
Continual Learning Based on OOD Detection
and Task Masking - Appendix

1. Average Incremental Accuracy
In the paper, we reported the accuracy after all tasks

have been learned. Here we give the average incremental
accuracy. Let Ak be the average accuracy over all tasks
seen so far right after the task k is learned. The average
incremental accuracy is defined as A =

∑t
k=1 Ak/t, where

t is the last task. It measures the performance of a method
throughout the learning process. Tab. 1 shows the average
incremental accuracy for the TIL and CIL settings. Fig. 1
and Fig. 2 plot the TIL and CIL accuracy Ak at each task
k for every dataset, respectively. We can clearly see that
our proposed method CLOM and CLOM(-c) outperform all
others except for MNIST-5T, for which a few systems have
the same results.

2. Network Parameter Sizes
We use AlexNet-like architecture [3] for MNIST and

ResNet-18 [2] for CIFAR10. For CIFAR100 and Tiny-
ImageNet, we use the same ResNet-18 structure used for
CIFAR10, but we double the number of channels of each
convolution in order to learn more tasks.

We use the same backbone architecture for CLOM and
baselines, except for OWM and HyperNet, where we use
the same architecture as in their original papers. OWM
uses an Alexnet-like structure for all datasets. OWN has
difficulty to work with ResNet-18 because it is not obvious
how to deal with batch normalization in OWM. HyperNet
uses a fully-connected network for MNIST and ResNet-
32 for other datasets. We found it very hard to change
HyperNet because the network initialization requires some
arguments which were not explained in the paper. In Tab. 2,
we report the network parameter sizes after the final task in
each experiment has been trained.

Due to hard attention embeddings and task specific heads,
CLOM requires task specific parameters for each task. For
MNIST, CIFAR10, CIFAR100-10T, CIFAR100-20T, Tiny-
ImageNet-5T, and Tiny-ImageNet-10T, we add task specific
parameters of size 7.7K, 17.6K, 68.0K, 47.5K, 191.0K, and
109.0K, respectively, after each task. The contrastive learn-
ing also introduces task specific parameters from the pro-
jection function g. However, this can be discarded during
deployment as it is not necessary for inference or testing.

3. Details about Augmentations
We follow [1, 6] for the choice of data augmentations.

We first apply horizontal flip, color change (color jitter and
grayscale), and Inception crop [5], and then four rotations
(0◦, 90◦, 180◦, and 270◦). The details about each augmenta-
tion are the following.

Horizontal flip: we flip an image horizontally with 50%
of probability; color jitter: we add a noise to an image to
change the brightness, contrast, and saturation of the image
with 80% of probability; grayscale: we change an image
to grayscale with 20% of probability; Inception crop: we
uniformly choose a resize factor from 0.08 to 1.0 for each
image, and crop an area of the image and resize it to the
original image size; rotation: we rotate an image by 0◦,
90◦, 180◦, and 270◦. In Fig. 3, we give an example of each
augmentation by using an image from Tiny-ImageNet [4].

4. Hyper-parameters
Here we report the hyper-parameters that we could not

include in the main paper due to space limitations. We use
the values chosen by [1, 6] to save time for hyper-parameter
search. We first train the feature extractor h and projection
function g for 700 epochs, fine-tune the classifier f for 100
epochs. The s for the pseudo step function in Eq. 7 of the
main paper is set to 700. The temperature τ in contrastive
loss is 0.07 and the resize factor for Inception crop ranges
from 0.08 to 1.0.

For other hyper-parameters in CLOM, we use 10% of
training data as the validation data and select the set of
hyper-parameters that gives the highest CIL accuracy on
the validation set. We train the output calibration param-
eters (σ,µ) for 160 iterations with learning rate 0.01 and
batch size 32. The following are experiment specific hyper-
parameters found with hyper-parameter search.

• For MNIST-5T, batch size = 256, the hard attention
regularization hyper-parameters are λ1 = 0.25, and
λ2 = · · · = λ5 = 0.1.

• For CIFAR10-5T, batch size = 128, the hard atten-
tion regularization hyper-parameters are λ1 = 1.0, and
λ2 = · · · = λ5 = 0.75.

• For CIFAR100-10T, batch size = 128, the hard atten-
tion regularization hyper-parameters are λ1 = 1.5, and
λ2 = · · · = λ10 = 1.0.

• For CIFAR100-20T, batch size = 128, the hard atten-
tion regularization hyper-parameters are λ1 = 3.5, and
λ2 = · · · = λ20 = 2.5.

• For Tiny-ImageNet-5T, batch size = 128, the hard at-
tention regularization hyper-parameters are λ1 = · · · =
λ5 = 0.75.

