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Abstract

Fashion-on-demand is becoming an important concept
for fashion industries. Many attempts have been made to
leverage machine learning methods to generate fashion de-
signs tailored to customers’ tastes. However, how to assem-
ble items together (e.g., compatibility) is crucial in design-
ing high-quality outfits for synthesis images. Here we pro-
pose a fashion generation model, named OutfitGAN, which
contains two core modules: a Generative Adversarial Net-
work and a Compatibility Network. The generative module
is able to generate new realistic high quality fashion items
from a specific category, while the compatibility network
ensures reasonable compatibility among all items. The ex-
perimental results show the superiority of our OutfitGAN.

1. Introduction
As the fashion designer Carolina Herrera said, ”Fashion

has always been a repetition of ideas, but what makes it
new is the way you put it together.” Many attempts have
been made to model the compatibility of fashion items
[6, 18, 20, 17]. However, compatibility has been rarely
looked at in the context of fashion generation [13]. Imag-
ine a fashion design that is generated to perfectly match
other existing fashion items and complete a visually pleas-
ing fashion outfit. Not only will a consumer be able to own
a piece that goes well with other items she already owns, in
the long run, this capability will reduce the need to overpro-
duce items that are hard to match into fashion outfits, which
often become wastes.

In this work, we propose OutfitGAN that generates an
unseen fashion item to match well with the present items in
an outfit. We leverage relational networks to capture com-
patibility among items in fashion outfits [16]. In our design,
we also condition the generator on generating items from
a specified category. Our proposed architecture of Outfit-
GAN ensures that the generated designs match well with
the given fashion items, and the resolution of the generated
designs are high. The main contribution of this paper lies in
the novelty of combining fashion compatibility and fashion
design generation.

2. Related Work
Fashion is no longer dominated by specific groups in so-

ciety. Instead, the consumers are gradually becoming the
producers in the industry [4, 7, 3, 12]. Consumers are
implicitly affecting the rate of fashion design adoption by
choosing what they like, and they are also actively partici-
pating in the actual design process. This change is slowly
forming the concept known as fashion-on-demand [11].
Two major drawbacks of this ecosystem are the fact that
it leads to mass production, and it does not actively take
what the consumers own into account. On the contrary,
the fashion-on-demand approach takes what the consumers
own as input for the design process, and the consumers can
directly purchase the pieces from manufacturers.

One obvious connection between fashion-on-demand,
design generation, and the existing technology is genera-
tive adversarial networks (GANs) [5]. Many attempts have
already been made to design fashion items using GANs [8,
9, 1]. Among these attempts, compatibility [18, 20, 2], a
crucial component that considers what consumers already
own, remains missing. We will introduce our OutfitGAN,
which leverages a Compatibility Network. We view it as
one step toward improving fashion generation in the land-
scape of fashion-on-demand.

3. Fashion Item Compatibility Network
We first propose a compatibility scoring network as a

sub-module of OutfitGAN, which is used to learn the com-
patibility among fashion items via relational networks [16].

First, the images of items are passed through a pre-
trained CNN network with a trainable fully connected (FC)
layer to obtain the features V. Then, the relation between
each pair of items in S is constructed as follows. For each
pair of items (i, j) ∈ S, their features (vi,vj) are concate-
nated and passed through a series of layers g to generate
relation embedding h(i,j):

h(i,j) = g([vi,vj ]), (1)

where h(i,j) vectors are then averaged together, to generate
a compatibility embedding ϕs for outfit S. The embedding
ϕs is then passed through another layers f to generate the
compatibility score ms, which is summarized as an average
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scores of any pairwise interactions in the outfit (i, j) ∈ S:

ms = f(ϕs) = f
( 1(

n
2

) ∑
i,j

h(i,j)

)
, (2)

where both f and g are multi-layer perceptrons (MLPs) and
training objective is to learn the parameters θ = {θf , θg}
such that they can predict compatibility between fashion
items. The output of gθ is the ”relation” between a pair
of items [16]. Thus, gθ learns the pairwise relation between
visual appearances of vi and vj .

