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Abstract

The goal of meta-learning is to generalize to new tasks
and goals as quickly as possible. Ideally, we would like
approaches that generalize to new goals and tasks on the
first attempt. Requiring a policy to perform on a new task
on the first attempt without even a single example trajec-
tory is a zero-shot problem formulation. When tasks are
identified by goal images, the tasks can be considered vi-
sually goal-directed. In this work, we explore the prob-
lem of visual goal-directed zero-shot meta-imitation learn-
ing. Inspired by several popular approaches to Meta-RL, we
composed several core ideas related to task-embedding and
planning by gradient descent to attempt to explore this prob-
lem. To evaluate these approaches, we adapted the Meta-
world benchmark tasks to create 24 distinct visual goal-
directed manipulation tasks. We found that 7 out of 24 tasks
could be successfully completed on the first attempt by at
least one of the approaches we tested. We demonstrated
that goal-directed zero-shot approaches can translate to a
physical robot with a demonstration based on Jenga block
manipulation tasks using a Kinova Jaco robotic arm.

1. Introduction
When confronted with a new task, humans are able to

generalize from previously learned skills and experience to
perform new tasks on the first attempt. Equipping artifi-
cial intelligence (AI) agents with similar capabilities would
increase their value as robotic teammates by enabling ”im-
provisation” of problem solutions. If an AI could learn to
transfer learned skills to new tasks in a way similar to hu-
mans, it would make the robotic teammate much more use-
ful and trusted as a partner. It has been thoroughly stud-
ied that state-of-the-art AI struggles when presented with a
limited number of training examples of new tasks, let alone
succeeding in a ”zero-shot” task with no previous experi-
ence attempting it [29]. One key challenge is learning ab-
stractions and modularity that will allow novel tasks to be
completed on the first attempt.

There are several related problems that have received
a lot of attention in literature including meta-learning and
meta-imitation learning which we will describe briefly.

Meta-learning Meta-learning, or ”learning to learn,” has
a rich history in machine learning literature [3, 10, 19, 26].
Given a family of tasks, training experience for each meta-
training task, and performance measures, an algorithm is ca-
pable of learning to learn if its performance improves with
both additional experience and tasks.

Meta-learning generally refers to the problem of quickly
adapting to new tasks given prior experience on dissimi-
lar tasks. These methods frequently include an outer loop
which is used to select parameters for an inner loop which
is then used to solve the task [3, 26]. Some approaches rely
on conditioning networks on a task embedding [17]. Other
approaches optimize directly for their ability to fine tune the
model quickly to a library of known tasks [2, 7].

Figure 1. We investigated the problem of zero-shot visual goal-
directed meta-learning with experiments making use of the (a)
Metaworld ML1 set of manipulation tasks adapted for visual goal-
directed task definitions, and a (b) physical demonstration making
use of the Kinova Jaco manipulator on JENGA tasks.

Meta-imitation learning Imitation learning allows au-
tonomous agents to learn a skill from demonstrations. Neu-
ral network based policies can provide a basic level of gen-
eralization to new scenarios, however training these policies
may require many demonstrations. Research into few-shot
learning and rapid adaptation has focused on decreasing the
number of demonstrations or trials of the test-task needed to
successfully perform the new task [7, 27]. In the limit, zero
demonstrations of the new task are provided. This is a spe-
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cial case of zero-shot learning in policy domain, which has
become an emerging sub-field within meta-learning [12].
Meta-imitation learning refers to meta-learning approaches
that use imitation learning during the meta-training phase.

Task Objectives given as an Image We focus on ap-
proaches that represent their goal as an image. The idea of
using an image as a goal has been studied previously [4,28].
An image provides a flexible format that can be easily ac-
commodate diverse tasks. The challenge comes from find-
ing representations of the goal image that allow the policy to
accomplish the test task. Using an image as a task goal has
unique challenges as many pixel level details of the image
may be irrelevant or misleading for the task. Instead, many
approaches have explored latent representations of the im-
ages that are intended to capture the salient aspects of the
task from the image [25,28]. To discover these latent repre-
sentations, prior work has mostly focused on unsupervised
objectives or objectives that are disconnected from learning
the policy [8, 28].

1.1. Visual Goal-Directed Zero-shot Meta-Imitation
Learning

The problem that we are solving here is distinct from
the other formulations of meta-learning and meta-imitation
learning in that we aim to complete a meta-test task on the
first attempt assuming we are given demonstrations of the
meta-training tasks and a single image of the completion of
the meta-test task.

Requiring a policy to perform on a new task on the first
attempt without even a single example trajectory is consid-
ered a zero-shot problem formulation. When those tasks
are identified by goal images, the tasks can be considered
visual goal-directed. In this work, we explore the problem
of visual goal-directed zero-shot meta-imitation learning.

