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Supplementary overview

This supplementary document for CVPR-CVFAD
2022 submission entitled DAtRNet: Disentangling
Fashion Attribute Embedding for Substitute Item
Retrieval provides additional details for the end-to-end
pipeline of the proposed attribute-aware substitute rec-
ommendation system which are augmented with the
proposed Disentangled Attribute Representation Net-
work (DAtRNet) architecture. Also, in this document,
the details of hyper-parameter tuning, t-SNE visualiza-
tion, visual examples and the class activation maps gen-
erated by separately using the height and width attention
are given.

We have provided the block diagram describing the
end-to-end pipeline for attribute-aware substitute rec-
ommendation in Figure 1. As shown, the entire pipeline
can be divided into five sub-parts: data pre-processing,
deep CNN architecture, attribute representation, manip-
ulated attribute and substitute recommendation. Out of
these, the deep CNN architecture consists of DAtRNet
designed using ASE module, which are discussed in de-
tail in main manuscript. In supplementary, therefore,
we elaborate on four other parts.

In section 1, we discuss the ways to obtain the
data for three different search strategies employed in
the main manuscript. Since, each of these strategies
are based on different kinds of attribute manipulation,
the generation of inference data is different for them.
Moreover, we explain the method of creating the triplets
to train the DAtRNet architecture.

In section 2, we illustrate the attribute-aware fea-
ture representation for the substitute recommendation
system. Here we describe the process to extract the
super-category specific attribute embedding from the
style space and the way of incorporating these as the
representation of the input image. Hence, we obtain the
method of getting an image as an aggregation of a set of
attribute features in the style space.

In section 3, we elaborate on the attribute-aware
substitute recommendation, emphasizing the way to ac-
commodate the desired attribute instructions in the fea-
ture representation in style space and retrieve top-k

products.

In section 4, we present the extensive study of sev-
eral hyper-parameters, In 4, we observed the change in
performances with the variations in the image dimen-
sion, the kernel size and the number of filters in the first
Conv layer (stem).

In section 6, we provide the experimental result
of DAtRNet without and with attribute manipulation
with respect to k and compare with the state-of-the-art
methods. In section 9, we demonstrate the impact of
number of manipulated attributes on the performance
of attribute-aware substitute recommendation.

In section 5, we demonstrate the class activation
maps of the fashion images by separately applying the
height and width attention. From these visualization,
we aim to depict that these attention modules localize
different regions of the fashion images, thereby their
combination can encapsulate the holistic feature repre-
sentation. Similarly, in section 10, we depict the t-SNE
plots [6] for the six super-categories of DeepFashion
dataset [5], obtained using DAtRNet.

In sections 7 and 8, we provide the experimental re-
sults of DAtRNet with product-category specific repre-
sentation and class-specific substitute recommendation
results w.r.t. k with one attribute manipulation. Finally,
in section 11, we illustrate extensive visual examples
and failure cases of all the tasks considered by us.

1. Data pre-processing

The attribute-aware fashion search is a novel way
of incorporating customer feedback to enhance the rec-
ommendation experience. However, there is no existing
dataset with the annotations required for this operation.
Hence, for our perusal, we have updated the annotations
given in the two attribute recognition datasets, namely
DeepFashion [5] and Shopping100k [2]. These datasets
were chosen for our application due to large number of
fine-grained attributes, large number of fashion product
images with visually-similar overlapping features and
the class-imbalance problem.

1



Figure 1: The end-to-end pipeline for substitute recommendation with attribute manipulations using DAtRNet as the
network. Here, the blocks at the top represent the five primary parts of the pipeline. Each of these parts are further
sub-divided into multiple secondary steps given below these blocks. The arrow between the primary and secondary
steps depict the flow of operation.

