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Abstract

Developing deep networks that analyze fashion garments
has many real-world applications. Among all fashion at-
tributes, color is one of the most important yet challenging
to detect. Existing approaches are classification-based and
thus cannot go beyond the list of discrete predefined color
names. In this paper, we handle color detection as a re-
gression problem to predict the exact RGB values. That’s
why in addition to a first color classifier, we include a sec-
ond regression stage for refinement in our newly proposed
architecture. This second step combines two attention mod-
els: the first depends on the type of clothing, the second
depends on the color previously detected by the classifier.
Our final prediction is the weighted spatial pooling over the
image pixels RGB values, where the illumination has been
corrected. This architecture is modular and easily expanded
to detect the RGBs of all colors in a multicolor garment. In
our experiments, we show the benefits of each component of
our architecture.

1. Introduction

Convolutional Neural Networks (CNNs) [20, 26] gen-
erated a lot of interest in the fashion industry. Recent
datasets of fashion images [17, 28, 51] encouraged various
approaches for attributes classification [7,41], visual search
[13, 19, 30, 45] and object detection [23, 34].

One of the key attributes to describe a fashion item is its
color. However, colors are subjective properties of garments
as not all humans recognize colors the same way [32]: their
automatic estimation is therefore challenging. So far, most
approaches consider the problem through the angle of dis-
crete color naming: a classifier chooses amongst 11 col-
ors of the English language [4], based on features from his-
tograms [2, 9, 40] or from CNNs [10, 21, 24, 33, 43, 46, 47].
Recent approaches increased the number of color names
up to 28 [48] or 313 [50]. We take a step forward and
tackle the problem through the angle of continuous color
regression. Rather than only predicting an approximate dis-
crete color name, we aim at predicting the exact continu-
ous color RGB. This refined information is necessary for
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Figure 1. Two-stage color regression. After detecting the main
color names of the clothing (the skirt here), our architecture re-
gresses the exact and refined RGB values.

many industrial applications such as precise visual search
and fine-grained trend detection to handle color inherent
ambiguity. Moreover, the regression paradigm is more ver-
satile and adaptable; this is especially important for real-
world applications, where product requirements can evolve.
In contrast, adding a new color name in classification ap-
proaches would require a dataset relabelling and the training
of a new network.

To understand the challenge of this regression task, let’s
consider an unsupervised approach, that would naively av-
erage the different pixel RGBs of the image. That would
fail for three reasons. First, it would suffer from varying
illuminations, sparking discrepancies between the raw pix-
els and what a human would perceive in ideal white light.
Second, it would consider ‘parasite’ pixels from either the
background or other garments. Third, in case of multicolor
garments, it would average pixels belonging to different col-
ors and would predict neutral RGBs.

In this paper, we propose a new supervised two-stage ar-
chitecture for color regression, inspired by the object de-
tection literature [35]. The first stage is a standard color
classifier — similar to previous works [10,33,43,46,47] —
which predicts the main colors of the considered garment.
Our contributions lie in the second regression-based stage,
refining the previous discrete prediction by weighting the
different pixels of the illumination-corrected image.

First, we developed an illumination module that auto-

2252



matically corrects the contrast of the image — and this with-
out supervision. This is inspired by the color constancy lit-
erature [3,5,6,15,22,29,37,38]. Second, in order to reduce
the impact of complex backgrounds or complex garments
structure, we leverage a semantic segmenter [10, 44] pre-
trained to detect fashion garments. Third, we detect all pix-
els in this garment that are close to the colors predicted by
the first stage. This enables the handling of multicolor gar-
ments by removing pixels from conflicting colors. These
last two components are combined to find the appropriate
weighting of each pixel in the image — enabling to focus
on the appropriate regions of the image.

Empirically, we validate the effectiveness of our ap-
proach in our new fashion dataset collected from real-world
images. More importantly, we show that all our components
contribute.

2. Model

The network in Figure 2 is trained end-to-end on the task
of continuous color regression, with annotated RGB val-
ues, but with neither illuminations nor clothing segmenta-
tion ground-truth annotations.

2.1. Pixels correction

Our model needs to correct the bias in the pixels of the
image, for example the quality or the lighting of the photo.
To do so, first, all images are contrast normalized in a pre-
processing step by global histogram stretching in order to
be robust across various lighting conditions. Note that this
does not change the relative contributions of the three RGB
channels. Second, to remove illumination color casts, we
need to detect the initial illumination of the image (a scalar
value per channel); this is a regression task, achieved eas-
ily by a deep neural network. Note that following [29], we
choose explicitly the VGG16 [39] neural architecture be-
cause of its capacity to extract low-level features [16]. Fi-
nally, each pixel in the image is corrected using the Von
Kries method [42], i.e., scaling each channel by the detected
illumination value.