• For Tiny-ImageNet-10T, batch size = 128, the hard
attention regularization hyper-parameters are λ1 = 1.0,
and λ2 = · · · = λ10 = 0.75.

We do not search hyper-parameter λt for each task t ≥ 2.
However, we found that larger λ1 than λt, t > 1, results in



Method MNIST-5T CIFAR10-5T CIFAR100-10T CIFAR100-20T T-ImageNet-5T T-ImageNet-10T
TIL CIL TIL CIL TIL CIL TIL CIL TIL CIL TIL CIL

CIL Systems
OWM 99.9 98.5 87.5 67.9 62.9 41.9 66.8 37.3 26.4 18.7 31.3 17.6
MUC 99.9 87.2 95.2 67.7 80.3 50.5 77.8 32.7 61.1 48.1 56.5 34.8
PASS 99.9 92.0 88.0 63.6 77.3 52.9 78.4 38.0 55.1 39.9 52.2 30.1
LwF.R 99.9 92.8 96.6 70.7 87.6 65.4 90.9 62.8 61.7 48.0 61.3 40.9
iCaRL 99.9 98.0 96.4 74.7 86.9 68.4 88.9 64.5 60.9 50.7 60.0 44.1
Mnemonics 99.9 98.3 96.4 75.2 86.4 67.7 88.9 64.5 61.0 50.7 60.4 44.5
BiC 99.9 95.3 93.9 74.9 88.9 68.7 91.5 61.9 52.7 36.7 57.4 35.5
DER++ 99.9 98.3 94.4 79.3 86.0 67.6 85.7 56.6 62.6 49.7 66.2 46.8

TIL Systems
HAT 99.9 90.8 96.7 73.0 84.3 55.6 85.5 41.8 61.4 48.0 63.1 40.2
HyperNet 99.8 71.5 95.0 63.5 77.0 44.4 82.1 33.8 23.5 13.8 28.8 12.2
SupSup 99.7 81.8 97.0 73.6 90.5 58.6 91.6 51.4 63.4 51.0 67.1 45.9
CLOM(-c) 99.9 97.0 98.7 91.9 92.3 75.4 94.3 70.1 68.5 57.0 72.0 56.1
CLOM 99.9 98.3 98.7 91.9 92.3 75.9 94.3 71.0 68.5 58.6 72.0 56.5

Table 1. Average incremental accuracy. Numbers in bold are the best results in each column.

2 4 6 8 10
Number of Classes

90

95

100

A
cc

ur
ac

y 
(%

)

MNIST-5T

OWM
MUC
PASS
LwF

iCaRL
Mne.
BiC
DER++

HAT
HyperNet
SupSup
CLOM(-c)

2 4 6 8 10
Number of Classes

84

86

88

90

92

94

96

98

100

A
cc

ur
ac

y 
(%

)

CIFAR10-5T

OWM
MUC
PASS
LwF

iCaRL
Mne.
BiC
DER++

HAT
HyperNet
SupSup
CLOM(-c)

10 20 30 40 50 60 70 80 90 100
Number of Classes

60

65

70

75

80

85

90

A
cc

ur
ac

y 
(%

)

CIFAR100-10T

OWM
MUC
PASS
LwF

iCaRL
Mne.
BiC
DER++

HAT
HyperNet
SupSup
CLOM(-c)

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Number of Classes

65

70

75

80

85

90

95

A
cc

ur
ac

y 
(%

)

CIFAR100-20T

OWM
MUC
PASS
LwF

iCaRL
Mne.
BiC
DER++

HAT
HyperNet
SupSup
CLOM(-c)

40 80 120 160 200
Number of Classes

20

30

40

50

60

70

A
cc

ur
ac

y 
(%

)

T-ImageNet-5T

OWM
MUC
PASS
LwF

iCaRL
Mne.
BiC
DER++

HAT
HyperNet
SupSup
CLOM(-c)

20 40 60 80 100 120 140 160 180 200
Number of Classes

30

40

50

60

70

A
cc

ur
ac

y 
(%

)

T-ImageNet-10T

OWM
MUC
PASS
LwF

iCaRL
Mne.
BiC
DER++

HAT
HyperNet
SupSup
CLOM(-c)

Figure 1. TIL performance over number of classes. The dashed lines indicate the methods that do not save any samples from previous tasks.
The calibrated version, CLOM, is omitted as its TIL accuracy is the same as CLOM(-c). Best viewed in color.

better accuracy. This is because the hard attention regularizer
Lr gives lower penalty in the earlier tasks than later tasks by
definition. We encourage greater sparsity in task 1 by larger
λ1 for similar penalty values across tasks.

