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Abstract

Predicting outfit compatibility and retrieving comple-
mentary items are critical components for a fashion recom-
mendation system. We present a scalable framework, Out-
fitTransformer, that learns compatibility of the entire out-
fit and supports large-scale complementary item retrieval.
We model outfits as an unordered set of items and lever-
age self-attention mechanism to learn the relationships be-
tween items. We train the framework using a proposed set-
wise outfit ranking loss to generate a target item embed-
ding given an outfit, and a target item specification. The
generated target item embedding is then used to retrieve
compatible items that match the outfit. Experimental results
demonstrate that our approach outperforms state-of-the-art
methods on compatibility prediction, fill-in-the-blank, and
complementary item retrieval tasks.

1. Introduction

There are two main tasks for a fashion outfit recom-
mendation system: outfit compatibility prediction (CP) and
large-scale complementary item retrieval (CIR). For CP, the
task is to determine whether a set of fashion items in an out-
fit go well together. For CIR, the task is to complete a partial
outfit by finding a compatible item from a large database.
Figure 1 illustrates our proposed method. Given an out-
fit, we want to predict how well its constituent items go to-
gether. Also, given a partial outfit (such as a bag, shoes, and
pants) and a target item description (e.g., “top”), we want to
retrieve compatible items to complete the outfit.

Prior work such as [15, 17, 19–21] addresses the pair-
wise item-level compatibility problem and achieves state-
of-the-art results but does not explicitly model outfit-level
compatibility. Some methods optimize for compatibility at
an outfit-level [3, 4, 6–8]. However, these approaches are
mainly designed for classification tasks – CP and fill-in-the-
blank (FITB) – but they do not address the large-scale CIR

Figure 1. OutfitTransformer learns an outfit-level representation
for a set of outfit items to address the CP and CIR tasks. For CIR,
it learns a single embedding encoding overall compatibility of the
partial outfit, and a target item description that is used to retrieve
compatible items cohesively matching the entire outfit using KNN
search. For CP, an outfit-level representation capturing overall out-
fit compatibility is learnt to predict a compatibility score.

task. CSA-Net [12] proposes a method for large-scale CIR,
but it does not learn an outfit-level representation that can
explicitly capture compatibility of a target item to the outfit
as a whole. It searches compatible items for each item in the
outfit at a paired-category level (e.g., top to shoe, bottom to
shoe) and fuses the ranking scores for different query items
to obtain the final rankings. Lorbert et al. [13] use a single
layer self-attention based framework for outfit generation,
but do not explicitly model compatibility. Instead, our idea
is to learn an outfit-level representation for both compati-
bility prediction and large-scale retrieval of complementary
items. Using outfit-level representations can more effec-
tively capture complex feature correlations among multiple
items in the outfit, as opposed to considering pairs of items
at a time. Further, our method has a much smaller indexing
size than [12] which is important for practical applications
(cf. Section 2.2(b)).

Our framework, OutfitTransformer, is based on a trans-
former encoder architecture. Attention mechanisms [3,
12, 13, 16] have also been used in fashion recommenda-
tion systems. [12, 16] use attention to understand com-
plementary relationships in a pairwise manner. The self-
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(a) Compatibility prediction (CP) (b) Complementary item retrieval (CIR) (c) Loss comparison

Figure 2. System overview of our framework for CP and CIR. We model outfits as an unordered set of items. We use an image encoder
(Eimg) and a text encoder (Etext) to extract the image and text features. (a) For CP, we train the transformer encoder using a focal loss [11]
to learn a global outfit representation to predict an outfit compatibility score. (b) For CIR, given an outfit and a target item description,
we train the transformer encoder to learn a target item embedding that can be used for retrieving compatible items to complete an outfit.
We train the framework using the proposed set-wise outfit ranking loss in an end-to-end manner (details in Section 2.2(a)). Comparison of
pair-wise outfit ranking loss [12] and our proposed set-wise outfit ranking loss is shown in (c).