Given an outfit, the model’s objective is to predict
whether it is a compatible outfit or not, which aims at mini-
mizing a cross-entropy loss as:

Lcomp(Θg,Θf ) = −
∑
s

[ys log(ms) + (1− ys) log(1−ms)] ,

(3)
where ys denotes the true label and ms is the compatible
score for an outfit S that is computed by our compatibility
network in Eq. (2). With the compatibility module trained,
our OutfitGAN model leverages the learned compatibility
information, and further generates new fashion items that
are conditioned on compatibility with a given outfit.

4. OutfitGAN
The compatible item generation problem is defined as

follows. Given a partial outfit, S− = {x1,x2, ...,xn−1}
where xi denote the representation of i-th item, we aim to
generate an item x̃ that is compatible with the items in S−

and belongs to a specified category c. Our proposed Outfit-
GAN aims to solve this problem by having three stages of
generator-discriminator pairs.

OutfitGAN has three stages of generator discriminator
pairs and its complete architecture is shown in Figure 1.
The training procedure of OutfitGAN is a min-max game
following the objective function below [21, 10]:

min
G

max
D

Ex∼pdata [logD(x)] + Ex∼pz [log(1−D(G(z)))] ,

(4)
where x is a real image of the items in outfits from the dis-
tribution pdata, z is a noise vector from the distribution pz ,
G is the generator, and D is the discriminator. We next de-
scribe the generators and discriminators.

4.1. Generator

As shown in Figure 1, OutfitGAN includes three gener-
ators, G1, G2, and G3. Each generator takes the output of
the previous generator and generates a higher resolution im-
age. At the start of the pipeline, given an outfit with a set of
items S0 = {x1,x2, ...,xn}, we randomly remove one of
the items from the set (for the ease of notation, we assume
we remove xn). First, we replace the removed item with a
noise vector z and create a new set S1 = {x1,x2, ..., z}. We

then pass S1 to the pre-trained Compatibility Network, and
obtain an embedding vector ϕs1 . Then for the first generator
G1, we pass in ϕs1 , along with a vector c that indicates the
category of item to generate. G1 then generates a 32 × 32
image x̃G1

, denoted as:

x̃G1 = G1(ϕs1 , c) (5)

where x̃G1 along with the rest of items in the outfit will
be passed to the Compatibility Network to create a new em-
bedding vector as input for G2. We can generalize the above
process for the other two generators as follows:

x̃Gi = Gi(ϕsi , c), ϕsi = Cϕ(Si),

Si = {x1, ...,xn−1, x̃Gi−1} = {x1, ...,xn−1, Gi−1(C(Si−1), c)}.
(6)

The input of each generator is a concatenation of ϕsi and
c. When it is passed into the generator Gi, it goes through
four up-sample blocks. In each up-sample block, it passes
through a transposed convolution layer with 3 × 3 kernel,
stride of 1, and padding of 1. Then it is followed by batch
normalization and a ReLU activation. The loss function of
the generator is defined as the sum over the losses of all the
n outfits in one batch, which can be written as follows:

LG =

n∑
i=1

LGi . (7)

There are several factors to consider when designing the
loss of the generator. First of all, just like all the GAN mod-
els, the generator aims to fool the discriminator from telling
what is real and what is fake as much as possible. This leads
to the following loss:

Lreal/fake = Ez∼pz ,S∼pdata [− logDi (Gi (ϕsi , c))] . (8)

Note that each Gi takes two parameters, ϕsi and c. This is
because in conditional GANs, G generates images condi-
tioned on a category or a class c [14].

The second factor to consider is whether the generated
image belongs to the conditioned category c. The loss is
therefore a softmax cross-entropy as below:

Lcat =

M∑
c=1

−yo,c log(po,c), (9)

where M is the number of categories, yo,c is 1 if the label of
observation o is c and 0 otherwise, and po,c is the probability
of the observation o belonging to category c.

