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Abstract

Recent approaches to multi-task learning (MTL) have fo-
cused on modelling connections between tasks at the de-
coder level. This leads to a tight coupling between tasks,
which need retraining if a new task is inserted or removed.
We argue that MTL is a stepping stone towards universal
feature learning (UFL), which is the ability to learn generic
features that can be applied to new tasks without retraining.

We propose Medusa to realize this goal, designing task
heads with dual attention mechanisms. The shared feature
attention masks relevant backbone features for each task,
allowing it to learn a generic representation. Meanwhile,
a novel Multi-Scale Attention head allows the network to
better combine per-task features from different scales when
making the final prediction. We show the effectiveness of
Medusa in UFL (+13.18% improvement), while maintain-
ing MTL performance and being 25% more efficient than
previous approaches.

1. Introduction

Classical approaches to computer vision relied on hand-
crafted heuristics and features that encapsulated what re-
searchers believed would be useful for a given task. With
the advent of deep learning, features have become part of
the learning process, leading to representations that would
have never been developed heuristically. Unfortunately,
most deep learning systems learn features that perform well
on only one target task. Even if pretrained features are used,
these require finetuning. Works that explored generic fea-
tures [13, 15, 35] have focused on invariance to illumina-
tion and viewpoint changes, with the objective of establish-
ing geometric correspondences. Whilst this is a useful step
in many applications, these features are not suitable for a
wider range of tasks.

Meanwhile, there has been a recent surge in multi-task
learning (MTL), since training a network to solve multiple
tasks simultaneously can provide a performance increase
over training each task independently [23, 26]. Nonethe-
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Figure 1. Transferable Feature Learning. Current high-
performing approaches to MTL rely on connections between every
combination of tasks, leading to a quadratic parameter complexity
w.r.t. the number of tasks. We maintain independent task heads,
making it possible to easily add/remove new tasks a posteriori.
The dual spatial attention mechanisms (SFA & MSA) allow us to
maintain performance while scaling linearly and learning highly
reusable feature representations. See Figure 2 for a full overview.

less, these works have focused on maximizing accuracy, not
generality. At their core, they still try to learn features that
perform well on a specific subset of tasks. It is often dif-
ficult or impossible to include new tasks into a previously
trained model. Moreover, modern approaches [42,43] have
such tight connections between tasks that it becomes im-
possible to evaluate a single task without all other training
tasks, as illustrated in Figure 1. It is difficult to argue that
such features are truly generic.

This paper addresses the problem of universal feature
learning (UFL), where a system is capable of learning
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generic features useful for all tasks. As discussed, MTL is
evaluated on the same set of tasks used during training, i.e.
the training and evaluation tasks are identical. In contrast,
UFL aims to generalize beyond this training set. In other
words, the training and evaluation tasks are not the same.
As such, the resulting representations produced by the back-
bone are referred to as universal features. It is worth noting
that, in order to insert a new task into the network, the lay-
ers corresponding to the task head still need training. How-
ever, the focus of UFL is on learning backbone feature rep-
resentations that are left frozen while adding these new task
heads. This results in shorter and more efficient training, as
well as avoiding catastrophic forgetting in the shared back-
bone features.

The method proposed in this paper, dubbed Medusa,
aims to learn this universal representation. We design an ar-
chitecture with completely independent task heads, where
the only shared component is the backbone. Each task
head retains only the specific subset of relevant backbone
features via a spatial attention mechanism. This allows
the backbone to learn generic features, while reducing the
likelihood of negative transfer between tasks. The model
then makes initial predictions at each backbone resolution,
which are further combined in a novel Multi-Scale Atten-
tion (MSA) head. By feeding back diverse training tasks,
we encourage the learned features to encode a wide vari-
ety of information across scales. Furthermore, independent
task heads result in an efficient feature extraction process
that utilizes significantly less resources but maintains com-
petitive performance, while having a flexible architecture
where new task heads can be easily added.

Our contributions are summarized as:

1. We highlight the importance of universal feature
learning in contrast to MTL. The main objective be-
hind this is to learn a universal language for computer
vision applications. This requires a system to learn fea-
tures that require no additional finetuning to perform
well in tasks they were not originally trained for. In
practice, this means that the set of evaluation tasks is
different from those used during feature training.

