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Figure 1. DP-VTON, our proposed method, better preserves the
details of the reference person and the target clothes.

Abstract

While virtual try-on has rapidly progressed recently,
existing virtual try-on methods still struggle to faithfully
represent various details of the clothes when worn. In this
paper, we propose a simple yet effective method to better
preserve details of the clothing and person by introducing
an additional fitting step after geometric warping. This
minimal modification enables disentangling representa-
tions of the clothing from the wearer, hence we are able to
preserve the wearer-agnostic structure and details of the
clothing, to fit a garment naturally to a variety of poses
and body shapes. Moreover, we propose a novel evaluation
framework applicable to any metric, to better reflect the
semantics of clothes fitting. From extensive experiments, we
empirically verify that the proposed method not only learns
to disentangle clothing from the wearer, but also preserves
details of the clothing on the try-on results.

1. Introduction
The objective of the virtual try-on task is to fit an im-

age of a garment to an image of a person wearing an-
other garment. Most existing methods, such as VITON [7],
CP-VTON+ [13], ACGPN [20] and PF-AFN [5], approach
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virtual-try-on as an image inpainting problem. Specifically,
these models attempt to fit in an image of a new garment
onto the torso region of a person wearing another set of
clothing. The models generally involve two major steps: 1)
a Geometric Warping Module to learn how clothes should
be geometrically warped to fit in the pose and body shape
of the target person, and 2) a Try-on Module to blend the
warped clothing with the target person image.

Although previous methods can output images that looks
natural, we observe that they often fail to reflect how the in-
put clothes should be worn naturally considering all the fine
details of clothed garments, without fully understanding the
semantics of wearing them. Fig. 2 shows four examples
from current state-of-the-art models, ACGPN [20] (Fig. 5,
10) and PF-AFN [5] (Fig. 6). We observe that some parts
that are invisible when worn (e.g., inner side of the shirt
neckline) are still shown in (b, d), while some other parts
that should be represented in the outputs (e.g., spaghetti
straps in (a), high neck in (c)) are not retained. Results of
other models [13, 18] also show similar limitations of mis-
representing important details of the target clothes, and of-
ten struggle to generate a well-fitted image. This implies
that previous try-on models might simply be fitting the tar-
get garment on top of the target person’s torso, without fully
understanding how the garment is actually worn tridimen-
sionally. In other words, the learned features of the clothing
and the wearer are not fully disentangled, and thus those
models frequently fail to adequately select and preserve de-
tails of the target clothes, especially when they are signif-
icantly different from the source clothes. Even when such
details are retained, models face difficulty in accurately fit-
ting the clothing on the person [5].

An ideal virtual try-on model should be able to separate
signals from each independent factor involved in try-on by
fully understanding their semantics and transformations, so
that it can generate an image that preserves details of wear-
ing behavior. To address the problems mentioned above,
we propose a simple but effective way to disentangle the
learning of clothes from that of the wearer. Specifically, we
propose to insert after the geometric warping, an additional
step called the Clothes Fitting Module (CFM), which learns
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(a) (b)

(c) (d)
Figure 2. Examples of incorrect drawing of the target clothes by
existing methods. Each image shows a set of reference image, tar-
get clothes, and try-on output. All of these examples are brought
from ACGPN [20] (a, b, c) and from PF-AFN [5] (d).

how the clothes should be naturally worn completely inde-
pendent of the input reference image. As opposed to previ-
ous models where the reference image (wearing the source
clothes) is directly referred to perform warping, CFM fills
the target clothes within the mask of the already warped tar-
get clothes, learning how they should appear when worn by
the given person. As long as the backbone model follows
the common two-step approach of warping and try-on, the
CFM can be easily incorporated to fit the warped clothes
image after the first step with minimal extra overhead.

Our contributions can be summarized as follows. First,
we propose a novel ‘Clothes Fitting Module (CFM)’, which
imitates the human behavior of wearing clothes. By clearly
separating the geometric warping and inpainting of clothes
before blending with the person, the proposed method suc-
cessfully disentangles representation of the clothes and that
of the wearer in the reference image. Second, we propose a
novel way of applying evaluation metrics more suitable for
the virtual try-on task, focusing on a few critical body points
instead of equally weighting all pixels. Lastly, we empiri-
cally verify that the proposed approach produces try-on im-
ages of higher quality, outperforming several recent state-
of-the-art methods both qualitatively and quantitatively.