1.1. Training triplet generation

The strategy of training triplet generation for our
application is to ensure the images with same attributes
to come closer and images with different attributes
to push apart, irrespective of the visual similarity for
attribute-specific style embedding generation. To per-
form this, we generate separate set of triplets for each
super-category to embed the features from the corre-
sponding super-category. Also, the positive and nega-
tive images of an anchor is generated in random to en-
sure that the DAtRNet can ignore the visual similarity
detail of two products and instead focus on the attribute-
level similarity. For example, the network can obtain
one blue colored T-shirt as anchor, one blue trouser as
positive and one red T-shirt as negative. This is done to
ensure that the network learns the features pertaining to
the color attributes, not the features of the entire shirt as
a whole. Also, we generate multiple triplets considering
each image as an anchor, which enables to create more
presence for images containing minority classes.

1.2. Inference data for traditional substitute
recommendation

For traditional substitute recommendation, we need
a set of query image with the ground-truth attribute la-
bels. For our experiment, we have considered 4,000
query images. During inference, we consider the
768−dimensional feature vector of the query image
with the ground-truth attributes and find the nearest k-

images from the retrieval gallery. Also, note that, we
consider attribute-level similarity for our application of
substitute recommendation, unlike the image-level sim-
ilarity performed by traditional substitute recommenda-
tion. Hence, our network does not look for the entire
image, rather check the individual attributes to find sim-
ilar products, much like the human visual system.

1.3. Inference data for substitute recommenda-
tion with one manipulated attribute

For our application, we have used the publicly
available large-scale DeepFashion and Shopping100k
datasets. However, none of these datasets are equipped
with the attribute manipulation instructions. Also, we
aim to obtain the super-category specific performance
of our DAtRNet architecture. To accomplish this, we
follow the steps given here. Firstly, we choose a super-
category and an image with its ground-truth. Secondly,
we alter the ground-truth of the super-category of the
image with some other random value existing in the
super-category. For example, if a super-category has
100 fine-grained attributes and the ground-truth of this
category of the image is, suppose 10, then we consider
a random number ranging from 1 to 100, except 10.
Thirdly, to ascertain that the target ground-truth label
is present in the entire dataset, we check the retrieval
gallery and consider the desired attribute valid only if
the target ground-truth is present in the gallery. This
is important, because if the image with the target at-
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Figure 2: The method to generate the 768-dimensional fashion embedding with attribute manipulation. Here, the blue
blocks represent the DAtRNet architecture, each trained using one super-category, pink and purple blocks represent the
generic feature representation for each of the fine-grained attributes for category 2 (Collar) and category 5 (pattern),
respectively.

tribute set is not present in the retrieval gallery, then
the model will always incur failure in terms of exact
similar-attribute search and it is not necessarily the fault
of the proposed architecture but the shortage of prod-
ucts in the retrieval gallery. Finally, we perform this
operation multiple times on each image for each super-
category to obtain a large set of inference data. The
large inference data can also enable to obtain a general-
ized performance.

1.4. Inference data for substitute recommenda-
tion with multiple manipulated attributes

The aim to observe the performance of DAtRNet
using multiple attribute manipulation is to check its ro-
bustness under multiple changes in the feature represen-
tation. This work can be performed as a series of recom-
mendation using a single attribute instruction, however
the latency involved in the process does not reflect a
very suitable solution, where the time consumed for rec-
ommendation increases linearly with the number of ma-
nipulated attributes. Therefore, we follow these steps
to obtain ground truth with multiple attribute manipula-
tions.

Firstly, we arbitrarily choose k number of super-
categories out of the six categories considered for each
dataset and one image. Secondly, we visit the ground
truth of the image selected by us in previous step and
alter the ground-truths of the k categories previously
selected. The alteration for each of these k categories
is done by selecting one random value existing in the
super-category, except the one already present. Thirdly,
we check if any image with the target attribute set is
present in the retrieval gallery. This is done to avoid

getting false results due to absence of target image. Fi-
nally, we perform these steps for several times consid-
ering several k values to ensure the creation of large
number of inference data for substitute recommenda-
tion with multiple manipulated attributes.

2. Attribute Representation

Feature extraction is an important process for im-
age recommendation methods. After feature extrac-
tion, representation of visual information in an images
is a crucial step, in which we compile the information
across all categories. This is a challenging step because
this greatly affects the retrieval accuracy in recommen-
dation systems. In this section, we explain how we ex-
tract category-level features and how we represent an
image using these features.