2. We present a novel Multi-Scale Attention task head
and show how it can be used to develop an architec-
ture capable of addressing the UFL problem.

3. Finally we show that Medusa can still be applied to
traditional MTL, where it achieves competitive perfor-
mance while requiring far fewer resources.

2. Related Work

Multi-task learning. At its core, MTL [3, 32, 41] aims
to train a single network to accomplish multiple tasks.
Through feature sharing, these models can reduce compute

requirements while performing better than expert network
counterparts. Initial approaches consisted of multiple task
encoders with additional feature sharing layers. The semi-
nal UberNet [21] introduced a multi-scale, multi-head net-
work capable of performing a large number of tasks si-
multaneously. Cross-stitch networks [27] introduced soft
feature sharing by learning linear combinations of mul-
tiple task features. In practice, this requires first train-
ing each task separately and then finetuning their features.
Sluice networks [33] extended this idea by incorporating
subspace and skip-connection sharing. Meanwhile, NDDR-
CNNs [17] replaced the linear combination of features with
a dimensionality reduction mechanism.

Kokkinos et al. [21] and Zhao et al. [46] showed that fea-
ture sharing in unreleated tasks results in a degradation in
performance for both tasks, known as negative transfer. To
account for this, MTAN [23] used convolutional attention to
build task specific decoders from a shared backbone. Other
methods learn where to branch from the backbone and what
layers to share. Vandenhende et al. [40] decide what lay-
ers to share based on precomputed task affinity scores [16].
FAFS [25] begins with a fully shared model, optimizing
the separation between dissimilar tasks while minimizing
model complexity. BMTAS [2] and LTB [19] instead use
the Gumbel softmax to represent branching points in a tree
structure.

More recent approaches introduce additional refinement
steps prior to making the final prediction. PAD-Net [43]
was the first of these networks, using simple task heads to
make intermediate predictions. Each possible pair of tasks
were then connected via spatial attention, from which a final
prediction was made. MTI-Net [42] extended this approach
to multiple scales, incorporating feature propagation mod-
ules between them. PAP-Net [45] instead learned per-task
pixel affinity matrices, estimating the pixel-wise correlation
between each combination of tasks. Zhou et al. [47] ad-
ditionally incorporated inter-task patterns. Due to the con-
nections between all possible tasks, these approaches suffer
from a quadratic growth of network parameters, leading to
intractable compute requirements.

Transfer learning. A topic closely related to UFL is trans-
fer learning [31,37,39,50]. However, these works typically
focus on solving domain shift at the input level, performing
the same task with a different input modality. In other cases,
the target is a closely related task, e.g. classification on a
different set of labels. More closely related to Medusa are
feature- and network-based techniques for transfer learn-
ing. Feature-based approaches aim to transform the source
feature representations into new representations for the tar-
get domain. This includes approaches such as feature aug-
mentation [9, 14,20], mapping [24,29,30], clustering [7, 8]
and sharing [11, 18,22]. Meanwhile, network-based tech-
niques have instead focused on parameter sharing. Some
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Figure 2. Proposed Medusa Architecture. We focus on building independent task heads. This allows us to efficiently scale to a larger
number of tasks thanks to the dual attention mechanisms. (a) Shared Feature Attention, selecting relevant backbone features for each
task and scale through per-channel spatial attention. (b) Novel Multi-Scale Attention head, combining task features at different scales to

generate the final predictions.

notable examples include matrix factorization [48, 49] and
parameter reuse from a network pretrained on a source do-
main [28, 38]. However, the focus lies mainly on the per-
formance after finetuning on a specific new target task,
rather than the overall performance on a wide range of tasks,
which is the focus of MTL and UFL.

More recently, [16,44] were proposed to learn and model
the relationship between tasks. However, these approaches
do not truly solve the UFL problem since it is still necessary
to train a separate network on each task. Instead they fol-
low a brute force approach to find the best possible source
to transfer for a given target task. In contrast, Medusa learns
a single representation which can generalize well across fu-
ture target tasks.

3. Methodology

The aim of this work is to introduce an architecture capa-
ble of learning universal features that perform well in mul-
tiple different tasks. As shown in Figure 2, Medusa consists
of two main components: a shared backbone and individual
task heads. One key design feature is that each task head is
independent from the rest. This allows us to add new task
heads a posteriori, which can be trained in conjunction or
separately from the existing tasks.