2. Related Work
Research on virtual try-on is rooted in studies on fashion

editing [6, 12, 16, 23]. 2D deep-learning based virtual try-
on models can be categorized into whether they emphasize
the use of pose and person representations [4, 7, 11, 13, 18]
or segmentation maps [3, 5, 8, 20, 21]. Models generally
follow two sequential stages proposed by CP-VTON [18],
where clothes are first warped using the Geometric Match-
ing Module (GMM), then dressed to the target person using
the Try-on Module (TOM). CP-VTON+ [13] improved the
geometric warping process with regularization to prevent
extreme distortion of the clothes. However, with the limita-
tion in paired datasets of in-shop clothes and human models,
previous models do not learn fully disentangled representa-
tions for the target clothes and reference person, despite re-
cent efforts to tackle the issue [10,12,14]. Generating high-
resolution images is another active area of research; e.g.,

p

c

I

θ

ĉtCFM

ĉmĉ ct

L1, LVGG

ĉtm

L1

Figure 3. Overview of the Geometric Matching Module (GMM)
and Clothes Fitting Module (CFM). Reference image I is prepro-
cessed into person representation p. In-shop cloth c and p are fed
into GMM. Then, the CFM takes warped clothes mask ĉm and c
as input and produces fitted clothes mask ĉtm and fitted clothes on
person ĉt, comparing to ground truth clothes on person ct.

VITON-HD [1] and FE-GAN [2] tackled this problem.

3. Problem Formulation

Virtual try-on task takes two inputs, an image c ∈
Rh′×w′×3 of an in-shop clothes and a reference image
I ∈ Rh×w×3 of the target person, wearing another gar-
ment called source clothes. The goal of this task is gener-
ating an image It ∈ Rh×w×3, where the person in I wears
the target clothes in c. Qualitatively, an ideal virtual try-on
model should output a natural photo-like image, preserv-
ing the identity of the target person (e.g., appearance, body
shape, and pose), properties of the target clothes (e.g., shape
and texture), and interactions between them (e.g., how spe-
cific parts of clothes or body should appear when clothed).

A training example of index i consists of a pair of im-
ages (c(i), I(i)), and the model produces Î(i)t . We need the
ground truth I

(i)
t in a supervised setting, but in practice, it

is tricky to have a pair of pictures of a model wearing two
different garments with exactly the same pose. Thus, previ-
ous virtual try-on models have used I(i) wearing the same
clothes in c(i), and we follow the same approach in this pa-
per. At inference, a query (c(i), I(i)) usually contains two
different garments in c(i) and I(i), where c(i) is the target
clothes and I(i) shows a person wearing the source clothes,
different from c(i).

4. The Proposed Method: DP-VTON

Our work is highly inspired by the evolutionary achieve-
ments of VITON methods [13,18]. We use the TOM of CP-
VTON+ without modification. Ideally, the roughly warped
clothes ĉ by GMM should be synthesized with the per-
son, keeping the wearer’s attributes (e.g., identity, body
shape, and pose) only, independent of the garments she was
wearing. However, we observe from Fig. 2 that the previ-
ous methods often retain some characteristics of the source
clothes, worn by the person in I . This indicates that the
characteristics of the person and those of source clothes
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are not completely disentangled. Our hypothesis is that this
is because of the training scheme, where we use the same
clothes in I and in c, due to the reason mentioned in Sec. 3.

To resolve this, we introduce the Clothes Fitting Module
(CFM), inserted between the GMM and the TOM. As illus-
trated in the blue box of Fig. 3, we use another network that
learns to fit, instead of directly using the imperfectly warped
clothes ĉ in the TOM. This CFM takes the warped clothes
mask ĉm and the initial target clothes image c as input, and
learns to do two things: 1) estimate the mask of the target
clothes ĉtm, and 2) generate the clothes image ĉt, both when
they are actually worn by the target person.

Specifically, we first get the warped clothes mask ĉm ∈
Rh×w×1 by applying the same learned θ to the mask of c
provided in the training data, instead of ĉ. The CFM con-
sists of an encoder-decoder structure (we use U-Net [15],
but other encoder-decoder networks can also be used), map-
ping the warped clothes mask ĉm and in-shop clothes image
c to the fitted clothes image ĉt ∈ Rh×w×3 and its mask
ĉtm ∈ Rh×w×1. The generated ĉt is trained to be close
to the ground truth clothes image on the target person (ct),
and the fitted mask ĉtm is trained to preserve the geometric
warping in ĉm. We apply L1 loss for both, and additionally
we apply the VGG perceptual loss LVGG [9] between ĉt and
ct. Overall, our loss function is composed of three terms:

L = λm∥ĉtm − ĉm∥1 + λ1∥ĉt − ct∥1 + λvLVGG(ĉt, ct),

where λm, λ1, and λv are coefficients controlling relative
importance of each term. We name our three-step model
consisting of GMM, CFM, and TOM as Details-Preserving
Virtual Try-On (DP-VTON).
Discussion. How does the CFM help disentangle the source
clothes from the person? In existing models without CFM,
GMM is fully in charge of generating the warped clothes.
The GMM, initially proposed by CP-VTON to learn the ge-
ometric gap between the clothes in c and I , is in-nature im-
perfect, as it maps a 2D image to another 2D image, project-
ing 3D clothes from different angles. As input c is already
reduced to a 2D image, it is challenging for the GMM to
estimate the 3D structure of the clothes. It does some level
of inference on 3D structure, but as it refers to the source
clothes mask of I , information about the source clothes
is not completely ignored. This may look okay at training
since each training example is a pair with the same clothes,
but this entanglement results in lower quality of images at
inference, which uses different clothes images on I and c.

With the CFM, however, the GMM is now only in charge
of learning the geometric warping to generate a roughly
warped clothes mask ĉm. That is, the incompletely warped
clothes ĉ is abandoned, and the CFM generates the clothes
on a person ĉt, relying only on ĉm, completely indepen-
dent of input reference image I . By explicitly separating
geometric transformation and inpainting of the clothes, our

approach disentangles information from the source clothes
more robustly.

5. Experimental Settings
Dataset. We conduct experiments on the VITON dataset
[7], the most commonly used one for virtual try-on which
contains 14,221 pairs for training and 2,032 for testing.
Each pair consists of a frontal image of a top clothing (c)
and an image of a front-view person wearing the clothes
(I). For quantitative evaluation, we use the same clothes for
the clothes image (c) and the reference image (I), similarly
to the training, as it requires ground truth.

Figure 4. Key points used in
patch-based Metrics.

Quantitative Metrics. Unlike
general image synthesis, it is
particularly crucial to naturally
fit the clothes to each body part
in virtual try-on. Existing met-
rics only consider how the gen-
erated images are similar to the
original ones at pixel or feature level overall. However,
we claim that these metrics cannot adequately measure the
quality of how well clothes are fitted on a person, and pro-
pose a novel way to apply these metrics in a more suitable
for virtual try-on. Specifically, we propose to measure the
quality of the generated images only around k important
body parts (’key points’) of size ϵ× ϵ using an existing met-
ric and average them to judge how well the clothes are fitted.
Formally, we define a patch-based Metric of an image I
with patch size ϵ, denoted by Metricp

ϵ (I) as follows:

Metricp
ϵ (I)

=
1

k

k∑
i=1

Metricall
(
I
[
xi-

ϵ

2
: xi+

ϵ

2
, yi-

ϵ

2
: yi+

ϵ

2

])
,

where I is an image to be evaluated, (xi, yi) is the i-th key
point, k is the number of pre-defined key points, and ϵ is the
number of pixels included in each axis around a key point.
We denote the regular Metric taken over the entire I as
Metricall to distinguish it from the proposed Metricp

ϵ .
Metric can be any existing metric. We adopt

SSIM [19], LPIPS [22], and pixel-wise MSE to measure
the similarity (or distance) between generated images and
ground truth. We report LPIPS scores based on VGG [17].

We choose 7 important joints in the torso region of the
human body as key points, illustrated in Fig. 4: the neck,
both sides of the shoulders, elbows, and wrists. This specific
setting may be flexibly adjusted for a different task, e.g.,
including knees, ankles, or feet for a full-body virtual try-
on. We use ϵ = {10, 20, 40, 60} for SSIM and MSE, while
we drop ϵ = 10 for LPIPS since a 10 × 10 image patch is
not sufficiently large to perform inference on VGG.
Implementation Details. Our GMM and TOM are built on

2238



Method CP-VTON+ ACGPN PF-AFN DP-VTON (ours)

SSIMall 0.368 0.387 0.511 0.392
SSIMp

10
0.805 0.361 0.811 0.847

SSIMp
20

0.531 0.231 0.582 0.589
SSIMp

40
0.549 0.249 0.599 0.604

SSIMp
60

0.577 0.279 0.627 0.628

LPIPSall 0.082 0.066 0.077 0.075
LPIPSp

40
0.231 0.485 0.202 0.197

LPIPSp
50

0.230 0.478 0.200 0.198
LPIPSp

60
0.230 0.475 0.199 0.197

MSEall 1874.4 18703.5 2192.5 1394.9
MSEp

10
7.0 53.4 9.3 4.6

MSEp
20

27.6 211.7 36.8 18.7
MSEp

40
103.5 819.9 136.4 71.6

MSEp
60

214.3 1767.1 275.6 149.8

Table 1. Quantitative comparisons to state-of-the-art models.