2.1. Super-category specific attribute embed-
ding in style space

Conventional feature extraction methods employ
CNNs’ in a single style space. However, for fine-
grained super-category specific feature extraction this
is not enough. Hence, we extract the features across
multiple style spaces. For each image in the datasets,
i.e. DeepFashion and Shopping 100k, a super-category
specific unique model extracts a 128− dimensional fea-
ture vector. This feature vector contains the category-
specific information present in the image. Feature ex-
traction at super-category specific style space ensures
to separate visually similar intra-category attributes
much apart. Using independent models for each cat-
egory is a crucial step in retrieval process, because it
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Figure 3: Class activation maps generated from the sample images from DeepFashion dataset. Here, the first image in the sequence
of images (a)-(d) is the fashion product image, second image is the class activation map generated by considering width attention,
third image is the class activation map generated by considering height attention.

helps to extract attribute information in a unique fea-
ture space thereby allowing to extract fine-grained at-
tribute information for images. By separating intra-
category specific attributes much apart we ensure to ex-
tract rich high-level features which help in providing
fine-grained attribute information of the query image.
This is achieved by using triplet-based training process.
By minimizing the triplet loss we bring similar looking
images together in category-specific sub-spaces. Af-
ter this operation, we aggregate the information for im-
ages across all super-categories in the dataset. In Figure
2, we observe the feature extraction for all the super-
categories from an image separately in order to obtain
the feature embedding.

2.2. Fashion Image as aggregation of attributes

Aggregation of attribute information for images
is a crucial step in retrieval process. The category-
level attribute embeddings extracted for an image rep-
resents the visual information present in it. Compila-
tion of these features determine how efficient the re-
trieval process is. After extracting feature embeddings
at category-level we need a method which incorporated
the image information across all super-categories. For
this we adopt concatenation operation. We concatenate
all the category-specific feature vectors resulting in a
768−dimensional vector which is used as feature repre-
sentation for an input image. This vector is used to find
the most similar looking apparel in the retrieval process.
The concatenation operation with/without the attribute
manipulation is illustrated in Figure 2.

2.3. Generic representation of all attributes

For interactive search to recommend substitute
products, a generic representation of each attribute is
required. Whenever a manipulation is employed, the
generic feature representation of the required attribute
replaces the feature representation of query attribute at
the mentioned location. Instead of using complex addi-
tional memory blocks to achieve this, we simplify this
by using a simple averaging process for generic rep-
resentation. For each specific attribute in the super-
category, we find images containing the attribute and
average all the 128−dimensional vectors from the cor-
responding model. After extracting all the average vec-
tors, one for each attribute, we use it as a generic rep-
resentation for the corresponding attribute. When a
manipulation instruction is specified for an attribute in
the query image, we replace the generic representation
of the required attribute at its corresponding location.
More details on attribute manipulation and image re-
trieval is explained in Section 3.

3. Attribute manipulation and substitute
recommendation

After the generation of super-category specific at-
tribute information and the generic representation of
fine-grained attributes, the next imminent step for con-
sideration becomes the manipulated attribute represen-
tation of the fashion product depending on user’s feed-
back. This section constitutes the fourth and the fifth
part of the end-to-end pipeline of the substitute recom-
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Table 1: The performance comparison of DAtRNet (ours) w.r.t. DAtRNet with product category-specific embedding (Metric:
Top-30 Retrieval accuracy)

Method Texture Sleeve Length Neckline Category Shape Overall
DAtRNet 0.636 0.727 0.554 0.768 0.667 0.652 0.662

DAtRNet with product
category-specific embedding

0.581 0.742 0.546 0.732 0.671 0.643 0.638

(a) (b) (c) (d)

Figure 4: Comparison for top-k retrieval accuracy for search by query and search by query and attribute manipulation. (a). Search
by query for Shopping100k dataset, (b). Search by query for DeepFashion dataset, (c). Search by query and attribute manipulation
for Shopping100k dataset, (b). Search by query and attribute manipulation for DeepFashion dataset.

mendation with attribute manipulation feedback which
sheds light on the interactive fashion product feature
generation and process to perform substitute recom-
mendation with it.