3.1. Shared Feature Attention

The only part of the architecture common to all tasks is
the shared backbone. The backbone produces the shared
features B, € R®: at multiple scales S, where C, is the
number of channels per-scale. Our goal is to learn universal
features useful in a wide range of tasks, which may not be
known at training time. In order to let the backbone learn
a broad range of features whilst allowing tasks to pick their
own specific subsets, we introduce spatial attention between
the backbone and each task head. We define the process of
applying spatial attention S A to a generic feature map F as

SA(F) =0 (41 (F)) ©¢2 (F), (1)

where o is the sigmoid operation, ® the Hadamard product
and ¢ a convolution operation followed by batch normaliza-
tion and a ReLU activation. Note that the concept of spatial
attention is also known as the GLU activation [10] and has
previously been used in MTL [23,42,43]. In Medusa, the
convolution weights for each scale and task are independent
from each other. Therefore, F, = S A% (B,) represents the
initial task features for scale s and task ¢.

The shared backbone can now learn a generic feature
representation that suits a much wider range of tasks.
Through the per-channel spatial attention o (¢ (F)), each
task/scale retains only the specific subset of backbone fea-
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tures relevant to it. This alleviates the possibility of neg-
ative transfer, where sharing features between unrelated
tasks can degrade the performance of both tasks. Whilst
previous approaches also make use of spatial attention, they
place a larger focus on modeling the connections between
each pair of tasks. By creating an information bottleneck,
Medusa places more importance on learning features com-
mon to all tasks that therefore provide better transfer ca-
pabilities. Additionally, our multi-scale approach provides
the subsequent task features with a wide variety of informa-
tion which, combined with the proposed MSA head, helps
to provide optimal features for the final prediction.

3.2. Multi-Scale Task Predictions

Rather than building a per task sequential decoder such
as [23], we build parallel task heads by using each scale
of backbone features to make an initial prediction for each
task. This results in S predictions per task, used as addi-
tional supervision during training. The initial task features
F? are refined through

F =y (41 (F)), )

where F', are the refined task features and ¢ (F) = ¢ (F)+F
is a residual convolutional block. The initial predictions are
given by Yi = ¢Z (FZ), where qbi is the convolution map-
ping from C channels provided by the backbone to those
required by the task. These predictions are used as inter-
mediate supervision exclusively during training, while the
refined task features are combined in the MSA heads.

3.3. Multi-Scale Attention Task Heads

The final step is combining task features from multiple
scales to make the final prediction for each task. In the
naive case, one could simply upsample all task features to
the same resolution, concatenate channel-wise and process
them together [42]. We refer to this task head as HRHead
in the results further on. This assumes that the predictions
from each scale are equally valid and important. However,
due to the varying resolution and subsequent receptive field
of each scale, this is not typically the case. In practice,
higher resolution predictions can help to provide more ac-
curate and sharp edges for some tasks. On the other hand,
lower resolutions with more channels provide more descrip-
tive features with a larger receptive field, making predic-
tions more consistent on a global scale.

We capture this information by introducing a novel
Multi-Scale Attention task head. Given the processed task
features FZ the network is able to select the important in-
formation from each scale using the spatial attention S A
previously defined in (1). This results in

H. = 541 (), )

H' = H)oH\© ... oHY, 4)

where @ represents channel-wise concatenation of the at-
tended per task per scale features H’. Note that the spa-
tial attention weights are independent from those previously
used to extract F.. The final per task features H' are used
to obtain the final predictions as Y! = ¢' (Ht), where ¢'
maps the final number of channels ) Cs to the required
task channels.

Thanks to the design of the system it becomes trivial to
attach new task heads to the shared backbone. These task
heads are able to choose relevant features from the shared
backbone and adapt the multiple scales to the needs of new
tasks. Furthermore, since the task heads are independent,
the number of parameters increases only linearly with the
number of tasks. Because these heads are lightweight, the
resulting system is highly efficient. This is contrary to ap-
proaches such as [42,43], where each task requires connec-
tions to every other task, resulting in a quadratic parameter-
complexity with regards to the number of tasks.