The third factor to consider is whether the generated im-
age is compatible with the other items in the partial outfit.
This can be obtained from the compatibility score earlier
introduced in Eq. (2).

The fourth factor is whether the generated item, when put
together with the partial outfit S−, has a similar distribution
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Figure 1. The architecture of our OutfitGAN.

with the original (real) outfit. We design this as a regular-
ization term, obtained by Kullback-Leibler divergence (KL
divergence), which can be expressed as follows:

LKL = KL[ϕs (x1, ...,xn) ∥ ϕsi

(
x1, ...,xn−1, Gi

(
ϕsi−1 , c

))
].

(10)
Putting it all together, loss of each generator (LGi

) can
be written as a linear combination of the above four factors
into one unified objective:

LGi = αLreal/fake + βLcat + λiLcomp + ωLKL, (11)

where α, β, λ, and ω are hyper-parameters that control how
much each loss contributes to the overall loss of the gener-
ators. After tuning these parameters we chose α = 0.3, β =
0.3, λi=0.1, and ω = 0.1.

4.2. Discriminator

The discriminator takes either a real image x or a gen-
erated image x̃G, along with a one-hot encoding vector c
indicating the target category for the generated image. Each
discriminator, passes input images through four convolution
layers with kernel sizes of 5, with a leaky ReLU. The image
is then flattened to become an image embedding. The dis-
criminator then passes the image embedding, concatenated
with the category vector c, to two separate fully connected
layers to classify the image as real/fake and to predict its
category. We used batch normalization and Dropout with
dropout rate of 0.3 for regularizing all the layers of each
discriminator. Each discriminator’s loss function is the sum
over the losses of all the n outfits in one batch, which is:

LD =

n∑
i=1

LDi (12)

Similar to the generators, there are several factors to con-
sider when designing the discriminators’ loss function. First
factor is discriminator’s ability to correctly classify real and
fake (i.e., generated) images. This part of the loss is:

L′
real/fake = Exi∼pdata,s∼pdata [logDi(xi, c)]

+ Ez∼pz ,s∼pdata [log (1−Di (Gi (ϕsi , c) , c))]
(13)

Table 1. Dataset statistics.

Dataset Users Fashion outfits Fashion items
Polyvore 150 66, 000 158, 503
iFashion 3, 569, 112 127, 169 4, 463, 302

where xi is a real image, c is its category, and ϕsi is the
partial outfit’s embedding obtained from the compatibility
module. The second factor to consider is whether the gen-
erated image has the right category. This part of the loss
is the same as the one in Eq. (9), which is designed as a
softmax cross-entropy loss, we denote it as L′

cat.
Putting it all together, loss of each discriminator (LDi ) is

defined as follows:

LDi = L′
real/fake + L′

cat. (14)

5. Experiments
To evaluate OutfitGAN, we used two datasets: Polyvore1

and iFashion2 dataset. The statistics of the two datasets are
as shown in Table 1.

For training the overall system, we started with train-
ing Compatibility Network. Training data, including both
positive (compatible) and negative (incompatible) samples,
were randomly split into 80% for training, 10% for valida-
tion, and 10% for testing. Note that although we used ϕ of
each outfit as input for OutfitGAN, we did not store these
embeddings first. This is because later on, we needed to
extract ϕ for outfits that included generated images as well.

After Compatibility Network was fully trained and
saved, we started training OutfitGAN. The data for Outfit-
GAN was also split into 80% for training, 10% for valida-
tion, and 10% for testing. For each input instance, whether
a real image or a generated image was fed into each dis-
criminator was decided by flipping an unbiased coin. 50%
of the times, we passed real images and 50% of the times
we passed generated images. When passing real images, we
directly read the previously extracted CNN features of the
removed items and passed them to each discriminator.