We explored approaches that draw inspiration from sev-
eral popular approaches to Meta-RL [2, 17, 25] and rein-
terpret them in the context of visual goal-directed zero-shot
meta-learning. We introduce approaches that combine plan-
ning by backpropagation [25] with task embedding [17].

Our experiments on the modified Metaworld [30] bench-
mark tasks show that the approaches we tested were able
to successfully complete 7 out of 24 tasks on the first at-
tempt [30]. The primary contributions of this paper include:

1. The introduction of visual goal-directed zero-shot
meta-imitation learning as a new meta-learning prob-
lem formulation

2. An exploration of several approaches to attempt to
solve the problem.

3. Quantitative evaluation of the approaches across the
Metaworld series of manipulation tasks adapted for vi-
sual goal-directed task definitions.

4. A demonstration that goal-directed zero-shot ap-
proaches can translate to a physical robot

2. Related Work
Describing tasks by images has been studied by several

authors [8,28]. These approaches do not focus on zero-shot
goal-directed task transfer. Other work used an imitation
learning objective to optimization a representation for a goal
image [21, 22]. In contrast, our work focuses on both imi-
tation learning and planning. Single-shot imitation learning
via images has also been explored [13, 23, 29, 31]. Single-
shot visual imitation learning approaches are related in the
sense that the final image of the single demonstration could
be thought of as the goal image.

Meta-learning in the context of reinforcement learning
is referred to as Meta-RL [2, 5–7, 17]. These methods are
related in that they evaluate the approaches on their ability
to learn new tasks with as few steps from the new task as
possible. They are different in that they require environ-
ments with extrinsic rewards. In contrast, the work here is
based on meta-imitation learning. Although, inverse rein-
forcement learning [1, 14] (IRL) could be used to approx-
imate an objective function which would allow Meta-RL
approaches to be applied for learning from demonstrations.
Instead of taking the IRL coupled with Meta-RL approach,
In our experiments, we adapted concepts from Meta-RL ap-
proaches into the visual learning from demonstration con-
text explicitly for the purpose of comparison with a baseline
approach that conditions the policy on both a state and task-
embedding [17].

2.1. Planning by Backpropagation

Planning through latent space with gradient descent is
a core concept shared by several previous works, in which
the same embedding is used for both the goal and the cur-
rent state. The basic idea is that the distance between the
latent representation of the current state and the latent rep-
resentation of the goal could be exploited for planning pur-
poses [12]. The idea can be extended by using a dynamics
model to predict the latent state resulting from an action.
Prior work [15,16,20,24,25] has demonstrated the value of
using the dynamics model to unroll the policy over a plan-
ning horizon with the goal of minimizing the distance be-
tween the latent representations of the final predicted state
and the goal.

The earliest work on planning by gradient descent was
introduced decades ago [11] and was based on known
model dynamics. Later work introduced planning with
learned dynamics models [18]. Model-based planning was
also explored for environments with discrete actions [9].
This approach relies on unsupervised pretraining. Others
have explored using planning through latent space with the
goal of predicting a value function [15, 20, 24]. These
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approaches focus on environments with extrinsic rewards.
Other work has looked at approaches for goal-directed imi-
tation learning [16] conditioned on a sequence of images of
the test task.

3. Preliminaries
We first introduce some meta-learning preliminaries,

then we present the problem statement before describing the
approach and implementation.

Meta-learning, or ”learning to learn,” aims to complete
new tasks with very little (if any) training data. To achieve
this, a meta-learning algorithm is first pretrained on a reper-
toire of tasks Ti in a meta-train phase. The algorithm is then
evaluated on a disjoint task Tj . As part of meta-training,
the meta-learning algorithm can learn generalizable struc-
ture between tasks that allow it to successfully complete the
meta-test task.

A task Ti is a finite-horizon Markov decision process
(MDP), {S,A, ri, Pi, H} with state space S given as im-
ages, action space A, reward function ri : S ×A→ R, dy-
namics Pi(st+1|st, at), and horizon H . It is assumed that
the environment dynamics and goals may vary across tasks.

We explore a subset of reward specification R corre-
sponding to the mean squared error ||fφ(st)−fφ(sg)||2 be-
tween state st ∈ S at time t, a goal sg ∈ S, and image
embedding function fφ with parameters φ.

3.1. Problem Statement

The goal is to meta-train an agent such that it is more
successful at performing a new test task Tj on the first at-
tempt given a goal gj for test task j presented as an image.

Meta-train: The agent observes and learns from m =
1, . . . ,M task demonstrations.

Meta-test: The pretrained agent is given a new goal gj
that corresponds to the goal for the test task Tj .