4. Results

Dataset. We use the NYUD-v2 dataset [34], containing la-
bels for depth estimation, semantic segmentation, edge de-
tection and surface normal estimation. Following existing
benchmarks [26,42], we focus on evaluating depth and se-
mantic segmentation, leaving edges and surface normals as
auxiliary tasks for use during training. Depth is evaluated
through the Root Mean Squared Error (RMSE), while se-
mantic segmentation uses the mean-Intersection over Union
(m-IoU).

Implementation details. We use HRNet-18 [36] pretrained
on ImageNet [12] as the backbone, due to its suitability for
dense prediction tasks. This produces features at downsam-
pling scales of {4,8,16,32} with {18,36,72,144} chan-
nels, respectively. We use the Adam optimizer, with a base
LR=1e-4 and a polynomial decay [4]. Experimentally, we
found that training the shared backbone with a lower learn-
ing rate than the heads (typically LR*0.1) produced better
results. Models are trained for 100 epochs. Regarding the
losses, we use the L; loss for depth and surface normal
estimation, cross-entropy for semantic segmentation and a
binary cross-entropy (with positive weighting of 0.95) for
edge detection.

4.1. Multi-task Evaluation

Performance. We first evaluate Medusa’s performance in a
traditional MTL setting, following the procedure in [26]. As
mentioned, the main tasks evaluated are depth estimation
and semantic segmentation. However, during training we
make additional use of Edge detection and surface Normal
estimation to show the network a varied set of tasks. Fol-
lowing [26], we define multi-task learning performance as
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Table 1. Multi-task Evaluation. When performing MTL on NYUD-v2 Medusa is on par with the current SotA [

], whilst using less

resources (see Figure 4). This is due to the novel lightweight MSA task head. We highlight the best and next best performing techniques.

Backbone  Head N+E Segt Depth] A,,%7?

ST Baseline ResNet-18  DeepLab-v3+ 3577 0.600 +0.00
MT Baseline ResNet-18  DeepLab-v3+ 35.74 0.597 +0.12
Cross-stitch [27] ResNet-18  DeepLab-v3+ 36.01 0.600 +0.30
NDDR-CNN [17] ResNet-18 DeepLab-v3+ 3472 0.611 -2.47

MTAN [23] ResNet-18  DeepLab-v3+ 36.00 0.594 +0.79
ST Baseline HRNet-18 HRHead 34.57 0.606 +0.00
MT Baseline HRNet-18 HRHead 33.21 0.614 -2.63

MTAN [23] HRNet-18  DeepLab-v3+ 35.25 0.581 +3.02
MTAN HRNet-18 DeepLab-v3+ v 36.19 0.567 +5.57
PAD-Net [43] HRNet-18 HRHead 3439 0.617 -1.23

PAD-Net HRNet-18 HRHead v 3546 0.604 +1.43
MTI-Net [42] HRNet-18 HRHead 36.94 0.559 +7.26
MTI-Net HRNet-18 HRHead v 37.40 0.540 +9.48
Medusa (ours) HRNet-18 MSA (ours) 36.99 0.573 +6.19
Medusa HRNet-18 MSA v 37.48 0.545 +9.24

Table 2. Spatial Attention Ablation Study. The SFA column indicates the presence of spatial attention between the shared backbone
and the task heads. Meanwhile, the MSA task head incorporates attention when combining each task’s multi-scale features. Both types of
attention lead to clear improvements. All models use the HRNet-18 backbone.

SFA Head N+E Seg? Depth) A,%1
ST Baseline HRHead 34.57 0.606 +0.00
MT Baseline HRHead 3321 0.614 -2.63
MT Baseline MSA 35.58 0.598 +2.12
Medusa HRHead v 36.50 0.558 +6.71
Medusa e HRHead Vv 36.64 0.553 +7.31
Medusa MSA v 37.14 0.555 +791
Medusa v MSA v 3748 0.545 +9.24

tMt Mt
Arn TZ T 5)

where M f{m) b} is the per-task performance of the multitask
or baseline network and [? indicates if a lower value means
a better performance for the given task. As such, A, repre-
sents the average increase (or drop) in performance for each
task, relative to the single task baseline.

We obtain single task baselines (ST) for each backbone
by training expert networks on each task separately, result-
ing in two completely separate models. ResNet models use
Deeplab-v3+ ASPP [5] task heads, while HRNet-18 uses
the naive multi-scale task head, upsampling all scales and

concatenating channel-wise (HRHead). Meanwhile, the
multi-task baselines (MT) use a joint backbone with sep-
arate task heads. The baselines were obtained by retraining
the code provided by the authors of [26,42]. In order to
make results more comparable, we also create and train a
version of MTAN adapted to make use of the HRNet back-
bone. However, since MTAN builds a per task decoder,
rather than making initial predictions at multiple scales, it
still requires use of the DeepLap-v3+ head.

