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Abstract

Transformer architectures show spectacular perfor-
mance on NLP tasks and have recently also been used for
tasks such as image completion or image classification.
Here we propose to use a sequential image representation,
where each prefix of the complete sequence describes the
whole image at reduced resolution. Using such Fourier Do-
main Encodings (FDEs), an auto-regressive image comple-
tion task is equivalent to predicting a higher resolution out-
put given a low-resolution input. Additionally, we show that
an encoder-decoder setup can be used to query arbitrary
Fourier coefficients given a set of Fourier domain obser-
vations. We demonstrate the practicality of this approach
in the context of computed tomography (CT) image recon-
struction. In summary, we show that Fourier Image Trans-
former (FIT) can be used to solve relevant image analysis
tasks in Fourier space, a domain inherently inaccessible to
convolutional architectures.

1. Introduction
Transformer architectures are currently setting new stan-

dards on virtually all natural language processing (NLP)
tasks [7, 21]. But also in other domains, transformers can
find application [15]. Vision Transformers (ViT) [8], for
example, show SOTA results on image classification tasks.
In the future we expect an increasing number of problems
to be solved with transformers and here we also contribute
such applications.

The key novelty of transformers is their self-attention
mechanism [26], allowing them to learn and utilize long
ranging dependencies in data. Recently, this mechanism is
applied to longer and longer input sequences of words or
other elements, e.g. pixels [5].

Initially, we wondered if pixel sequences are the only
valid image representation to train auto-regressive trans-
former models in the spirit of [5]. In particular, we want
to use a representation where each prefix of such a descrip-
tive sequence encodes the full image at lower resolution.
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Figure 1. We present Fourier Image Transformers (FITs), real-
izations of Fast-Transformers [12], that operate on images via a
novel sequential image representation we call Fourier Domain En-
coding (FDE). We demonstrate the utility of FITs on two tasks.
First, an image super-resolution task (top row), where the low fre-
quencies of an image are used to predict missing high frequencies,
corresponding to a higher resolution image. The second task is to-
mographic reconstruction (bottom row), where we provide a sparse
sampled Fourier space as input to an encoder-decoder FIT and pre-
dict missing Fourier coefficients. Note that the real images can be
obtained from both predictions by taking the inverse Fourier trans-
form.

Hence, we introduce Fourier Domain Encodings (FDEs),
which do have this desired property and, as we show, can
successfully be used to train auto-regressive Fourier Image
Transformers (“FIT: SRes”) for super-resolution tasks (see
Figures 1 and 2).

Additionally, we show how an encoder-decoder based
Fourier Image Transformer (“FIT: TRec”) can be trained on
a set of Fourier measurements and then used to query arbi-
trary Fourier coefficients, which we use to improve sparse-
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view computed tomography (CT) image restoration1. We
demonstrate this by providing a given set of projection
Fourier coefficients to our encoder-decoder setup and use it
to predict Fourier coefficients at arbitrary query points. This
allows us to predict a dense, grid-sampled discrete Fourier
spectrum of a high quality CT reconstruction (see Figures 1
and 3).

In Section 2 we review some of the related transformer
and tomography literature. In Section 3 we introduce our
novel Fourier Domain Encoding (FDE) and training strate-
gies for auto-regressive and encoder-decoder transformer
models. In Section 4 we present our experiments and re-
sults on multiple datasets.

2. Related Work
Transformer architectures are revolutionizing neural lan-

guage processing (NLP), replacing recurrent neural net-
works (RNNs) and long short-term memory (LSTM) ar-
chitectures in virtually all NLP tasks [7, 21]. The suc-
cess of transformers in NLP has naturally raised the
question if computer vision tasks might as well bene-
fit from transformer-like attention. Recent work on im-
age classification [8, 23] and pixel-by-pixel image genera-
tion/completion [5, 12, 20] were among the first to success-
fully demonstrate the applicability of transformers in the
image-domain. In [20], for example, the first n pixels of
the flattened input image are used to condition a generative
transformer setup that then predicts the remaining image in
an auto-regressive manner.

Concurrently with our own work, Lee-Thorp et al. [16]
have proposed an interesting idea to combine Fourier-
space image information with Transformer-based attention.
While their approach is inspiring and leads to much im-
proved results on a number of tasks on data other than im-
ages, our goals of super-resolution and tomographic recon-
struction are of different nature and bear no overlap with
their investigations.

2.1. Attention is all you need

Vaswani et al. [26] were the first to introduce trans-
formers. More specifically, they introduced an encoder-
decoder structure, where the encoder maps an input encod-
ing x ∈ RN×F into a continuous latent space z ∈ RN×F ,
with N corresponding to the number of input tokens and F
representing the feature dimensionality per token. This la-
tent space embedding z is then given to the decoder, which
generates an M long output sequence y ∈ RM×F itera-
tively, element by element. This auto-regressive decoding
scheme means that the decoder generated the i-th output to-
ken while not only observing z, but also all i − 1 output
tokens generated previously.