3.1. Query data and feature generation

With the concatenated feature of the retrieval
images and the corresponding ground-truth attributes
in hand, we hereby bring the query image data
with/without manipulated attribute information for in-
ference operation. We consider the query image and
then extract the features for all six attribute categories,
as given in Figure 2. Here, we give an example of an
inference data: containing one query image and two
manipulated attributes. The query image undergoes
through all six super-categories considered for Shop-
ping100k dataset, namely color, collar, fastening, neck-
line, pattern and sleeve. Also, in this step, we convert
the manipulated attribute names to the corresponding
ground-truth vector for that super-category. For the ex-
ample in Figure 2, the desired attributes for category 2
and 5 transforms to 10th and 20th attribute in their re-
spective super-category.

3.2. Manipulated feature generation

The generated features and the desired attribute
ground-truths are then used to generate the desired fea-
ture representation of a fashion product. For the sub-
stitute recommendation without manipulated attributes,
the six vectors are concatenated without any modifica-
tion, as given in section 2.2. However, for one/multiple

manipulated attribute(s), we use the generic feature rep-
resentation as discussed in section 2.3. For all manip-
ulated attribute instruction, we take the generic repre-
sentation of the corresponding ground-truth and replace
them with the vector extracted by the DAtRNet with
same super-category. Figure 2 describes this opera-
tion in detail. In this example, we consider two ma-
nipulated attributes from category 2 and 5, having the
ground truth value of 10 and 20, respectively. Hence,
we consider the 10th generic vector from category 2
in place of the 128−dimensional vector obtained from
collar attribute and the 20th generic vector from cate-
gory 5 in place of the 128−dimensional vector obtained
from pattern attribute. Finally, we concatenate the vec-
tors, keeping 1st , 3rd , 4th and 6th directly from DAtRNet
and 2nd and 5th from the generic representation. Note
that, the generic vectors for category 2 and 5 in Fig-
ure 2 and this discussion is for example, we have cre-
ated generic representation for all attributes present in
all super-categories.

3.3. Top-k images from the retrieval gallery

The updated query feature after concatenation and
the target ground-truth label is then used for the com-
putation involved with the features in retrieval gallery.
We compute the L2 distance between the vectors present
in retrieval gallery and the update query feature vector.
Based on this, we select top-k images having smallest
distance from the query image and their corresponding
ground-truth attributes.
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Table 2: Top-k retrieval accuracy and NDCG@k for all 6 categories of DeepFashion datasets for search by query and attribute
manipulation.

k = 10 k = 20 k = 30 k = 40
Acc@k NDCG@k Acc@k NDCG@k Acc@k NDCG@k Acc@k NDCG@k

Texture 0.431 0.931 0.588 0.923 0.636 0.922 0.652 0.935
Sleeve 0.580 0.934 0.703 0.928 0.727 0.928 0.749 0.929
Length 0.363 0.932 0.515 0.924 0.554 0.923 0.577 0.924

Neckline 0.605 0.937 0.739 0.931 0.768 0.930 0.784 0.930
Category 0.485 0.928 0.631 0.921 0.667 0.920 0.698 0.921

Shape 0.443 0.924 0.613 0.917 0.652 0.916 0.676 0.918

Table 3: Top-k retrieval accuracy and NDCG@k for all 6 categories of Shopping100k dataset for search by query and attribute
manipulation.

k = 10 k = 20 k = 30 k = 40
Acc@k NDCG@k Acc@k NDCG@k Acc@k NDCG@k Acc@k NDCG@k

Color 0.511 0.861 0.655 0.849 0.738 0.846 0.775 0.847
Collar 0.429 0.881 0.626 0.857 0.638 0.854 0.669 0.855

Fastening 0.208 0.887 0.358 0.866 0.503 0.861 0.504 0.860
Neckline 0.368 0.884 0.531 0.867 0.641 0.868 0.675 0.868
Pattern 0.398 0.863 0.563 0.842 0.674 0.838 0.678 0.840
Sleeve 0.589 0.915 0.693 0.905 0.761 0.905 0.775 0.904

Table 4: Performance of DAtRNet with the variation of im-
age dimension, kernel size and number of filters.

