
Alleviating Representational Shift for Continual Fine-tuning

Appendix

A. Proofs

A.1. Proof of Proposition 1

Proof. Without loss of generality, we suppose the Conv
layer does not have a bias parameter. We denote its kernel
size as K, and its weight parameter as W ∈ RC×C′×K×K .
When padding size is K − 1, the input a ∈ RB×C×H×W

is zero-padded to a′ ∈ RB×C×(H+2K−2)×(W+2K−2). The
output of this Conv layer is fConv(a) ∈ RB×C′×H′×W ′

.
We have:
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If stride ̸= 1, we suppose stride = 2 as an instance.
We can transform the convolution with stride = 2 into 4
convolutions with stride = 1, by breaking down both a
and W as in Fig. 1. Then the proposition still holds for
each of the 4 convolutions. Meanwhile, we need to store
4 pre-convolution means with respect to the 4 parts of a.
Similarly, if stride = m, we just need to transform the con-
volution into m2 convolutions with stride = 1, and store
m2 pre-convolution means.

As for the cases where padding ̸= K − 1, we hypoth-
esize the pixels at the edges of images are less informative
background, which can be ignored securely. So the propo-
sition still holds with negligible error.

A.2. Proof of Proposition 2

Proof. This proposition is an immediate deduction of
Theorem 3.2 in [2] 1 by simply regarding inputs of task

1We notice that the theorem IDs are different between the openreview
camera-ready version and arxiv version. We are in line with the former.
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Dataset CIFAR100 CUB200 Caltech101 Flowers102

#classes 100 200 101 102
#tasks 20 10 10 10

#classes in each task 5 20 10 10
max #images of a class in training set 500 30 640 206
min #images of a class in training set 500 29 25 32

#images in training set 50000 5994 6941 6551
#images in test set 10000 5794 1736 1638

Table 1. Main statistics of datasets.

Tt as in-distribution data, and inputs of task Tt′ as out-
of-distribution data. A slight difference is that we as-
sume the “out-of-distribution data” are in the determinis-
tic worst case, so we do not have a second moment term√

σmin(Σ) which is derived from the stochasticity of the
out-of-distribution data in Lemma A.7 of [2].

As for multi-head setting, we have√
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is the divergence
between the two sub-networks corresponding to the two
heads. We can regard ϵmh as a relaxation provided by multi-
head setting.

A.3. Proof of Proposition 3

Proof. For all task Tt′ with t′ ≤ t, we firstly as-
sume that B∗

t′−1 = B∗
0. Then there exists v0 such that
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the feature extractor does not change at all, which means
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B. Experiment Details
B.1. Dataset Split

For CIFAR100 and CUB200, we use the official
train/test split. For Caltech101 and Flowers102, we ran-

domly choose 80% images as training set, and the others
as test set. During hyperparameter search, we further ran-
domly choose 10% images in training set for validation.
The details of dataset statistics are in Tab. 1.

B.2. Implementation

All experiments are implemented using Pytorch 1.10
with CUDA 10.2 on NVIDIA 1080Ti GPU. The datasets
and dataloaders are built via Avalanche [3]. We use
ResNet18 implemented by timm [6], and its pre-trained
parameters are downloaded from torchvision. The base-
lines are reproduced on the basis of the official codebases
of [1,4,5], in which we only modify the models and dataset
interfaces.

B.3. Data Pre-processing

For each image, we pre-process it as follows (Pytorch
style):

Compose(
Resize(size=256),
CenterCrop(size=(224, 224)),
ToTensor(),
Normalize(

mean=[0.4850, 0.4560, 0.4060],
std=[0.2290, 0.2240, 0.2250]

)
)

There is no extra data augmentation applied.

B.4. Hyperparameter Search

For each baseline, we extensively search the best hyper-
parameter, which is shown in Tab. 2. We train the model for
a fixed number of epochs for each method, which depends
on the complexity of the dataset. We randomly choose 10%
images in training set for validation, exclude them from
training, and use them to determine the best hyperparame-
ters. After the hyperparameter search, we retrain the model
with the whole training set and report the results on test set.
Note that our ConFiT does not need hyperparameter search.
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Method Hyperparameter Search Range CIFAR100 CUB200 Caltech101 Flowers102

EWC λ {3e2, 1e3, 3e3, 1e4, 3e4, 1e5, 3e5} 1e3 3e3 3e4 1e5
SI c {1, 2, 5, 10, 20, 50} 2 5 10 20

RWalk λ {5, 10, 20, 50, 100, 200} 20 20 50 100
MAS λ {1, 3, 10, 30, 100, 300} 10 30 30 30
CPR β {0.005, 0.01, 0.02, 0.05, 0.1, 0.2, 0.5} 0.2 0.02 0.01 0.1

AFEC λe {0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000} 0.01 100 1000 10

Table 2. Results of hyperparameter search.

C. Difference between IRS and Internal Co-
variate Shift

We notice that there is another concept called Internal
Covariate Shift (ICS) about BN. To avoid confusion, we
here clarify the difference between IRS and ICS.

Firstly, we would emphasize that ICS and IRS are totally
different concepts. ICS describes the instability of interme-
diate representations’ distribution during the training stage,
i.e., the inputs of intermediate layers are unstable in train-
ing, which impedes the learning of networks. One of the
motivations behind BN is to address ICS, so as to make the
network easier to train.

Whereas IRS is defined in the scenario of continual
learning, which means the intermediate representations of
data of previous tasks were shifted, because the network fit-
ted the data of the newest task. The shifted representation
will disrupt the function of BN in testing, since the running
moments will no longer be representative of the true mo-
ments of intermediate representations.

Overall, BN can solve ICS, but will suffer from IRS in
continual learning, which is what we have attempted to ad-
dress.
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