For the baselines, we use the best hyper-parameters re-
ported in their original papers or in their code. If some
hyper-parameters are unknown, e.g., the baseline did not use
a particular dataset, we search for the hyper-parameters as
we do for CLOM.

We obtain the results by running the following codes

• OWM: https://github.com/beijixiong3510/OWM

• MUC: https://github.com/liuyudut/MUC

• PASS: https://github.com/Impression2805/CVPR21 PASS

• LwF.R: https://github.com/yaoyao-liu/class-
incremental-learning



2 4 6 8 10
Number of Classes

0

10

20

30

40

50

60

70

80

90

100
A

cc
ur

ac
y 

(%
)

MNIST-5T

OWM
MUC
PASS
LwF
iCaRL

Mne.
BiC
DER++
HAT

HyperNet
SupSup
CLOM(-c)
CLOM

2 4 6 8 10
Number of Classes

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

CIFAR10-5T

OWM
MUC
PASS
LwF
iCaRL

Mne.
BiC
DER++
HAT

HyperNet
SupSup
CLOM(-c)
CLOM

10 20 30 40 50 60 70 80 90 100
Number of Classes

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

CIFAR100-10T

OWM
MUC
PASS
LwF
iCaRL

Mne.
BiC
DER++
HAT

HyperNet
SupSup
CLOM(-c)
CLOM

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95100
Number of Classes

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

CIFAR100-20T

OWM
MUC
PASS
LwF
iCaRL

Mne.
BiC
DER++
HAT

HyperNet
SupSup
CLOM(-c)
CLOM

40 80 120 160 200
Number of Classes

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

T-ImageNet-5T
OWM
MUC
PASS
LwF
iCaRL

Mne.
BiC
DER++
HAT

HyperNet
SupSup
CLOM(-c)
CLOM

20 40 60 80 100 120 140 160 180 200
Number of Classes

0

10

20

30

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

T-ImageNet-10T
OWM
MUC
PASS
LwF
iCaRL

Mne.
BiC
DER++
HAT

HyperNet
SupSup
CLOM(-c)
CLOM

Figure 2. CIL performance over number of classes. The dashed lines indicate the methods that do not save any samples from previous tasks.
Best viewed in color.

Method MNIST-5T CIFAR10-5T CIFAR100-10T CIFAR100-20T T-ImageNet-5T T-ImageNet-10T

OWM 5.27 5.27 5.36 5.36 5.46 5.46
MUC-LwF 1.06 11.19 45.06 45.06 45.47 45.47
PASS 1.03 11.17 44.76 44.76 44.86 44.86
LwF.R 1.03 11.17 44.76 44.76 44.86 44.86
iCaRL 1.03 11.17 44.76 44.76 44.86 44.86
Mnemonics 1.03 11.17 44.76 44.76 44.86 44.86
BiC 1.03 11.17 44.76 44.76 44.86 44.86
DER++ 1.03 11.17 44.76 44.76 44.86 44.86
HAT 1.04 11.23 45.01 45.28 44.97 45.11
HyperNet 0.48 0.47 0.47 0.47 0.48 0.48
SupSup 0.58 11.16 44.64 44.64 44.67 44.65
CLOM 1.07 11.25 45.31 45.58 45.59 45.72

Table 2. Number of network parameters (million) after the final task has been learned.

• iCaRL: https://github.com/yaoyao-liu/class-
incremental-learning

• Mnemonics: https://github.com/yaoyao-liu/class-
incremental-learning

• BiC: https://github.com/sairin1202/BIC

• DER++: https://github.com/aimagelab/mammoth

• HAT: https://github.com/joansj/hat

• HyperNet: https://github.com/chrhenning/hypercl

• SupSup: https://github.com/RAIVNLab/supsup

References
[1] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geof-

frey Hinton. A simple framework for contrastive learning of
visual representations. In ICML, 2020. 1

[2] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, 2016.
1

[3] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Ima-
genet classification with deep convolutional neural networks.
In NIPS, 2012. 1

[4] Y. Le and X. Yang. Tiny imagenet visual recognition challenge,
2015. 1

[5] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Van-



(a) Original (b) Hflip (c) Color jitter

(d) Grayscale (e) Crop (f) Rotation

Figure 3. An original image and its view after each augmentation.
Hflip and Crop refer to horizontal flip and Inception crop, respec-
tively.

houcke, and Andrew Rabinovich. Going deeper with convolu-
tions. In CVPR, 2015. 1

[6] Jihoon Tack, Sangwoo Mo, Jongheon Jeong, and Jinwoo Shin.
Csi: Novelty detection via contrastive learning on distribution-
ally shifted instances. In NeurIPS, 2020. 1