Only query Query + Attribute
Image dimension

Dimension: 160 0.873 0.834
Dimension: 192 0.869 0.838
Dimension: 256 0.894 0.846

Kernel size
Kernel: (2,2) 0.873 0.813
Kernel: (3,3) 0.894 0.846
Kernel: (4,4) 0.889 0.797

Number of filters
Number: 16 0.885 0.823
Number: 24 0.887 0.839
Number: 32 0.894 0.846

4. Hyper-parameter tuning for DAtRNet
architecture

We perform an extensive set of experiments to esti-
mate the hyper-parameters, e.g. the image dimension,
the kernel size and the number of filters in the first
Conv layer. These experiments justify our choice of the
said hyper-parameters in the main manuscript. For all
these experiments, we have considered the DeepFash-
ion dataset with 20,000 triplets for texture and sleeve
super-categories.

Firstly, we observe the variation of the model per-
formance by varying the image dimension. We consid-
ered three image dimensions, i.e. 160, 192 and 256,
keeping kernel size as 3×3 and number of filters in the
first layer as 32. From the results in Table 4, we observe
that the model with image dimension of 256 gives best
performance, hence this value is considered for further
evaluation.

Then, we check the model performance by varying

the kernel size from 2× 2 to 4× 4, keeping image di-
mension as 256 and number of filters in the first layer
as 32. From the results in Table 4, we observe that the
kernel size of 3×3 yields best performance.

Finally, we observe the optimum number of filters
in the first layers, keeping image dimension as 256 and
kernel size as 3× 3. For this analysis, we considered
16, 24 and 32 as the numbers of the filters in the first
layer. The results in Table 4 dictate that the proposed
DAtRNet gives best performance with the number of
filters as 32.

5. Axis-specific Class Activation Maps

In DAtRNet, concurrent axial attention has been
proposed to separately extract discriminatory local fea-
tures across three axes. The features obtained by the
three heads are supposed to develop a holistic represen-
tation of several fine-grained attributes present in the
image. To demonstrate the individual contribution of
the height and width attention, we generate class acti-
vation maps (CAMs) by using any one of the width or
height attention modules.

The generated CAMs of four sample images from
DeepFashion dataset are given in Fig. 3. In the first im-
age (Fig. 3(a)), the width attention branch effectively
captures the pattern and the texture of the cloths with
the sleeve length, whereas the height attention branch
captures the neckline region properly. In the second
image (Fig. 3(b)), the width attention branch focuses
on the apparel pattern, while height attention highlights
the neckline, sleeve region and the pleats in the skirt.
In the third image (Fig. 3(c)), width and height atten-
tion focuses on sleeve length and neckline, respectively.
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Table 5: Top-k retrieval accuracy for Shopping100k and DeepFashion datasets for search by query and one attribute manipulation,
where k ∈ {10,20,30,40,50}.

Methods Shopping100k DeepFashion
Top-10 Top-20 Top-30 Top-40 Top-50 Top-10 Top-20 Top-30 Top-40 Top-50

Attribute-based [4] 0.102 0.152 0.216 0.232 0.260 0.046 0.098 0.124 0.145 0.163
AMNet [7] 0.256 0.361 0.429 0.477 0.516 0.141 0.193 0.229 0.255 0.276

FashionSearchNet w/o Loc [2] 0.311 0.415 0.512 0.585 0.628 0.192 0.265 0.305 0.351 0.386
FashionSearchNet [2] 0.384 0.474 0.572 0.616 0.667 0.252 0.335 0.381 0.426 0.447

ADDE-M [3] 0.412 0.529 0.598 0.641 0.673 0.236 0.286 0.315 0.340 0.359
DAtRNet (Ours) 0.634 0.651 0.677 0.691 0.745 0.479 0.627 0.662 0.687 0.706

Table 6: Top-k retrieval accuracy and NDCG@k for Shop-
ping100k and DeepFashion datasets for search by query.