The results can be found in Table 1, where the column
(N+E) indicates the presence of the auxiliary edges and sur-
face normals tasks. It is interesting to note that some MT
baselines and methods [17,43] actually lead to a degrada-
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Figure 3. Qualitative Evaluation. Through the proposed MSA heads, Medusa’s predictions are both globally consistent and have well

(c) MT

(d) MTI-Net (e) Medusa

defined borders. Results are on par with the current State-of-the-Art (SotA) while using less resources.

tion in performance. This is likely due to a combination
of negative transfer and task loss balancing during training.
Meanwhile, despite not modelling task connections in the
decoder, Medusa still shows improvements when incorpo-
rating the auxiliary (N+E) tasks. This demonstrates the abil-
ity of Medusa to learn generic features that complement all
tasks, sharing only the useful information. To summarize,
Medusa greatly outperforms all baselines with independent
task heads [23] and is comparable to the current SotA [42]
while using resources in a more efficient manner, as we will
now discuss.

Ablation. We perform an ablation study to understand the
importance of Medusa’s components, primarily focused on
the uses of spatial attention. In the case of the Shared Fea-
ture Attention (SFA), we replace the spatial attention con-
necting the shared backbone to each task head with a con-
volutional block with BatchNorm and ReLU. On the other
hand, we compare the proposed MSA head to the default
HRNet, which does not contain spatial attention.

Table 2 shows that both attention components result in
large benefits. Incorporating the SFA results in a consis-
tent relative improvement across the different techniques of
8.94% and 16.81%. Meanwhile, the MSA head leads to
even larger performance gains—from 17.88% to 180.60%.

Most notably, incorporating the MSA head into the MT
baseline results in an improvement over the ST baseline.
Even across all Medusa variants, this novel task head leads
to a consistent increase in accuracy. Similarly, incorporat-
ing the SFA between the backbone and task heads improves
performance regardless of the task head used. Overall, the
dual attention mechanisms used in Medusa lead to a rel-
ative improvement of 37.7% over the plain convolutional
baseline. Once again, we believe that this is due to spatial
attention providing an effective, yet efficient mechanism for
routing information between different stages in the network.
This allows it to easily decide what information should or
should not be shared across either tasks and scales.
Visualizations. Figure 3 shows qualitative results based
on the network predictions. As expected, the MT base-
line shows the worst results. MTI-Net shows more spuri-
ous class predictions, especially in cluttered environments,
as seen in the second image in Figure 3. Meanwhile, we
find Medusa to be more globally coherent, while still hav-
ing well defined edges between classes and in depth discon-
tinuities. This is due to the proposed MSA head, which can
effectively combine the best features from each scale.
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Figure 4. Resource Usage. Modelling the relationships between each pair of tasks and scales [
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] results in a quadratic increase in

paramters/GFLOPS w.r.t. the number of tasks. This does not scale well to an increasing number of tasks. Medusa’s independent task heads
lead to a much more efficient scaling, while focusing on features that are more generic and reusable.

Resources. Figure 4 shows how different approaches scale
w.r.t. the number of tasks. The most resource efficient ap-
proach is the MT baseline. However, since it only uses basic
task heads without intermediate predictions or attention, its
performance is lacklustre. Other approaches with indepen-
dent task heads (ST, MTAN) are relatively efficient, since
the increase in task head parameters is linear, but their per-
formance (see Table 1) is not on par with Medusa. MTI-Net
is the only approach with results comparable to Medusa,
but it does not scale well to increasing numbers of tasks.
After only three tasks, MTI-Net requires more parameters
than the ST baseline, which trains a completely separate
network for each task. This gap only increases, due to the
quadratic parameter-complexity introduced by the connec-
tions between all possible pairs of tasks.

4.2. Universal Feature Learning

The following experiment evaluates Medusa in the high-
lighted UFL task. The objective is to learn generic shared
features that can be adapted to new, unseen tasks on unseen
datasets without additional finetuning at the backbone level.
This is contrary to MTL, where the objective is to learn fea-
tures that perform well in the specific set of training tasks
without generalization to other tasks. It is also contrary to
traditional transfer learning, where the objective is instead
to solve the domain shift between different modalities of a
single task.