2.2. Spatial pooling over pixels for color regression

To sample only the relevant regions of the image, we ap-
ply a spatial pooling over the pixels of the image weighted
by two complementary attention module. They modulate
the importance of each pixel in the spatial pooling. The first
object-attention focuses on the clothing category, the sec-
ond colorname-attention focuses on the color name pre-
dicted. These attention masks are then multiplied pixelwise
to create the combined-attention.

2.2.1 Through object-attention

Following the work from [47], we use the popular fully con-
volutional Deeplabv3 [8]. This attention network is pre-
trained on the task of semantic segmentation over the cloth-
ing crops from Modanet [51] and therefore has an empha-
sis on the garment surface: it produces an object-attention
different for each clothing category (top, coat, . . . ). This
spatial prior is then fine-tuned: ideally, it would learn to
identify the regions which contain the relevant color infor-
mation given a garment type.

2.2.2 Through colorname-attention

The previous object-attention will fail for multicolor gar-
ments. Indeed, if the garment contains a set of distinct and
distant RGB values, the mean of this set would be predicted:
it leads to unsaturated color predictions. For example, in
Figure 2, including the white pixels from the shirt in our
spatial pooling would predict a RGB closer to light pink.

Predicting the RGB of the main color For simplicity, we
first describe how to detect only the RGB of the main color
of a (potentially multicolor) garment. First, we detect the
main color name; specifically, following previous works,
the VGG16 features are followed by a fully connected layer
with a softmax activation function that predicts a distribu-
tion over 72 color names. This is trained by minimizing a
categorical cross-entropy loss LCE .

Second, our colorname-attention only selects pixels in
the image sufficiently close to the color detected by this first
color classifier. We map this discrete color to its RGBc con-
tinuous value: e.g., (134, 71, 71) for velvet red. Now, given
a pixel p of RGB value RGBp, the colorname-attention
CAp for pixel p is:

CAp ∝ exp−
1

127.52∗T
(RGBp−RGBc)

2

. (1)

It sums to 1 over all pixels and its peakedness depends on
T , the temperature of the RGB spatial softmax. T is the
only parameter of this colorname-attention module, which
can be either a predefined hyperparameter, either learned,
either input-dependant and predicted with a fully connected
layer from VGG features. This last option works best as
shown in our Experiments from Section 3.

Predicting the RGBs of all colors We can easily gen-
eralize our approach for detecting multiple RGBs. To do
so, we predict multiple color names with a sigmoid [46]
followed by a combination of categorical cross entropy
and binary cross entropy as in [34]. Multiple colors share
the same object-attention but have different colorname-
attentions: therefore we predict different RGBs with our
combined-attention.
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Figure 2. Architecture components and training procedure. First, the DeepLabv3 object-attention network selects pixels inside the
garment. Second, the VGG16 CNN extract features before feeding two heads: the first predicts the image initial illumination (to be
corrected with the Von Kries method), and the second head detects the main discrete color name amongst 72 available colors (trained
with a categorical cross entropy LCE). This main color is used to create a colorname-attention. These attentions are used for weighted
spatial pooling over the pixels of the image for color regression. Best results are obtained when colorname-attention and object-attention
are combined, as this would select only pixels that are simultaneously inside the clothing and that have a RGB value close to the RGB
of the predicted discrete color name. All components are trained so that the final RGB matches the RGB annotation with an Euclidean
distance in the LAB space (LL2). This architecture is easily extended to detect the RGBs of multiple colors (red and white here).

The challenge is then to know how many colors should
be predicted. Following the work from [46], we explicitly
learn the number of colors in each garment (up to 3 differ-
ent colors). Note that we apply class weights for handling
unbalanced classes.

Selecting the color names with maximum scores would
often predict several times the same major color: for ex-
ample a light red and a dark red would converge towards a
medium red. Thus, we apply a non-maximum-suppression
algorithm to delete predicted RGBs too close to each other.
In Figure 2, the network’s confusion between two different
kinds of reds would have prevented from predicting white.

2.3. Training overview

The LAB colorspace best models perceptual distance in
colorization [11, 50]: thus, the chosen regression objec-
tive is LL2, the Euclidean distance between predicted and
ground truth colors converted to LAB rather than RGB. Our
two losses — color naming LCE and color regression LL2

— are summed before backpropagation; this enables the
learning of all architecture components end-to-end.

2.4. Discussion: analogy with Faster R-CNN

Our two-stage approach is highly inspired by the Faster
R-CNN [35] architecture. The anchors of the Region Pro-
posal Network are replaced by color names. In both cases,
the first classifier gives a rough estimate, refined by the sec-
ond regression stage. Specifically, given a selected anchor
(resp. color name), the final regression adds a small contin-
uous offset leading to a more precise box (resp. RGB val-
ues). Non-maximum-suppression algorithms are also stan-
dard to handle overlapping crops in object detection.

