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A. Additional information on UIGR dataset

Our dataset is built upon Fashionpedia [8], which is
a large-scale dataset for garment segmentation and fine-
grained attribute localization. Fashionpedia provides an on-
tology built by fashion experts containing 27 garment cat-
egories and 19 garment parts. It provides not only fine-
grained attributes but also implicit visual compatibility re-
lationships for all garments in an outfit. All alternatives
[5, 11] cannot meet all these conditions at the same time.

Image pre-processing. We want an IGR model to focus on
the garment to be refined by the user feedback. The back-
ground and other garment items in a given image are thus
distractions and should be removed. To this end, a series
of pre-processing steps are introduced: (1) We use a salient
object detection model [15, 21] to remove the background,
which is an easy task given the typical clean background in
fashion catalog images. (2) When there are multiple gar-
ments with the same category in one image (e.g., shoes and
gloves), if they do not overlap, we only keep the one with
the largest pixel area; (3) We delete the masks of garment
parts (e.g., sleeves and pockets) but merge their attributes
into the garments they belong to; (4) We delete the garments
that have low-resolution or extreme aspect ratio; (5) If there
are pixels of other garments in the bounding box, we mask
these excess pixels with gray color. Finally, we cropped
each garment with its attributes from the original image to
construct a substantial image pool.

Prompt engineering. We list all used prompts for user
feedback generation in Table 1. Our prompts simulate a
variety of syntax structures: single phrases, compositional
phrases, and propositional phrases.

More triplet examples. We present more triplet examples
of UIGR in Figure 1 and Figure 2. As discussed in the
main paper, the TGR triplets we collected successfully fol-
low the assumption that there could not be too many visual
changes between the reference garment and the target gar-

TGR
search another item with a similar style

there are no changes between two images
change {A} to {V }

has {V } {A}
is {V }

change {A} to {V1} and {V2}
change {A1} to {V1} and change {A2} to {V2}

has {V1} and {V2} {A2}
has {V1} {A1} and {V2} {A2}

is {V1} and with {V2} {A2}
is {V1} and {V2}

VCR
search a {TC} that matches this {RC} best

retrieve a {TC} having a similar style with current {RC}
for this {RC}, find a visually compatible {TC}

replace this {RC} with a {TC} that has a consistent style
search a {TV } {TC} that matches this {RC} best

retrieve a {TV } {TC} having a similar style with current {RC}
for this {RC}, find a visually compatible {TC} with {TV } {TA}

replace this {RC} with a {TC} that has {TV } {TA}

Table 1. All prompts for user feedback generation of UIGR.
{V } and {A} hold the blank for one attribute name and its value.
{TV }, {TC} and {RC} stand for the target attribute value, target
category and reference category, respectively. Which kind of TGR
prompt to choose depends on how many related attributes (0, 1 or
2) need to be mentioned. Which kind of VCR prompt to choose
depends on whether the target attributes need to be mentioned.

ment. Our TGR triplets thus are much higher quality than
those in FashionIQ [20] with less ambiguity. Besides, our
TGR subset contains 27 different garments, far more than
FashionIQ, which only has three categories (top tee, shirt
and dress).

Thanks to the flexibility of text, our VCR subset in-
cludes more meaningful information compared to concate-
nated one-hot labels [11]. Now each user feedback sen-
tence states category changes and intended attributes based
on the statistics of attribute co-occurrence between compat-
ible garment items, which is more in line with reality. With
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"has gray color and gathering textile
finishing, manufacturing techniques"

"is above the knee length and with bell
silhouette"

"has queen anne neck neckline type and
gem non-textile material type"

"is fit and flare and with plain pattern
textile pattern"

"is above the knee length and with no
special textile finishing, manufacturing

techniques"

"change neckline type to boat neck and
change color to mustard"

"change color to brown"

"has brown color"

"is a tunic top and has boat neck
neckline type"

"change color to purple and change
length to wrist"

"is a sheath dress and has no special
textile finishing, manufacturing

techniques"

"change color to brown and change
neckline type to one shoulder"

"is mini length and single breasted"

"is patch pocket and with plain pattern
textile pattern"

"change neckline type to round neck and
change textile finishing, manufacturing

techniques to perforated"

"change color to gray and change
silhouette to regular fit"

"search another item with a similar
style"

"there are no changes between two
images"

Figure 1. More triplet examples in UIGR TGR subset.

the help of such kind of VCR triplets, the potential user can
specific the search direction through mentioning some spe-
cific target attributes. Most importantly, now the VCR has
the unified setting with TGR.

