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Appendix

A. Loss Function
The loss for our exemplar-based approach has 3 parts:

GAN adversarial loss [1] Ladv, latent regression loss Lidt,
and cycle consistency loss Lcycle. During training, we have
inputs IA and reference IB , extracted color latent vectors
CA and CB , corresponding normalization constants βA, γA
and βB , γB , as well as output I ′A:

I ′A = ColorHouse(IA, CB). (1)

Adversarial loss is the standard in GANs for matching
the distribution of the translated image to the target domain:

Ladv = E[logD(IA)] + E[1− logD(I ′A)))] (2)
Here we have the discriminators D for distinguishing be-
tween real and generated images for domain A.

We use Lidt to ensure the recolorization autoencoder is
able to reconstruct the input when given the original input as
exemplar:

Lidt = E[||IAA − IA||1], (3)

where
IAA = ColorHouse(IA, CA).

Lcycle is based on Cycle-Consistency loss [8] that optimizes
the training for this under-constrained problem and regular-
izes the translated image to preserve semantic structure of
the input image:

Lcycle = E[||I ′cycleA − IA||1], (4)

where
I ′cycleA = ColorHouse(I ′A, CA).

Our final objective function is:

Lexemplar−based = λadvLadv + λidtLidt + λcycleLcycle,
(5)

where λadv, λidt, λcycle are weights assigned for each loss,
respectively.

Color palette-based ColorHouse uses the same loss func-
tion as the exemplar-based method. Different from previ-
ous methods, to benefit from the superior performance of
exemplar-based approaches, we feed the palette (including
illumination) into the network to obtain the color latent vec-
tors Lp and push it towards the latent code Le from the fixed
exemplar-based branch.

Ll = E[||Lp − Le||1], (6)

Additionally, we utilize palette L1 loss Lpalette−based to
push the color palettes extracted from the generated outputs
to match that of the input:

Lpalette = E[||PalettePredictor(I ′A)−PalettePredictor(IA)||1],
(7)

We utilize illumination L1 loss Lillum to push the predicted
illumination to be the same with the one of the input:

Lillum = E[||IllumPredictor(I ′A)−IllumPredictor(IA)||1],
(8)

Therefore, the final objective function is:

Lpalette−based = λadvLadv + λidtLidt + λlLl+

λcycleLcycle + λpaletteLpalette + λillumLillum,
(9)

where λadv , λidt, λcycle, λpalette and λillum are the weights
assigned for each loss.

Layer Specs: Our generator consists of one 5×5 stride-1,
one 3×3 stride-2, and one 3×3 stride-1 convolutional layer.
We extract the latent vector after the second and third layer.
Our recolorization backbone is composed of an encoder and
a decoder. We insert the first color latent vector into the
encoder and the second to the decoder. The encoder consists
of one 7× 7 stride-1, one 5× 5 stride-1, one 3× 3 stride-2
and one 3 × 3 stride-1 convolutional layer. The decoder
consists of one 3× 3 stride-1 as well as one 3× 3 stride-2
deconvolutional layer, following with one 5× 5 stride-1 and
one 7× 7 stride-2 convolutional layer.
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Figure 1: ColorHouse palette predictor.

B. Additional Experiments

B.1. Experiment Implementation

We use collected interior design images from the Internet
(around 3,000) and for artwork images we used Behance
Artistic Media dataset (BAM) [5], a large-scale dataset of
contemporary artwork. During training, we use Adam with
0.0005 learning rate, β1 = 0.5 and β2 = 0.999. The weights
are initialized using Gaussian random variables. Empirically,
for training, we find the model starts to converge after 10
epochs and become stable after 100 epochs using a single
GPU. For testing, exemplar-based ColorHouse runs on a
256× 256 image in about 0.004 seconds, and color palette-
based ColorHouse runs in about 0.008 seconds, using a sin-
gle Geforce GTX 1080 Ti GPU without acceleration. This
performance is very fast, suggesting that ColorHouse could
eventually be used in real time interactive applications. Also,
unlike many previous methods (e.g, those trained with Im-
ageNet), ColorHouse can produce natural-looking outputs
even when trained with limited data. This potentially results
from our use of several different semantically meaningful
loss functions to optimize the training process. We describe
our implementation in the supplemental material, and we
will post extensive additional images and metadata to support
its use upon publication.

Exemplar-based luminance adaptation. Colorization
often assumes that the luminance of the input matches the
luminance of output [2, 6, 7]. However, recolorization at-
tempts to map between colors that may vary in this respect.
Therefore, ColorHouse operates on RGB space instead of
Lab color space [3]. In Fig. 2, we show an example of color
swapping by exemplar-based ColorHouse and the relative
luminance before and after applying ColorHouse. Relative
luminance (Y ) is a widely used metric that relates to the
luminous flux density in a particular direction and can be
approximated from linear RGB components [4]:

Y = 0.2126R+ 0.7152G+ 0.0722B.

We can observe that ColorHouse modifies luminance in ways
that most colorization or recolorization methods would not
allow, demonstrating the expressive power of our approach.

B.2. Interior Design

We display the exemplar-based results for interior design
photos in Fig. 3. In detail, Fig. 3(a) shows the results of
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Figure 2: Exemplar-based Color Swapping and its relative
luminance outputs.
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(a) Same inputs, various references.
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(b) Same references, various inputs.