3. Experiments
3.1. Setup

Dataset As far as we know, there is no dataset for the task
of continuous colors regression. Thus, we have collected a
new dataset of 30,269 fashion garments: 5,363 coats, 8,166
dresses, 3,991 pants, 6,871 shoes and 5,878 tops. The vali-
dation dataset and the test dataset are composed of 2000 im-
ages: the other images are used for training. Each garment
was labeled by a single operator with its exact color RGB:
not like it appears in the image, but like the operator thought
it would appear in ideal white light. The annotation process
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Table 1. Results for RGB regressions: percentage of predictions closer to the ground truths RGBs than several thresholds (10, 20, 30,
40), according to the deltaE ciede2000 distance [14, 31]. Bold highlights best score.

Method Main color All colors
Name Color-attention Object-attention Illumination T ≤ 10 ≤ 20 ≤ 30 ≤ 40 ≤ 10 ≤ 20 ≤ 30 ≤ 40

Unsupervised K-means Clustering [27] 47 72 83 89 19 31 37 42
Colorname RGB [46] 51 72 87 92 34 52 64 68

Ours ✓ - 50 78 90 95 - - - -
Ours ✓ Set to 1 48 76 88 93 35 56 65 68
Ours ✓ ✓ Set to 1 59 87 93 95 44 64 69 71
Ours ✓ ✓ Trainable 62 87 93 95 46 65 69 71
Ours ✓ ✓ ✓ Trainable 67 89 94 96 48 66 70 72

Our best ✓ ✓ ✓ Predicted 73 90 93 95 54 68 71 73

is therefore more complex and time-consuming than clas-
sical classification. The color names can automatically be
derived by nearest neighbors in the LAB space. In case of
multicolor items, the operators were asked to tag them in
decreasing order of importance.

Implementation Our code is in Tensorflow [1] and Keras
[12]. We chose an Adam [25] optimizer with a learning
rate of 0.0001 and a batch of 16 images during 50 epochs.
We applied standard data augmentation methods: random
cropping and translation.

3.2. Results

Table 1 summarizes our experiments. To compare ap-
proaches, we count the percentage of predictions that are
closer to the color annotation than a given threshold, lever-
aging the deltaE ciede2000 distance [14,31] that is arguably
“the best metric for understanding how the human eye per-
ceives color difference” [36]. With our best network that in-
corporates all our components, 73% of all predictions have
a distance to the main color smaller than 10; in practice,
these differences are small to the human eye. We also re-
port similar metrics when the goal is to detect all colors in
the garment. We showcase in Figure 3 multiple predictions
of our model.

Brown
(229, 141, 61)

Red
(239, 14, 41)

Yellow
(219, 241, 46)

Figure 3. Visualization of the predictions. This picture illustrates
predictions on two images. On the left image, the two interleaved
garments (jacket and t-shirt) are well predicted despite their close-
ness thanks to our attention mechanism. In the right image, our
model distinguishes the good yellow RGB despite the illumina-
tion and shadows that harden the task.

Baselines We compare our model against two existing
baselines. First we train an unsupervised K-means pixels
clustering [27] directly on the pixel space, after a back-
ground removal done by an external semantic segmentation
model trained on Modanet [51]. Colors are ranked accord-
ing to the number of pixels in each cluster. The second base-
line, Colorname RGB, is the direct extension of the mul-
titagger approach from [46]: it detects the color names (e.g.
velvet red, dark purple, etc.) and then produces the associ-
ated RGB values. This baseline is depicted in Figure 2.

Attention First, fine-tuning the semantic segmentation
model on the regression task (object-attention) already sur-
passes previous approaches when predicting only the main
color. The colorname-attention improves results in the
multi-color setup. These two attentions, when combined,
are mutually reinforcing and complementary.

Temperature We show that the temperature T value is
important: bigger T leads to sharp distribution and takes
into account fewer pixels from the initial images that with
a lower T . Rather than grid-searching its optimal value, it
can be learned for improved results. Moreover, the opti-
mal T depends on the image: therefore, best results are ob-
tained with T predicted from VGG features. This analysis
is consistent with recent insights for calibration via input-
dependant temperature scaling [49].

Illumination Finally, including the illumination module
improves performances. Future work could further improve
results by pretraining on the Color Checker Dataset [18].

4. Conclusion
In this paper we addressed the color regression prob-

lem for fashion garments. By collecting a unique dataset
of 30,269 images, we empirically show the benefits of our
newly proposed two-stage architecture. These performance
gains would have a potential impact on many real-world us-
ages, notably to better detect fashion trends and for visual
search. Finally, we hope to shed light on properties of fash-
ion garments (perhaps surprisingly) complex to detect.
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