B. Additional information on the multi-task
baseline model

Given a reference garment image gr and an interaction
signal (user feedback) s, the ultimate goal of interactive re-
trieval is to search the gallery for another garment image gt

that best matches the modification mentioned in s. Regard-
less of whether the user wants to modify the attributes or
the category of the reference garment, the interaction signal
is in the same textual format. TGR and VCR can thus be

"replace this tights or stockings with a
dress that has peter pan type collar"

"for this tights or stockings, find a
visually compatible dress with peter pan

type collar"

"retrieve a regular fit pants having a
similar style with current coat"

"replace this coat with a pants that has
fly opening opening type"

"replace this shirt or blouse with a bag
or wallet that has a consistent style"

"retrieve a bag or wallet having a
similar style with current shirt or

blouse"

"replace this shirt or blouse with a
skirt that has a line silhouette"

"for this shirt or blouse, find a
visually compatible skirt with a line

silhouette"

"retrieve a brown shoe having a similar
style with current dress"

"for this dress, find a visually
compatible shoe with brown color"

"for this hat, find a visually
compatible dress with blue color"

"search a blue dress that matches this
hat best"

"search a no special manufacturing
technique pants that matches this jacket

best"

"retrieve a straight pants having a
similar style with current jacket"

"retrieve a maxi length pants having a
similar style with current vest"

"replace this vest with a pants that has
symmetrical silhouette"

"for this dress, find a visually
compatible tights or stockings with

brown color"

"replace this dress with a tights or
stockings that has brown color"

Figure 2. More triplet examples in UIGR VCR subset.

modeled in the same framework.
We will first briefly introduce how previous works study

these two tasks separately and then describe our unified so-
lution based on multi-task learning.

B.1. Preliminary method

In Figure 3, an existing pipeline for interactive retrieval
typically consists of three components: image encoder EI ,
interaction signal encoder ES and compositor C.

Firstly, both reference image and target image are fed
into the image encoder to obtain representations in the fea-
ture space: gr = EI (gr) , gt = EI (gt) , where EI is usu-
ally instantiated by a CNN pre-trained on ImageNet [3] and
a linear projection layer [19, 17].

In the meantime, the interaction signal is processed by
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Figure 4. Proposed multi-task architecture for UIGR.

the signal encoder to get the signal representation: s =
ES (s) , where the interaction signal is represented by the
concatenation of reference category cr and target category
ct for VCR [11] or by user feedback t for TGR [19].

Finally, the most important step is to incorporate the in-
teraction signal’s feature into reference image’s feature via
a compositor: x = C (gr, s) . For VCR, this compositor
is always instantiated by a conditional similarity module
[11, 7] to learn different sub-spaces with different notions.
For TGR, this compositor works globally [19, 17] or locally
[1, 10] to modify the feature map of reference image.

The goal of this pipeline is to make the composed query
x as close as possible to the target gt in a shared feature
space. A widely used objective function is the batch-based
classification loss (BBC) [19], which assumes the same
form as the InfoNCE loss [13]:

Lbbc =
1

B

B∑
i=1

− log
exp [κ (xi, gti) /τ ]∑B

j=1 exp
[
κ
(
xi, gt

j

)
/τ
] , (1)

where κ(·, ·) and τ are cosine distance metric and tuneable
temperature, respectively. In this loss, each example is con-
trasted with a set of other negatives. It thus achieves better
discriminative learning and faster convergence.

During inference, the features of all gallery images will
be calculated in advance by image encoder. For each com-
posed query, its cosine similarity with all gallery features
will be obtained. Finally, an identity list is sorted according
to the cosine similarity as the retrieval result sequence.