3.2. Universal Planning Networks

The goal of this meta-learning approach is to directly op-
timize for plannable representations [25]. The approach is
inspired by other well known approaches like MAML [7]
that optimize a model for an ability to quickly fine tune for
a new task. The UPN approach is illustrated in Figure 2.
The model produces an action plan ât:t+H conditioned on
initial and goal observations ot and og , where ât denotes
the predicted action at time t over horizon H . Both the en-
coder fφ and the combined policy and dynamics model gθ
are approximated with neural networks and are fully differ-
entiable. The inner-loop unrolls predictions of intermedi-
ate states xt : xt+H and actions ât:t+H over the horizon
H . The objective of the inner loop is to minimize the dis-
tance between the latent representation of the goal xg and
the final predicted state xt+H using the Huber loss. Up-
dates to the model using this loss result in updated actions

ât:t+H . In the learning from demonstrations scenario, the
outer loop uses a behavior cloning objective that minimizes
the distance between the predicted action ât for time t and
the given action at over all timepoints using a mean squared
error loss. The planning horizonH and the number of inner-
loop updates U are hyperparameters for the approach. In
our experiments, hyperparameters are set such that the pre-
dicted state embedding at the end of the horizon is as close
as possible to the embedding of the goal.

Figure 2. Universal planning networks architecture. The archi-
tecture can be described as an inner loop and an outer loop. The
objective of the inner loop is to minimize the distance in latent
space between the final rolled out state prediction and the latent
representation of the goal. For learning from demonstrations, the
outer loop is the behavior cloning objective which minimizes the
distance between the predicted and observed actions.

3.3. Task Embedding for Meta-learning

Task embedding in reactive networks has been explored
for meta-learning [16, 17]. A recent approach called
PEARL [17] extends the typical policy formation p(a|s) by
additionally conditioning on a latent representation of the
task p(a|s, xg). An additional KL-divergence objective is
used to organized the task embedding into a desired distri-
bution. This approach was demonstrated in the context of
reinforcement learning. We adapted this approach to learn
from demonstration by adopting a behavior-cloning objec-
tive. In experiments, we refer to this baseline approach as
(TE-BC) for task embedding behavior cloning.

3.4. Approaches

We explored several approaches inspired by popular ap-
proaches to Meta-RL and reformulated to perform visual
goal-directed zero-shot meta learning. We extended ideas
from universal planning networks illustrated in Figure 2 il-
lustrated in Figure 3(b) and visual task-embedding illus-
trated in Figure 3(a). Task-embedding is integrated by mod-
ifying the combined policy and dynamics model by addi-
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Figure 3. (a) Network architecture of the observation and goal
embedding, (b) Structure of the combined policy and dynamics
model. A key structural difference between this model and an
MLP architecture is the introduction of attention conditioned on
the input that attenuates the weights of the model directly.

tionally conditioning on xg as shown in Figure 3(b). The
structure of combined dynamics and policy network has a
shared trunk that passes the image embedding to a linear
layer. After the shared trunk, the network splits into dynam-
ics and policy branches. The policy branch is composed of
linear layers outputs the number of continuous actions. The
dynamics branch is composed of two linear layers and is
also conditioned on the action prediction. In our experi-
ments with Metaworld, the number of continuous actions is
4 and the internal linear layers are 32 units wide.

4. Results
We designed experiments to answer the following ques-

tions: (i) Are approaches inspired by Meta-RL able to be
repurposed to explore visual goal-directed meta-imitation
learning, and(ii) Can goal-directed zero-shot meta-imitation
learning be demonstrated on a physical robot platform?

4.1. Methods for comparison

We compared to two reactive imitation learning ap-
proaches and two planning approaches along with a random
control. We compared to a behavior cloning approach (BC)

that made use of the policy architecture described in Figure
3. We compared to an approach adapted from PEARL [17]
to work with visual-goal directed tasks.

Additionally, we compare to two approaches that plan
over a finite horizon by gradient decent. The first approach
is based on the Universal Planning Network (UPN) [25].
We also compare to an approach that extends UPN with
task embedding (TE-UPN) as described earlier. To evaluate
both planning approaches on equal terms, the planning hori-
zon was set to 5 steps and a single backpropagation update
step was used by each planning approach. Both planning
based approaches were evaluated based on the strategy of
model predictive control described by Srinivas et al. [25].
We planned actions over a fixed horizon at each time step
but only took the first action in the plan.

All methods we tested make use of the same deep net-
work architecture where possible to control for the num-
ber of parameters and network structure. Additionally, both
the observation and the goal image encoded using the same
convolutional network described in Figure 3(a).