attention mechanism in the transformer captures the higher-
order relationships [9] between the outfit items beyond pair-
wise [12, 15, 17], and does not require ordered items as in-
puts. For CP, we train the OutfitTransformer with a classi-
fication loss and design an outfit token to capture a global
outfit representation that encodes the compatibility relation-
ships among all the items in the outfit (Fig. 2(a)). For CIR,
we design a target item token that encodes both the com-
patibility of the partial outfit and a target item description
to generate the embedding of the target item. This embed-
ding is used to retrieve compatible items from a database
(Fig. 2(b)). We train our framework using a proposed set-
wise outfit ranking loss that encourages compatible items to
be embedded closer to the overall representation of a set of
outfit items. Our design allows extraction of a single target
item embedding enabling large-scale indexing and retrieval.

We evaluate our method on the public Polyvore Outfits
dataset [17]. The experimental results show that our ap-
proach outperforms state-of-the-art techniques in compati-
bility prediction, fill-in-the-blank (FITB), and complemen-
tary item retrieval tasks (cf. Section 3).

2. Proposed Approach
2.1. Fashion Outfit Compatibility Prediction

The CP task predicts the compatibility of all the items in
an outfit. Given an outfit O = {(Ii,Ti)}Li=1, where Ii is the
image, Ti is the corresponding text description for an item i,
we learn a non-linear function that predicts a compatibility

score in [0, 1], where 1 indicates perfect compatibility.
As shown in Fig. 2(a), the item images and their text de-

scriptions are fed into an image (Eimg) and text encoder
(Etext) respectively to extract the image and text feature
vectors (see Section 2.3 for the details). We concatenate
the extracted image and text feature vectors to generate an
item feature vector ui = Eimg (Ii) ∥ Etext (Ti), where ∥ de-
notes a concatenation operation. The feature vectors of all
items in an outfit are represented by the set F = {ui}Li=1.

We introduce the outfit token whose state at the output of
the transformer encoder serves as the global outfit represen-
tation capturing compatibility relationships between items
in the outfit using the self-attention mechanism. We model
outfits as an unordered set of items as the overall outfit com-
patibility is invariant to the order of the items. Thus, posi-
tional encodings used in NLP [18] and vision transform-
ers [5] are not required in our case.

The outfit token (xOutfit) is a learnable embedding that
is prepended to the set of outfit feature vectors F and fed
into the transformer encoder Etrans. The state of the outfit
token at the output of the transformer encoder serves as the
global outfit representation which is subsequently fed into
the MLP that predicts an overall outfit compatibility score:

c = MLP (Etrans (xOutfit, F )) (1)

Our framework (Etrans, Eimg, Etext) is trained in an end-
to-end manner using focal loss [11].
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2.2. Complementary Item Retrieval

The CIR task is to retrieve an item that is both compat-
ible with the partial outfit and matches a specified item de-
scription to complete the outfit. Specifically, given a set of
partial outfit items and a target item specification, the goal
is to generate a target item embedding that can be used to
retrieve compatible items.

We introduce the target item token whose state at the
output of the transformer encoder serves as the target item
representation that explicitly takes into consideration both
compatibility with the partial outfit, and the target item de-
scription. The target item token s (cf. Fig. 2 (b)) includes
an item description T for the target item that we want to re-
trieve, and an empty image represented by xImg. The target
item token is defined as: s = xImg ∥ Etext (T) . The intu-
ition behind designing the target item token in this manner is
that, during inference, the target image is unknown but users
can provide a description for the item they are searching for.
We simulate a similar setting when training the framework
for the retrieval task. Our framework is generic and the tar-
get item description can be provided in different forms such
as category, text description, tags, etc.