B.2. Proposed multi-task framework

Although there are different implementations for the
compositors of VCR and TGR, they share the same goal:
preserving unmentioned visual appearance aspects of the

reference and changing only those mentioned in the inter-
action signal/feedback. Our multi-task model unifies the
two tasks based on the same goal. However, to accommo-
date the major difference in the change directions of the two
tasks, namely whether the category is preserved or changed,
we use different compositors. As shown in Figure 4, two
branches are used for separately learning two composition
processes with shared image and signal encoders.

More specifically, we use a quintuplet {gr, sv, st, gtv, gtt}
containing reference garment, VCR signal, TGR signal,
VCR target garment, and TGR target garment as the input
for training. These three garment images will be fed into a
shared image encoder EI to get respective features gr, gt

v

and gt
t. Similarly, two signals will get their features sv and

st via a shared signal encoder ES .
Considering that the features needed to be modified for

the two branches are not the same, we use two projection
modules Pt and Pv to project image features to two latent
spaces ahead of the composition process. Exactly how the
projection module is realized depends on what compositor
is employed here. Specifically, for the compositor who di-
rectly modifies the feature map [1, 10], we implement the
projection module with a lightweight CNN; for the compos-
itor working globally [19, 17], we use a linear projection
layer following the global average pooling instead.

After choosing a compositor architecture from a existing
method (e.g., [19, 17, 1, 10]), we need two compositors Ct
and Cv of the same architecture but without shared weights,
to separately learn two composition processes for the two
tasks. For each branch, the compositor serves for incor-
porating signal feature into the projected image feature of
reference garment:

xv = Cv (Pv (gr) , sv) , xt = Ct (Pt (gr) , st) . (2)

For both branches, two BBC losses Lv
bbc and Lt

bbc will be
calculated independently according to Equation 1.

We also jointly learn a classifier to distinguish different
user feedback. Specifically, we simply choose the branch
with a higher score predicted by the classifier, i.e., hard se-
lection, which is empirically found to be the most effective
design. We instantiate this branch classifier with an MLP
M and optimize it via cross-entropy loss (CE):

Lce =
1

B

B∑
i=1

− log
exp [M0 (svi)]

exp [M0 (svi)] + exp [M1 (svi)]

+
1

B

B∑
i=1

− log
exp [M1 (sti)]

exp [M0 (sti)] + exp [M1 (sti)]
.

(3)

Our model is end-to-end optimized by the overall objec-
tive function, which is the direct summation of two BBC
losses and one CE loss:

L = Lv
bbc + Lt

bbc + Lce. (4)
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Arch. TGR Results VCR Results Mean
R@10 R@50 mAP R@10 R@50 mAP R@K mAP

I 46.27 77.57 19.78 69.30 85.88 46.15 69.76 32.97
U+SC 43.97 76.22 17.67 71.18 87.89 46.89 69.82 32.28
U+SP 42.74 75.04 17.84 69.67 87.51 45.60 68.74 31.72

U+SC+SP 43.94 75.76 18.30 68.83 87.26 44.42 68.95 31.36
U 45.10 76.84 18.94 72.15 88.61 48.49 70.68 33.72

Table 2. Ablation study on the proposed multi-task model. SC:
sharing compositor across two branches; SP: sharing projection
module across two branches.

User Feedback Attribute Augmented R@10 R@50 mAP
One-hot 69.30 85.88 46.15
One-hot 3 70.98 87.16 47.80

Text 70.77 86.88 47.51
Text 3 72.65 88.64 49.06

Table 3. Experiment results of attribute argumented models (with
one-hot labels or text as the user feedback) on VCR subset.

C. Additional information on experiments
Implementation details. We realize the image encoder and
signal encoder by utilizing ResNet50 [6] and Bi-GRU [2].
The ResNet50 is pre-trained on ImageNet [3] and the word
embeddings of Bi-GRU are initialized by CLIP text encoder
[16, 4]. To demonstrate the universality of our multi-task
architecture, we instantiate the compositor with recent rep-
resentative methods [11, 19, 1, 10, 17]. For the projection
module, we adopt two different architectures (convolution
layer with 512 output channels or linear layer with 512
output dimensions) according to whether the compositor is
used to modify the feature map or the global feature.