Shopping100k DeepFashion
Acc@k NDCG@k Acc@k NDCG@k

k = 10 0.694 0.874 0.681 0.936
k = 20 0.735 0.857 0.713 0.930
k = 30 0.752 0.856 0.731 0.929
k = 40 0.765 0.856 0.744 0.929

Finally, in Fig. 3(d), width attention localizes the neck-
line and height attention encapsulates the pattern and
the sleeves.

Hence, from these visualizations, we can say that
these different attention layers localizes different re-
gions of the fashion image, which in turn aggregates
holistic representation when added together.

6. Variation in performance of substitute
recommendation using DAtRNet with
respect to k

We provide the results of substitute fashion search
with query image in Table 6. Here, we report the top-k
retrieval accuracy and NDCG@k values in Table 6 for
k= 10,20,30,40. Also, it should be noted that attribute-
level similarity is the focus and not the super-category
level similarity, which makes this problem more chal-
lenging than traditional substitute recommendation that
consider super-category information. Table 5 compares
the performances with respect to k by state-of-the-art
methodologies with one attribute manipulation using
both the datasets. Here, we observe that the proposed
DAtRNet outperforms the existing solutions by a sig-
nificant margin.

7. Inference with product category specific
generic embedding

For all our experiments, we have considered a
generic representation of every attribute to impose per-
sonalization during substitute product search. However,
these generic feature vectors were created by averag-
ing all vectors of that fine-grained category. Another

method to generate these average feature is to make it
product-specific, e.g., the generic feature representing
collar attribute of a T-shirt will be different than that of
a blazer. To observe the variations in performance, we
conduct this experiment for all six super-categories of
DeepFashion dataset. For this operation, we have con-
sidered the same data as used for all experiments. Also,
we considered 50 different product categories to facili-
tate product-specific embedding.

Table 7: Impact of the number of manipulated attributes on
the performance of Shopping100k and DeepFashion datasets.

Number of
attribute

Shopping100k DeepFashion
Acc@30 NDCG@30 Acc@30 NDCG@30

1 0.677 0.878 0.662 0.928
2 0.648 0.867 0.573 0.921
3 0.484 0.875 0.647 0.922
4 0.511 0.848 0.645 0.925

The results of these experiments are given in Ta-
ble 1. From these results, we observe that the product-
category specific generic representation yields slightly
improved performance for sleeve and category at-
tributes, whereas, it gives poorer performance for other
four attributes. Overall, the performance of DAtRNet
with product category specific embedding is less com-
pared to DAtRNet with generic embedding. Hence, we
can hypothesize that our model captures the features ir-
respective of the product present.

8. Category-specific performance of DAtR-
Net with variations in k

The consistency in the performance of DAtRNet
with the variations in attribute super-category and the
number of retrieved product is necessary to understand
the robustness of the system. In Tables 2 and 3, we re-
port the variation of top-k retrieval accuracy of DAtR-
Net for substitute recommendation across all attribute
super-categories. In Table 2, we provide the results for
DeepFashion dataset with texture, sleeve, dress length,
neckline, category and shape attributes. In Table 3, we
explore these values for Shopping100k dataset having
color, collar, fastening, neckline, pattern and sleeve at-
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Figure 5: The t-SNE visualization of attribute embedding of
six super-categories of the DeepFashion dataset in style space.

tributes. For both the cases, k values are considered to
be {10,20,30,40}. Here, we observe that the values in-
crease consistently with the increment in the values of
k for all the super-categories. Also, we have given the
plots in Figure 4 to compare the performance of DAtR-
Net with the state-of-the-art methods by varying the k
value. For comparison, we have considered attribute-
based method [4], AMNet [7] and FashionSearchNet
[1, 2].

Figure 6: Visual examples of DAtRNet to perform fash-
ion search with no attribute manipulation. Here, the first
image in each row is considered to be the query image
for search and the next four images are retrieved by DA-
tRNet. The images with green box are the ones with
same set of attributes as the query image.