CFM inputs SSIMp
20(↑) LPIPSp

20(↓) MSEp
20(↓)

Warped clothes mask (ĉm) 0.589 0.198 18.7
Warped clothes (ĉ) 0.414 0.275 45.3
Both ĉ and ĉm 0.449 0.244 36.7

Table 2. Comparison on various CFM input configurations.

top of CP-VTON+ [13]. For training GMM, a similar set-
ting in the original paper is used, i.e., λ1, λv, λm = 1 and
λreg = 0.5. We follow the U-Net [15] architecture for CFM,
except for the final layer where we use a 3 × 3 convolu-
tion instead of the original 1× 1 convolution. For the CFM,
we use VGG loss (LVGG) and L1 loss (L1) for training to
minimize the difference between the shape and style of the
generated clothes with ground truth clothes. Then with the
fitted clothes after CFM, we train the TOM module. We use
Adam optimizer with β1 = 0.5 and λVGG = 0.999. We train
the model for 200K steps, with a constant learning rate of
0.0001 for the first 100K steps and linearly decay the rate to
zero for the remaining 100K steps.

6. Results and Discussion

Quantitative Comparisons. Table 1 compares the scores of
SSIM, LPIPS, and MSE of CP-VTON+ [13], ACGPN [20],
PF-AFN [5], and our method with various patch sizes (ϵ)
around the key points. Under the traditional metrics taken
over the entire output image (all), the proposed method
outperforms baselines only in MSEall, while PF-AFN and
ACGPN perform better in SSIM and LPIPS, respectively.
However, when we consider only the major joints in the
torso area, we observe that our DP-VTON outperforms all
other baselines in all three metrics, SSIMp, LPIPSp, and
MSEp with all ϵs we tried. Putting these two facts together,
we can conclude that the proposed method generates se-
mantically and graphically more plausible try-on images
near the key points that are critical to human perception (re-
call Fig. 4), while the baselines get better scores thanks to
better matches to the ground truth outside of these critical
regions.

We additionally perform an ablation study on the con-
figuration of the CFM. After the geometric warping, CFM

Reference
Person

Target
Clothes CP-VTON+ ACGPN PFAFN DP-VTON

(Ours)

Figure 5. Qualitative comparisons.
may take as input either or both of the warped clothes ĉ in
RGB and the warped clothes mask ĉm, together with the in-
shop clothes image c. Table 2 compares the performance for
each input setting. We observe that feeding only the mask
ĉm outperforms the other two. This confirms that it is indeed
important to let the CFM solely learn to dress independently
of the reference image I , instead of leaking information of
the warped image from the GMM into the TOM.

Qualitative Analysis. We perform visual comparisons
with recent state-of-the-art methods, including CP-VTON+,
ACGPN, and PF-AFN. As shown in Fig. 1, the images gen-
erated by CP-VTON+ show the backside of a shirt around
the neckline, and the overall color of the clothes is blended
and blurred. ACGPN makes the shape of clothes look sim-
ilar to the reference images, especially for the neckline and
arm parts, and PF-AFN faces difficulty in handling vari-
ous body shapes. In contrast, our method better preserves
the characteristics of the clothes, regardless of the source
clothes that the reference person wears. In the top case, for
example, ACGPN and PF-AFN keep the V-neck trait mixed
with the brown color, while our method dresses the blue
round-neck clothes naturally without being mixed with the
source clothes. For the second example, ACGPN and PF-
AFN make a similar mistake, leaving the shape of the tank-
top in one shoulder. CP-VTON+ preserves the characteris-
tics of the target clothes better in this example, but there are
some undesirable artifacts, such as white regions around the
neckline and at the edge of a sleeve. These examples empir-
ically verify that our proposed method better disentangles
the characteristics of the person and those of source clothes.

Figure 5 illustrates additional examples with various
poses and clothes. We again observe that DP-VTON faith-
fully expresses the detailed characteristics of the target
clothes and fits well on a variety of poses and body shapes,
while others show limited preservation of such details.
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