Figure 3: Exemplar-based ColorHouse results on interior
design photos.

same inputs with various references, Fig. 3(b) shows the
results for fixed references across various inputs. We observe
that ColorHouse works very well for diverse inputs and
references with promising generated images. For example, in
the second row of Fig. 3(a), ColorHouse successfully learns
the diverse color styles from different reference images and
recolorizes the library photos to the corresponding color.

We display the palette-based results in Fig. 4.1 To make
the task harder, we select diverse color palettes. For exam-
ple, the first palette consists of 5 totally different colors, the
second consists of pink or red. Then we feed different inputs
and color palettes to the model, and we observe that Col-
orHouse can generate desirable outputs based on different
color palettes.

B.3. Recolorized Art

Beyond the domain of interior design, ColorHouse is
also well suited to artwork. To illustrate this, we conduct
experiments on Behance Artistic Media dataset (BAM) [5].

1The following experiments follow the same setting.
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Figure 4: Color palette-based ColorHouse results on interior
design photos.
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Figure 5: Color palette-based ColorHouse results on BAM
dataset.

We randomly select and train with 5,000 oil painting images
from BAM and test the model on arbitrary oil painting input.

We display the exemplar-based results in Fig. 6. Similar
to the results for interior design, the outputs are promising,
without any color distortion, and appear to capture the color
style of the reference. Also, we show the palette-based
results in Fig. 5. As before, we insert diverse color palettes
into the model given the same input. The results indicate
that ColorHouse is able to translate the various color styles
of the given palettes to the inputs.

B.4. Ablation study and Analysis

In this part we conduct analysis for ColorHouse recol-
orization.

RGB histogram analysis. To better understand how
ColorHouse change the RGB value, we conduct an ablation
study on RGB histogram. In Fig 7, we show an example of
exemplar-based ColorHouse recolorization, associated with
the RGB histogram of the reference, input and output images.
It could be observed that our model is capable of learning the
RGB distribution and shift it towards the reference one with
a decent output. For example, ColorHouse leverages the
blue pixels and make its distribution close to the reference
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Figure 6: Exemplar-based ColorHouse results on BAM
dataset.
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Figure 7: RGB histograms of an exemplar-based ColorHouse
result. It could be noticed that our model can learn and
leverage the RGB distribution from the reference image to
the input.

image.
Illumination. Beyond, we apply illumination adjustment

to the generated output for color palette-based ColorHouse.
We display the results in Fig 8, it could be noticed that
ColorHouse could adjust the illumination to the required
value.

B.5. Discussion and Future Work

The problem of recolorization is highly under-
constrained, and suitable priors for solving it are often highly
contextual. However, in this work we show that, at least for
images from design-oriented domains, it is possible to ex-
plore a more unconstrained space of plausible alternative
colorizations than seen in previous work. This could be
used for creative exploration, data augmentation, and other
applications as well.

Limitations. Ideally, one could perform recolorization
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Figure 8: Illumination adaptation. ColorHouse conduct
illumination adjustment on the images based on different
inserted illumination value.

on arbitrary images that would create reasonable palettes
where none may have existed—effectively applying designed
aesthetics to random images. This would require not only
broader and more extensive training, but also some strategy
for learning how distinct colors in arbitrary scenes might be
regrouped to form a palette. This is an exciting but difficult
direction for future work. A related problem that can be seen
in our current results has to do with conflict between the
palette loss and the adversarial loss—namely, it is difficult to
find plausible recolorings of an image that result in a larger
variety of colors than the image started with. For this reason,
we often see that inputs with monochrome color harmonies
palettes produce outputs that appear to have changed illumi-
nation. Our illumination loss helps with this significantly,
but is not able to find creative ways to introduce additional
colors. This would also be an interesting direction for future
work.

References
[1] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and
Yoshua Bengio. Generative adversarial nets. Advances in
neural information processing systems, 27:2672–2680, 2014.
1

[2] Mingming He, Dongdong Chen, Jing Liao, Pedro V Sander,
and Lu Yuan. Deep exemplar-based colorization. ACM Trans-
actions on Graphics (TOG), 37(4):47, 2018. 2

[3] János Schanda. Colorimetry: understanding the CIE system.
John Wiley & Sons, 2007. 2

[4] Maureen Stone. A field guide to digital color. CRC Press,
2016. 2

[5] Michael J. Wilber, Chen Fang, Hailin Jin, Aaron Hertzmann,
John Collomosse, and Serge Belongie. Bam! the behance artis-
tic media dataset for recognition beyond photography. In The
IEEE International Conference on Computer Vision (ICCV),
Oct 2017. 2

[6] Qing Zhang, Chunxia Xiao, Hanqiu Sun, and Feng Tang.
Palette-based image recoloring using color decomposition opti-

mization. IEEE Transactions on Image Processing, 26(4):1952–
1964, 2017. 2

[7] Richard Zhang, Phillip Isola, and Alexei A Efros. Colorful im-
age colorization. In European conference on computer vision,
pages 649–666. Springer, 2016. 2

[8] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros.
Unpaired image-to-image translation using cycle-consistent
adversarial networks. In Computer Vision (ICCV), 2017 IEEE
International Conference on, 2017. 1