We show the ability of Medusa features to transfer to
new tasks on new datasets through the PASCAL-Context [6]
dataset, containing semantic segmentation, human part seg-
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Table 3. Universal Feature Learning. We use the pretrained backbone features from Table 1 to train task heads on new tasks on new
datasets. The features learned by Medusa provide large improvements over the commonly used ImageNet pretrained features, despite the

fact that we train with orders of magnitude less data.

NYUD-v2 PASCAL-Context
Segt Depth] A, %1 Parts?t Salt A,%71
ST Baseline 34.57 0.606 +0.00 48.73 56.44 +0.00
MT Baseline  33.21 0.614 -2.63 36.13 51.96 -12.93
MTAN [23] 36.19 0.567 +5.57 47.37 57.84 +4.26
MTI-Net [42] 37.40 0.540 +9.48 51.50 60.19 +10.76
Medusa 37.48 0.545 +9.24 52.24 6191 +13.18

mentation and edge detection. There are also pseudo-
ground truth labels for surface normals and saliency [26]
obtained from SotA models [1,5]. Since three of the tasks
are common to NYUD-v2 we evaluate on the two unique
ones: human part segmentation and saliency estimation. To
carry out this evaluation we use the previous models trained
on NYUD-v2 in Section 4.1 with the auxiliary (N+E) tasks
and check their transfer capability to the new target tasks
in the PASCAL-Context dataset. This is done by freezing
the shared feature backbone network and adding a new task
head corresponding to either saliency estimation or human
part segmentation. This can be seen as a form of contin-
ual learning. Since the shared backbone and previous task
heads are frozen, we ensure that the network does not forget
existing information. Instead, we expand its knowledge by
learning a new task.

Table 3 shows the results from this experiment, includ-
ing the previous MTL results on NYUD-v2 for compari-
son. This highlights the main difference between UFL and
MTL, where MTL only performs well in the original train-
ing tasks. This is only exacerbated by the naive multi-
task implementation, resulting in a large amount of nega-
tive transfer between tasks. Meanwhile, Medusa provides
the best transfer capabilities. It is worth noting the large im-
provement over ImageNet pretrained features from the sin-
gle task baseline (ST), which are trained on orders of magni-
tude more data than the remaining MTL methods. However,
since they are trained exclusively for global image classi-
fication, the learnt representations do not transfer well to
complex dense tasks. Meanwhile, even through MTL per-
formance is almost equal to MTI-Net (9.24% vs. 9.48%),
the features learnt by Medusa generalize to a broader range
of tasks (13.18% vs. 10.76%). This is due to Medusa’s de-
sign, which places a larger focus on the shared feature rep-
resentation, which is therefore able to learn a more effective
feature representation.

5. Conclusions & Future Work

In this paper we have highlighted the importance of uni-
versal feature learning vs. multi-task learning, requiring a
feature learning system to perform well over a large variety
of tasks without additional finetuning. This is in contrast
to most current MTL approaches, which focus learning fea-
tures specific to a given set of training tasks.

To this end we proposed Medusa, capable of training
on multiple tasks simultaneously, while allowing new task
heads to be attached and trained jointly or separately. Fur-
thermore, thanks to the novel MSA head, we are capable of
doing this in a very efficient manner. This helps to provide
comparable results whilst using less resources than previ-
ous approaches. We additionally demonstrated the gener-
ality of the features leant by Medusa in the UFL task on
unseen tasks and datasets, and showed its ability to out-
perform SotA features from both ImageNet and other MTL
networks.

Whilst Medusa has shown its effectiveness in both MTL
and UFL, it is not without limitations and challenges to ad-
dress in future work. For instance, the data used during
training is currently required to have labels for all target
tasks. In practice, these labels can be challenging to ob-
tain, especially as the number of tasks and images grows.
Medusa’s performance is also dependent on the tasks used
during training. If we wish to transfer to a task that is com-
pletely unrelated to the training tasks, it is likely that the
features will not overlap. Both of these issues could po-
tentially be addressed by making the training process more
flexible, without requiring each item to have labels for all
tasks or by training with multiple unrelated datasets.
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