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A. Discriminator details
A diagram of the discriminator and its modifications de-

tailed in the experiments section can be seen in Figure 3. As
underlined in the paper, it is worth noting that this module is
finetuned from the source domain. Introducing weight mod-
ulation into it leads to training instability and worse gener-
ation quality overall.

B. Additional baseline comments
Results of mentioned baselines are shown in Table 4 for

experiments on several domains. From these results, we
can appreciate that cGANTransfer performs badly when the
number of previous learned classes is low, since its genera-
tion power comes precisely from combining these previous
classes. For instance, the first column sets the problem to
perform transfer learning from FFHQ (1 class) to AFHQ (3
classes), where this method seems to perform considerably
worse than the proposed work, and also worse than simply
learning the batch normalization statistics, as GAN Memory.
When the number of source domain classes for the transfer
is slightly higher, as AFHQ (3 classes) to CelebA-HQ (2
classes), the result is somewhat better since it is allowed
more expressiveness, but still lacking quality depending on
the closeness of the target domain.

Results for several metrics on transfer learning from pre-
trained FFHQ model to AFHQ dataset are shown in Table
5. We can see how the proposed method performs bet-
ter than simply learn the normalization statistics for each
class as in GAN Memory in terms of quality and diversity,
since the knowledge of other classes learned concurrently
can be propagated among all of them, resulting in improved
time and data efficiency during training. We have already
mentioned how cGANTransfer quality degrades when not
enough pre-trained classes are given to produce an interpo-
lation. However, we can see how the diversity is better than
its quality. We assume this occurs because it can produce
close-enough interpolations to resemble the target class, but
it doesn’t have a meaningful basis (i.e. a sufficient number

of pre-trained classes) in order to form a combination of
significant quality.

To perform experiments for cGANTransfer, a BigGAN
model trained ImageNet was finetuned on FFHQ dataset.
We used the checkpoint1 of the highest resolution publicly
available. The model with the best FID before collapse was
used as the base for this method. The same was performed
for AFHQ dataset.

C. Implementation details
As the base of our method, we use a public StyleGAN

implementation 2, which while it is not official, it mostly
reproduces results from the original paper. As already men-
tioned, we keep all hyperparameters from the original paper
but fix the resolution growth to the final one, then apply all
the methods explained.

In the original StyleGAN paper, it is mentioned training
instability due to the depth of the mapping network. We
experience a similar incident and therefore take the same
solution of reducing the learning rate for the class network
two orders of magnitude relative to the main network.

For the evaluation metrics, we use a ready-made pack-
age [2] for FID, KID and Precision & Recall, which uses
the original Inception feature extractor weights, ported to
PyTorch. Density & Coverage metrics have been imple-
mented as a package extension, also included in this paper.
Perceptual path similarity implementation is taken from 3

applying default center crop.

D. Architecture specifics
In this paper, we propose a novel transfer learning strat-

egy from unconditional GAN to conditional GAN by in-
troducing hypernetwork-based adaptive weight modulation.

1https://github.com/ajbrock/BigGAN-PyTorch
2https://github.com/rosinality/style-based-gan-

pytorch
3https : / / github . com / rosinality / stylegan2 -

pytorch/blob/master/ppl.py
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Figure 1. Sampling of class interpolation (left to right) versus noise interpolation (up to down). The hypernetwork has learned to keep
every aspect of the style of an image intact, including background, while changing the class. The style mechanism was frozen since the
beginning of the transfer learning training from human to animal faces.

Here we will detail the concrete architecture we used, and
the changes applied to it.

Figure 4 shows the changes made to a vanilla Style-
GAN [1]. The style branch is frozen since we want to keep
the learned transformations (pose rotations, color changes,
etc.) from the source domain, i.e. FFHQ, unchanged. We
do not see a loss in performance when transferred to other

datasets (see Fig. 1). The class network C is very similar to
the original mapping network and also generates an embed-
ding space, in this case V , for classes, with the difference
that the input comes from a learned class-embedding. The
information then comes into each convolution layer to mod-
ulate the weights, as explained in the main paper.
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Figure 2. Transfer learning from Animal Faces (AFHQ) to a very
distant domain (Places365).
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Figure 3. Original discriminator (left), modified discriminator
(right). Batch dimensions at the right-most side for easier visual-
ization. The final layer that comes from the convolutions is modi-
fied to output Nc number of classes, and the correct one is picked
to compute the final loss.

E. Domain information injection
We specify here a different class information introduc-

tion technique to the one in the main paper. Since the
normalization from one block will destroy the informa-
tion included by the other (Fig. 5a), we can fix this and
simplify the formulation by combining style and class as
γ(s,v),β(s,v) = g(s) + g(v; Φ), corresponding to Eq. (3),
as seen in Fig. 5b. Nevertheless, we have experienced
consistent underperformance when compared to the current
weight modulation technique used.
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Figure 4. Hypernetwork architecture for transfer learning from unconditional GAN to conditional GAN, which wrap around the pre-trained
weights (i.e., the convolutional and fully connected layers). The network C takes as input the class index i, and outputs the class embedding
v, which is fed into the hypernetwork generators g. Adapted from [1].
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Figure 5. Different fusion strategies. Dashed boxes are frozen
during training.



Figure 6. Unfiltered conditional generations. Three rows of cats, dogs and wildlife respectively. The same noise is applied among classes
(poses, background, etc).



Figure 7. Unfiltered conditional generations (config. B, worse than Fig. 6). Three rows of cats, dogs and wildlife respectively. The same
noise is applied among classes (poses, background, etc.).



Figure 8. Sampling of class interpolation (left to right) versus noise interpolation (up to down).



Figure 9. Sampling of class interpolation between cat and dog.

Figure 10. Sampling of class interpolation between dog and wild life.
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Figure 11. Effect of the modulation parameters on the domain transfer.
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