The transformer encoder takes as input the set of feature
vectors F of the partial outfit, and the target item token s,
which is subsequently fed into a MLP that generates the
target item embedding.

t = MLP (Etrans (s,F )) (2)

To learn this target item embedding, we first pre-train our
framework on the CP task and then train the model with the
proposed set-wise outfit ranking loss discussed next. Pre-
training allows Eimg and Etext to capture fashion-specific
features and Etrans to capture outfit compatibility relation-
ships which improves CIR performance significantly.
(a) Set-wise Outfit Ranking Loss: Previous approaches
[15,17] use a triplet loss to learn relationships only between
a pair of items but do not consider the relationship between
all items in the outfit. To address this, the outfit ranking
loss [12] is proposed which considers the pairwise com-
patibility of target items with all the items in the outfit, as
shown in the top of Fig. 2 (c). In contrast, our approach
generates a single target item embedding t that already cap-
tures the compatibility relationships for a set of outfit items
and hence does not require pairwise comparisons with in-
dividual outfit items, as shown in the bottom of Fig. 2 (c).
Thus we can directly train our set-wise ranking loss using
triplets which reduces the complexity of [12] from O (LS)
to O (S) during training, where L denotes the outfit length
and S denotes the number of positive and negative samples.

Given an outfit we randomly pick an item as positive
and the remaining items as the partial outfit. We propose
a curriculum learning approach specifically designed for

CIR by hierarchically sampling the negatives first from the
same high-level category as the positive item and subse-
quently sampling harder negatives from more fine-grained
categories. The set-wise outfit ranking loss is designed to
optimize the relative distances between samples such that
the target item embedding moves closer to the positive em-
bedding and farther apart from the negative embeddings.
(b) Indexing and retrieval for complementary items:
Not all the methods for CP can support indexing for re-
trieval [15]. Our design allows extraction of individual item
feature vectors during indexing and generate a single item
embedding during inference. Specifically, during indexing,
we use the trained image and text encoder to extract the
item features. During inference, given the partial outfit and
a target item description, our framework generates a sin-
gle target item embedding, which is then used to search
for compatible items from the database using off-the-shelf
KNN search tools (e.g., [1, 2]) which makes the search effi-
cient even for a large database (e.g., with millions of items).

Our framework offers two advantages as compared to
prior works. First, we require smaller indexing size com-
pared to previous approaches that use subspace embed-
dings. For indexing, Type-aware [17] and CSA-Net [12]
generate multiple embeddings of each item for each of
the target categories and therefore the indexing size grows
linearly with the number of categories. Because we are
not learning subspaces, our approach is independent of
the number of categories. Second, in [12], for each item
in the outfit, a target category-specific embedding is ex-
tracted, which is used to retrieve compatible items from the
database. This has to be repeated exhaustively for each item
in the query outfit. In contrast, in our framework, retrieval
can be performed in a single step regardless of outfit length.

2.3. Implementation Details

The image encoder uses a ResNet-18 initialized with Im-
ageNet pre-trained weights. The text encoder uses a pre-
trained SentenceBERT [14], on top of which we add a fc

Method Features PO-D PO

BiLSTM + VSE [6] ResNet-18 + Text 0.62 0.65
GCN (k=0) [10] ResNet-18 0.67 0.68
SiameseNet [17] ResNet-18 0.81 0.81
Type-Aware [17] ResNet-18 + Text 0.84 0.86
SCE-Net [15] ResNet-18 + Text - 0.91
CSA-Net [12] ResNet-18 0.87 0.91

OutfitTransformer (Ours) ResNet-18 0.87 0.92
OutfitTransformer (Ours) ResNet-18 + Text 0.88 0.93

Table 1. Comparison of our model with state-of-the-art methods
on the CP task using the AUC metric [6].
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Method Polyvore Outfits-D Polyvore Outfits

FITB R@10 R@30 R@50 FITB R@10 R@30 R@50

Type-Aware [17] 55.65 3.66 8.26 11.98 57.83 3.50 8.56 12.66
SCE-Net Average [15] 53.67 4.41 9.85 13.87 59.07 5.10 11.20 15.93
CSA-Net [12] 59.26 5.93 12.31 17.85 63.73 8.27 15.67 20.91