1https://github.com/xthan/polyvore-dataset
2https://github.com/wenyuer/POG
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Partial Outfit Generated

Sweater

Jacket

Skirt

Dress

Original

Sunglasses

Tank

Bag

Jeans

Specified Category Specified Category Generated OriginalPartial Outfit# #

1

2

3

4

5

6

7

8

0.782 0.915

0.816 0.938

0.883 0.801

0.701 0.948

0.809 0.957

0.840 0.940

0.781 0.800

0.864 0.931

Figure 2. Designs generated by OutfitGAN given partial fashion outfits and specified fashion item categories.

Dataset Items
Quality

(IS)
Diversity

(MS-SSIM)
Compatibility

(ms)
Polyvore Original 1.125 0.146 0.900

Generated 1.117 0.153 0.859
iFashion Original 1.128 0.151 0.910

Generated 1.119 0.180 0.863

Table 2. Evaluating quality, diversity, and compatibility of gener-
ated items. A higher Inception Score (IS) shows better quality and
diversity. A lower MS-SSIM score shows better diversity.

The data flow for generating new images with Outfit-
GAN is as follows: For the first generator, we replace the
removed item with a noise vector drawn randomly from a
Gaussian distribution. The noise vector along with the rest
of items in the outfit are fed into the Compatibility Network
to generate an embedding vector ϕ. This embedding vector
along with the category vector c are fed into the first gen-
erator which then generates an image x̃G1

. The image x̃G1

is then passed to the pre-trained CNN to extract its image
embedding. The new image embedding replaces the noise
vector in the outfit. The process then gets repeated by send-
ing the new outfit (remaining items and the newly generated
item) to the Compatibility Network to generate an embed-
ding vector for the next generator.

5.1. Experimental Results

We present two sets of results: (1) the quality and diver-
sity of the fashion items generated using OutfitGAN, and
(2) their compatibility with the generative outfits.

Quality and diversity: We measured the Inception Score
(IS) [15] and Multi-Scale Structural Similarity Metric (MS-
SSIM) [19] for the generated images. Table 2 demonstrates
IS score for 100 randomly selected generated images and
the mean MS-SSIM score for 100 randomly chosen pairs of
generated images. For comparison, we have also included
these scores for the original (real) images.

Compatibility: Besides the generated designs being real-
istic, one crucial aspect is how compatible they are with the
given partial outfits. Figure 2 shows example items gener-
ated by OutfitGAN and their input partial outfits. For each
outfit, the original ground truth (real) item and the gener-
ated item are displayed side-by-side, along with their cor-
respoinding compatibility scores. Generally, the generated
items look realistic and all fall into the correct item cate-
gories. Also, we observe that compatibility scores of the
original and generated images are relatively close. In some
examples the generated image is even more compatible with
the partial outfit. For example, in outfit #3, the generated
skirt is more compatible than the original orange skirt when
paired with pointed-toe shoes. One other interesting aspect
is that OutfitGAN does not require a fixed number of items
in the given partial outfit and it can generate compatible
items for outfits with any given number of items. For exam-
ple, the skirt in example #3 is generated based on an outfit
with only one item (shoes), and is well-matched with it.

We also compare the compatibility scores of
original outfits S = {x1,x2, ...,xn−1,xn} in-
cluding the removed items, with the new outfits
S = {x1,x2, ...,xn−1, Gi−1(C(Si−1), c)}, where the
removed item is replaced with a generated item . The
average compatibility scores for both cases are calculated
on 100 randomly selected outfits in each dataset and the
results are shown in Table 2. As this table shows, the
average compatibility score of the generated outfits is close
to the original outfits.

6. Conclusion
In this paper, we proposed OutfitGAN, a fashion design

generation system that leverages AI to improve the concept
of fashion-on-demand. OutfitGAN takes a partial outfit and
generates new items that are compatible with it. OutfitGAN
can be used for generating an entire new outfit or complet-
ing a partial one, leading to better fashion-on-demand.
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