Figure 7: Visual examples of DAtRNet to perform fash-
ion search with one attribute manipulation. Here, the
first image in each row is considered to be the query
image for search and the next four images are retrieved
by DAtRNet. The arrow provides the information re-
garding the change in the attributes and the desired at-
tributes. The images with green box are the ones with
same set of attributes as desired by the user to replace
the query image.

9. Impact of number of manipulated at-
tributes on the performance of attribute-
aware substitute recommendation

The challenges involved in recommending substi-
tute fashion products increase when the number of de-
sired attributes increases. Only one method in literature
considers two attribute manipulation study [7]. To ad-
dress the robustness of the network, we provide up to
four desired attribute manipulation and observe the per-
formance for both the datasets in Table 7. Here, we
report the top-30 accuracy and NDCG@30, after pro-
viding N desired attributes where N = 1,2,3,4. From
the results in Table 7, it is clear that the proposed net-
work is well-suited for incorporating multiple attribute
instructions without significantly degrading the perfor-
mance.

10. The t-SNE visualization

The DAtRNet architecture generates discrimina-
tory attribute embedding in style space to provide ef-
fective fashion search. The performance of substitute
recommendation depends upon the separateness of fine-
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Figure 8: Visual examples of DAtRNet to perform fashion search with two attribute manipulation. Here, the first
image in each row is considered to be the query image for search and the next four images are retrieved by DAtRNet.
The arrow between the query and retrieval images denote the attribute manipulation instructions. The images with
green box are the ones with same set of attributes after the manipulation.

Figure 9: Visual examples of failure cases for all the tasks considered by us. Here, we demonstrate set of results where
we do not get the exact set of attributes in the retrieval product, although, for all of them, majority of the attributes are
matching. For (d), green box denotes the ground truth and the red box denotes the model prediction.

grained attributes. To qualitatively estimate different at-
tribute separation, we generate t-SNE visualization for

six attribute categories of DeepFashion dataset in style
space in Figure 5. From the t-SNE plots, we observe
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that the fine-grained attribute categories are quite sepa-
rable to enable the discrimination between them which
amounts to superior performance with the attribute-
aware recommendation. This is yet another evidence of
effective feature disentanglement of attributes in style
spaces which leverage on the improvement in perfor-
mance in attribute-aware substitute recommendations.

11. Visual examples and Failure cases

Here, we provide more visual examples of all the
tasks as well as the failure cases to explain the ability
of the network to perform the substitute recommenda-
tion and the failure cases. For all cases, we considered
equal number of male and female products to avoid gen-
der bias for recommendation. In Figure 6, we provide
the visual examples of fashion search without attribute
manipulation. From the results, we can observe that
the network is able to look at the individual attributes
by recommending items with same set of attributes as
present in the query images.

Similarly, in Figure 7 and in Figure 8, we pro-
vide the visual examples of DAtRNet to perform fash-
ion search with one and two attribute manipulations, re-
spectively. For all these cases, it can be noted that the
DAtRNet are able to understand most of the correct at-
tributes for all the retrieved items, which shows the abil-
ity of DAtRNet to efficiently disentangle and process
attribute information for better recommendation.

The attribute-aware recommendation is a complex
operation with small error resonating in wrong predic-
tion. To validate the results obtained by us in an un-
biased manner, we have provided failure examples of
these use-cases in Figure 9. Here, we can observe that
for all these cases, the failure is happening due to not
preserving all existing attribute information or by con-
sidering one or more extra attribute information. in fu-
ture work, we will aim to address this.

12. Human in the loop experiment

In order to validate the proposed method, an exper-
iment with “human judges in the loop” is performed.
Ten human judges were selected and twenty sample
images were shown to each of them. Based on their
desired attribute instruction, ten fashion products were
recommended by each of these two methods. The rec-
ommendations were shown in a random order to avoid a
trend. Out of all votes obtained through this experiment,
DAtRNet received 184 of 200 votes, whereas Fashion-
SearchNet received sixteen votes.
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