Hyper-parameters setting. We use random horizontally
flip and random crop as image data augmentation methods.
All images are resized to 224×224. The batch size and tem-
perature in the Lbbc are 64 and 0.0625, respectively. Our
model is trained with Adam optimizer [9] for 40 epochs
with an initial learning rate 2×10−4, which is decayed by a
factor 0.1 at the 15th and 25th epoch, respectively. We also
linearly increase the learning rate from 2×10−5 to 2×10−4

at the first 5 epochs. All experiments are conducted on one
Tesla V100 GPU (32GB memory) with Pytorch [14].

Evaluation metrics. We adopt the standard evaluation met-
ric for retrieval, i.e., Recall@K, denoted as R@K for short.
To circumvent the problem of false negatives [12], we fol-
low FashionIQ [20] to set K as larger values (10 and 50). In
addition, we also report the mean Average Precision (mAP)
1 for a comprehensive evaluation.

Evaluation protocols. Since we are integrating VCR into
TGR, we want the model has the ability to distinguish
different categories. Consequently, we lead a more diffi-
cult evaluation protocol than FashionIQ. Unlike FashionIQ,
which evaluates three categories separately, category labels

1For each query, mAP is calculated with top 50 results.

are not available for our evaluation protocol. That is, all im-
ages in the gallery will calculate a similarity with the com-
posed query.

D. More quantitative results

D.1. Ablation study

We examine the design of each component in our pro-
posed model. The critical problem we are going to explore
is whether compositor and projection module can be shared
between TGR and VCR. In all experiments, we remove the
branch classifier and use TIRG [19] as the compositor.

As shown in Table 2, sharing both projection module
and compositor leads to a performance drop. In addition,
a shared projection module alone leads to a more consid-
erable performance drop than a shared compositor. This
result demonstrates that projecting the features of reference
garments into different latent spaces is vital for this multi-
task framework. To unify VCR and TGR in a single model,
the projection module and compositor thus cannot be shared
because different tasks need different embedding features.

D.2. Attribute augmented VCR model

In addition to helping to unify VCR and TGR, we believe
that mentioning target attributes is a more general way for
VCR, even for models that use one-hot labels as user feed-
back. To demonstrate that, we conduct a small experiment
by concatenating the one-hot label of the target attribute be-
hind that of the reference category and target category.

As shown in Table 3, we can conclude that one-hot la-
bels also benefit from mentioning target attributes, but text
modality can integrate this kind of attribute information into
user feedback better.

D.3. Cross-domain evaluation

To demonstrate the universality of our generated user
feedback, we conduct cross-domain evaluation. Precisely,
we compare the results of the same model with 3 differ-
ent strategies: (1) trained on UIGR-TGR, tested on Fash-
ionIQ (zero-shot); trained and tested on FahsionIQ (fully
supervised); (3) trained on UIGR-TGR and FashionIQ, and
then tested on FashionIQ (transfer learning). As shown in
Table 4, we can draw several conclusions: (1) Even under
the zero-shot setting, every method achieves reasonable per-
formance; (2) With the transferred knowledge from UIGR-
TGR, every model has a substantial performance gain (2.93
R@K and 1.85 mAP increase on average). In general, al-
though our user feedback is generated, its generalization
ability is sufficient to help the model achieve good perfor-
mance on the manually annotated dataset.
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Comp. Training Dataset Dress Shirt Top Tee Mean
R@10 R@50 mAP R@10 R@50 mAP R@10 R@50 mAP R@K mAP

TIRG[19]
UIGR 7.59 19.98 3.25 7.90 18.99 3.25 8.77 23.56 3.91 14.47 3.47

FashionIQ 23.65 49.93 11.89 21.98 46.61 9.31 27.84 55.07 12.53 37.51 11.24
UIGR + FashionIQ 26.97 53.64 12.65 22.87 46.07 10.29 29.58 57.73 13.80 39.48 12.25

