling behind finetuning at times. We sus-
pect that the method might be less suited for ViTs due to its
reliance on exhaustive fisher information estimation.

Plasticity-stability trade off: We compare the dilemma
for various methods in Figure 5. With no distillation, fine-
tuning is prone to the worst trading of plasticity for sta-
bility. Meanwhile, our asymmetric losses can be seen to
be more plastic with respect to their symmetric counter-
parts while depicting comparable stability scores. This
confirms our hypothesis regarding the nature of the asym-
metry keeping it from discarding older attention while fa-
voring the integration of new attention at the same time.
Although, LwF with a last task score of 47.74% on CI-
FAR100/10 and 32.0% on ImageNet/6, reports the best
plasticity among our approaches, it clearly lags behind the
pooling-based approaches at retaining stability. On the con-
trary, the (a)symmetric attention losses and the symmet-
ric functional loss perform similar with a last task stabil-
ity score of ≈ 0.23% on ImageNet/6 and ≈ 53% on CI-
FAR100/10. EWC shows good plasticity but virtually zero
stability. This trend is in line with our previous remark on
the limitation of EWC in Figure 4.

4.3. Ablation study

Towards the end goal of evaluating the effectiveness
of the best performing FD losses, we ablate the contri-
bution of pooling on the CIFAR100/10 setting. In par-
ticular, we consider distilling the contextualized embed-

CIFAR100/10 (taw)

FUNC(asym)
Spatial

FUNC(sym)
Spatial

FUNC(asym)
Intact

FUNC(sym)
Intact LwF

Average Incr.
Accuracy 56.18% 55.67% 54.43% 53.12% 54.81%

Last Task
Accuracy 57.26% 56.92% 56.04% 54.59% 55.93%

Table 1. Comparison of intact (no pooling), spatial (pooling along
width and height), and LwF.

dings when these are: (a) pooled along both dimensions,
i.e.,FUNC(asym/sym) Spatial (see Equation 6), and (b) not
pooled at all, i.e., FUNC(asym/sym) Intact. Distilling the
intact embedding vectors of the latter setting obviously im-
plies enhanced stability over its pooled counterpart. Our
standard accuracy and plasticity-stability measures across
tasks can therefore be deemed redundant in this setting.
As a consequence, we choose to compare the task-aware
average incremental accuracy [38] and the last task accu-
racy across (a) and (b) while contrasting these with LwF
as a strong baseline. As shown in Table 1, we find that
FUNC(asym) Spatial consistently performs the best on both
the metrics (with a gain of > 2% over FUNC(sym) Intact
and > 1% over LwF in either metric). In general, distilling
the intact embeddings can be seen to be hurting the perfor-
mance of the models as their accuracies drop below that of
the baseline LwF. This suggests us that strong regularization
effects such as that from the distillation of intact contextu-
alized embeddings can often lead to ungenerous trading of
stability for plasticity.

5. Conclusion

In this work, we adapted and analyzed several continual
learning methods to counter forgetting in Vision Transform-
ers mainly with the help of regularization. We then intro-
duced a novel self-attention inspired regularization, based
on the attention maps of self-attention mechanisms which
we termed as Pooled Attention Distillation (PAD). Discern-
ing its limitation at learning new attention, we devised its
asymmetric version that avoids penalizing the addition of
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new knowledge in the model. We validated the superior
plasticity of the asymmetric loss on several benchmarks.

Besides the detailed comparison with a range of regular-
ization approaches, i.e., functional (LwF), weight (EWC),
and the proposed PAD regularization, we extended the ap-
plication of PAD to the functional submodules of Vision
Transformers. To this end, we investigated the functional
distillation (FD) loss applied in the contextualized embed-
dings of ViTs. The latter exploration led us to discover
that the regularization of functional submodules can help
achieve the best overall performances while the regulariza-
tion of their attentional counterparts endow CL models with
superior stability. Finally, we remarked the low forgetting
scores of vision transformers across the incremental tasks
and concluded that their enhanced generalization capabili-
ties may offer them a natural inclination towards incremen-
tal learning. By releasing our code, we hope to open the
doors for future research along the direction of efficient con-
tinual learning with transformer-based architectures.
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