4.2. Metaworld tasks

We structured our experiements around 24 distinct vi-
siomotor tasks derived from the Metaworld benchmark
[30]. Two example tasks are shown in Figure 4. The tasks
contain different objects with different affordances. Ad-
ditionally, each task contains selectable sub-task variation.
The original metaworld benchmarks were designed for mul-
titask and meta-RL with vector representations of state and
goals. We adapted the metaworld benchmark tasks to make
them suitable for approaches that learn from demonstration
with visual observations and goals. The introduction of vi-
sual observations add additional complexity that are not part
of the existing Metaworld experiments.

Figure 4. Metaworld is a manipulation benchmark that includes
50 distinct tasks for multi-task learning and meta-RL experiments.
The tasks include distinct objects and affordances. We adapted the
metaworld benchmark tasks to create 24 zero-shot meta-learning
from visual demonstration tasks for evaluation. The use of visual
observations and goals is more challenging than the existing meta-
world benchmark formulations which are based on coordinate-
based observations and goals
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4.3. Experiment design

We adopted a cross-validation structure for the experi-
ment. Specifically, to evaluate the first attempt success rate
on a meta-test task, the meta-training set consisted of all
other tasks.

Training data For each of the 24 tasks, we gener-
ated 100 successful demonstrations using heuristic control.
For each trial, the position of key objects was randomized
within preconfigured bounds. Trajectories in the dataset
consisted of 84x84x3 images of each state including the
final state which was treated as the goal image. Each ap-
proach was trained via Adam optimizer for 50 epochs. We
made use of MSE and Huber loss functions as shown in
Figure 2.

Evaluation For the task being evaluated, we measured
average task success rate over 20 trials. We controlled the
random seed to ensure that each approach was evaluated
based on the same distribution of task variants.

Figure 5. First attempt success rate for several meta-learning and
baseline approaches based on reactive policies and planning. (a)
Average % task success organized by task. (b) Average % task
success averaged over tasks

The results of the experiments separated by task are sum-
marized in Figure 5(a). We found that 7 of the 24 evaluation
tasks had at least one approach that was able to complete the
task on the first attempt. The approaches were most suc-
cessful for the coffee button and drawer-close tasks. Nearly
all of the approaches we tested achieved 50% success in the
dial-turn and door-lock task. For the door-lock task, TE-

UPN and UPN achieved over 50% success on the first at-
tempt, while the other reactive approaches performed close
to chance. For the drawer-close, dial-turn, coffee-button
tasks all of the approaches performed well above chance.
In Figure 5(b), we averaged % task success over all tasks
by approach. The planning approaches narrowly improved
over the behavior cloning baseline and PEARL, and all the
approaches that we trained outperformed the random con-
trol.

4.4. JENGA domain on a physical robot

We wanted to test the ability of TE-UPN to extrapolate to
novel goal targets on physical hardware. Kinova Jaco arms
and an oversized Jenga tower were used for the experiment.
The task was to demonstrate the ability to poke target blocks
in the tower in positions that were were offset along an axis
not seen during training.

Heuristic behaviors were used to create a dataset of 21
trajectories of the JACO arm poking a block on the lower
row from different starting positions. Figure 6 illustrates
the experimental setup. In this experiment, TE-UPN was
reconfigured to be conditioned on a block position goal rep-
resented as a three dimensional vector. The horizon length
and number of planning updates were selected to minimize
the deviation between the predicted endpoint of the trajec-
tory and the target block position. In Figure 6 and the sup-
plementary video, we show that the approach was able to
plan towards multiple targets that offset along an axis not
seen during training.

Figure 6. Physical demonstration of planning towards novel goals
in Jenga. TE-UPN was trained using trajectories of Jaco arm
reaching towards blocks on the lower level. TE-UPN was used
to create a trajectory for a target block that were offset along an
axis that was not varied during training.
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5. Discussion

Of the tasks that were solvable on the first attempt,
we were surprised to find that there was no clear supe-
rior approach among the approaches that we tested. The
best approach frequently varied by task. Occasionally, ba-
sic reactive approaches fared as well as more sophisticated
planning-based approaches. We found that the TE-UPN ap-
proach outperformed the other approaches in the door-lock
task.

In the Jenga experiment, we found that TE-UPN was
successful at planning towards goals that were not seen dur-
ing training. This experiment highlights the ability of the
TE-UPN approach to extrapolate to new goal targets not
seen during training. The demonstration represents extrap-
olation because the goal targets were offset along an axis
that was not in the training data.

We believe that this work takes steps towards under-
standing the challenges of this difficult zero-shot problem
formulation. Still, 17 out of 24 Metaworld-adapted tasks
could not be completed with any approach that we tested.
This indicates that there is a lot of opportunity for future
work.
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