VAL[1]
UIGR 6.05 18.20 2.78 7.31 17.76 2.85 7.50 20.04 3.05 12.81 2.89

FashionIQ 19.09 44.57 9.02 16.68 37.93 7.21 20.45 46.76 8.88 30.91 8.37
UIGR + FashionIQ 26.43 52.66 13.02 20.36 43.52 9.54 25.85 53.14 12.21 36.99 11.59

CoSMo[10]
UIGR 7.14 18.80 3.23 6.04 17.52 2.73 7.45 20.96 3.22 12.99 3.06

FashionIQ 20.87 46.80 9.35 18.30 40.92 8.00 22.95 50.33 10.36 33.36 9.24
UIGR + FashionIQ 23.50 49.48 10.42 17.96 41.76 8.22 25.14 52.58 11.68 35.07 10.11

RTIC[17]
UIGR 8.13 21.32 3.53 7.85 20.31 3.32 9.43 23.56 4.12 15.10 3.66

FashionIQ 25.93 51.76 12.00 22.37 46.57 9.91 27.84 56.65 13.10 38.52 11.00
UIGR + FashionIQ 28.01 53.74 13.58 24.04 47.64 11.36 31.67 57.78 14.92 40.48 13.29

Table 4. The cross-domain (UIGR-TGR→ FashionIQ [20]) evaluation results. All results are reported on the three subsets of FashionIQ.

E. More qualitative results
E.1. Visualizations of retrieval results

To better understand the retrieval process of our unified
interactive garment retrieval, we visualize some retrieval re-
sults in Figure Figure 5 and Figure 6. It shows that given a
sentence, our model captures both concrete and abstract se-
mantics, including fine-grained attributes and various gar-
ment categories. Besides, many failure cases are also pro-
vided in Figure 7 and Figure 8 to better understand our
model’s performance. Even for the failure cases, our model
also provides very reasonable predictions.

E.2. Visualizations of learned latent spaces

To gain insights into the latent spaces learned by our
model, we provide t-SNE [18] visualizations for features
processed by projection modules in two branches. Figure
9(a) and 9(b) illustrate the latent space learned in TGR and
VCR branch, respectively. Both of them demonstrate that
our model can learn meaningful latent spaces, where the
clusters contain garments with similar appearances. Specif-
ically, the latent space of the TGR branch mainly focuses
on the semantic visual similarity among garments, demon-
strating that our TGR branch is superior in learning visual
attributes. Nevertheless, the latent space of the VCR branch
does not have a clear boundary as those in the TGR branch.
It seems to pay more attention to the common features of
different categories, demonstrating its ability to measure vi-
sual compatibility across categories.
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(a) is scoop neck and change color to mustard

(b) is a crop top and has round neck neckline type

(c) is plunging neckline and with zip up opening type

(d) has flap type pocket and change color to maroon

(e) is applique and with loose fit silhouette

Figure 5. Retrieval results of our multi-task model on TGR sub-
set.Yellow: reference garment; Red: target garment (ground truth);
Blue: other retrieved garments.

(a) search a brown shoe that matches this jacket best

(b) retrieve a hat having a similar style with current skirt

(c) retrieve a yellow shoe having a similar style with current skirt

(d) search an above the hip length jacket that matches this shoe best

(e) retrieve a zip up skirt having a similar style with current top

Figure 6. Retrieval results of our model on VCR subset.

(a) is a sheath dress and has printed textile techniques

(b) is napoleon lapel and no special manufacturing technique

(c) is a leggings and has curved fit silhouette

(d) is a tank top and is short length

(e) change non-textile material to plastic and change decorations to ruffle

Figure 7. Failure cases of our multi-task model on TGR subset.

(a) replace this shoe with a jacket that has lining textile techniques

(b) retrieve a blazer jacket having a similar style with current belt

(c) for this shoe, find a visually compatible tights with black color

(d) retrieve a hat having a similar style with current bag

(e) retrieve a gem dress having a similar style with current shoe

Figure 8. Failure cases of our multi-task model on VCR subset.
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(a) Visualized latent space of TGR branch.

(b) Visualized latent space of VCR branch.

Figure 9. t-SNE visualizations for two latent spaces learned via our multi-task model. Best zoom in and view in color.
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