OutfitTransformer (Ours) 59.48 6.53 12.12 16.64 67.10 9.58 17.96 21.98

Table 2. Comparison of our model with state-of-the-art methods on the FITB (using accuracy) and CIR tasks (using recall@top-k).

layer. During training, we finetune the weights of the im-
age encoder and the fc layer of the text encoder. We ex-
tract a 64-dimensional image and a 64-dimensional text em-
bedding and concatenate them to generate 128-dimensional
item embeddings before feeding them into the transformer
encoder. We use a six-layer transformer encoder with 16
heads. For the retrieval task, we set the margin m for the
set-wise outfit ranking loss as 2 and sample 10 negatives for
each outfit. We use a batch size of 50 and optimize using
ADAM with an initial learning rate of 1e− 5 and reducing
the learning rate by half in steps of 10.

3. Experiments
We evaluate our method on Polyvore-Outfits [17]

nondisjoint and disjoint datasets (cf. Tables 1, 2) and com-
pare performance with state-of-the-art baselines [4,6,12,15,
17,19] on three different tasks: (1) Outfit Compatibility Pre-
diction (CP) task that predicts the compatibility of items in
an outfit. (2) Fill in the Blank (FITB) task that selects the
most compatible item for an incomplete outfit given a set
of candidate choices (e.g., 4 candidates). (3) Outfit Com-
plementary Item Retrieval (CIR) task that retrieves comple-
mentary items from the database for a target category given
an incomplete outfit.

CP: We compare the CP performance with the state-
of-the-art methods in Table 1 by using the standard metric
AUC [6]. We observe that using just image features; we out-
perform other methods that use both image and text features
on the CP task. Using text features boosts performance fur-
ther. [12, 15, 17] employ a pairwise model requiring careful
selection of negatives and data augmentation. Our approach
uses the outfit compatibility data provided without using
any additional strategies and still outperforms the state of
the art methods. From Table 1, we observe that transform-
ers can learn better compatibility relationships than other
methods [4, 6] that learn compatibility at an outfit-level.

FITB and CIR: Lobert et al. [13] propose to use pre-
trained ImageNet embeddings and category for retrieval
using self-attention. For evaluation, we adopt their strat-
egy using our own implementation using a transformer and
observe that their FITB accuracy on the Polyvore Outfits
dataset is 41.61%. We investigate several strategies such

as pre-training on the CP task, curriculum learning, hard-
negative mining and observe an improvement in FITB per-
formance of 13.14%, 3.77% and 2.62% respectively. Our
method yields a FITB performance of 58.92% when using
images and category and 67.10 % using images and text.

For retrieval, we use the same testing setup as CSA-
Net [12], and compare the performance of our method with
state of the art methods CSA-Net [12], Type-aware [17] and
SCE-Net average [15]. For evaluation, we use the category
as our target item description for retrieving complementary
items and use recall@top-k metric that measures the rank
of the ground-truth item similar to [12]. From Table 2,
we observe that we outperform all the methods on the non-
disjoint dataset. On the disjoint dataset, our performance on
recall@top-10 is better than CSA-Net, but slightly worse on
recall@top-30 and recall@top-50. We conjecture the rea-
son for the performance drop might be because there are
fewer outfits on the disjoint set, and transformers typically
require large training data to generalize well. Also, the au-
thors in CSA-Net discuss that the rank of the ground truth is
not a perfect measure for evaluating retrieval performance.
Some example retrieval results are shown in Fig. 3.

4. Conclusion
Our model learns outfit-level representations and outper-

forms state-of-the-art approaches on the Polyvore Outfits
dataset in three established tasks: CP, FITB, and CIR.

Figure 3. For each partial outfit and a text-based query this figure
shows the top 5 retrieved items that are both compatible with the
outfit, and match the text query.
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