1Sparse-view CT image restoration typically suffers from missing high
frequency Fourier coefficients, leading to unwanted image artefacts.

More formally, a transformer is a function T : RN×F −→
RN×F , represented by L transformer layers

Tl(x) = fl(Al(x) + x), (1)

with Al denoting a self-attention module and fl being a sim-
ple feed forward network.

In the self-attention module, the input x is mapped to
queries Q = xWQ, keys K = xWK and values V =
xWV by matrix multiplication with learned matrices WQ ∈
RF×D, WK ∈ RF×D and WV ∈ RF×F . The self-attention
output is then computed by

Al(x) = softmax
(
QKT

√
D

)
V, (2)

with the softmax-function being applied per row. Intu-
itively, the softmax-normalized similarity between com-
puted keys and queries is used to obtain the weighted sum
over the values.

Typically, instead of a single self-attention module,
multi-head attention is being used. If that is the case, a
transformer layer Tl learns multiple WQ, WK and WV ,
allowing the layer to simultaneously perform multiple
attention-based computations [26].

Since transformers do not explicitly encode the relative
position between input tokens, positional encodings are re-
quired whenever specific input topologies need to be made
accessible to the transformer. In [26], a useful 1D positional
encoding scheme was proposed. Later, Wang et al. [28]
generalized this scheme to 2D topologies. In our own work,
we have adopted this encoding scheme, but use it not only
to encode integer pixel-grid locations, but arbitrary coordi-
nates.

While the advantage of transcending beyond a CNN’s
localized receptive field by introducing global attention
proves beneficial for many learning tasks, the big down-
side is the computational cost that comes with it. Due to
the required matrix multiplication QKT , the self-attention
on an input sequence of length N requires O(N2) mem-
ory and time. Since image-based applications have to deal
with very long input sequences, the use of efficient trans-
former implementations [2, 13, 27] is essential. Hence, we
use fast-transformers, an efficient approximation of softmax
self-attention, introduced by Katharopoulos et al. [12].

2.2. Tomographic Image Reconstruction

In computed tomography (CT), the radon transform [11,
22] of a 2D section is acquired by rotating a 1D detector ar-
ray around it, acquiring a series of density measurements at
projection angles αi. Such a series of acquisitions is often
depicted as a 2D image, a so called sinogram, in which each
pixel column corresponds to one such 1D measurement. A
widely used tomographic reconstruction method is filtered
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Figure 2. FIT for super-resolution. Low-resolution input im-
ages are first transformed into Fourier space and then unrolled into
an FDE sequence, as described in Section 3.1. This FDE sequence
can now be fed to a FIT, that, conditioned on this input, extends the
FDE sequence to represent a higher resolution image. This setup is
trained using an FC-Loss that enforces consistency between pre-
dicted and ground truth Fourier coefficients. During inference, the
FIT is conditioned on the first 39 entries of the FDE, correspond-
ing to (a,d) 3× Fourier binned input images. Panels (b,e) show
the inverse Fourier transform of the predicted output, and panels
(c,f) depict the corresponding ground truth.

backprojection (FBP) [11, 24] (see Figure 3). FBP is based
on the Fourier slice theorem, which states that the Fourier
coefficients of each 1D projection at a given angle αi coin-
cide with the 2D Fourier coefficients that lie on the line that
crosses through the DC component of the Fourier space rep-
resentation at angle αi [3]. Hence, we can compute the 1D
Fourier transformation of the 1D projection measurements
and arrange them according to their projection angle αi in
2D Fourier space, take the inverse Fourier transformation
and thereby obtain the reconstructed 2D image.

In practice, it is desirable to limit the number of pro-
jections in order to reduce overall acquisition times and to-
tal sample exposure. However, having fewer measurements
leads wedges of missing Fourier measurements, which then
lead to reconstruction artefacts. More specifically, such
missing wedges lead to radial striping artefacts in recon-
structed images, best observed around image locations that
are subject to large intensity gradients (see e.g. Figure 3).

A plethora of methods to reduce these artefacts was pro-
posed [1, 4, 9, 10], but none of them is operating in Fourier
space. Below, we will introduce Fourier Domain Encodings
(FDEs) which is based on the Fourier transformation of an
image. Then we train a transformer to fill in all unobserved
Fourier coefficients such that missing-wedge artefacts will
be reduced or, ideally, avoided.

3. Methods

3.1. Fourier Domain Encodings (FDEs)

To compute the Fourier Domain Encoding (FDE) for an
image x, we first take the discrete Fourier transform (DFT),
X = F(x), giving us the complex valued Fourier spec-
trum X . The DC component of X is in its center-most
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Figure 3. FIT for computed tomography. In 2D computed to-
mography, 1D projections of an imaged sample (i.e. the columns
of a sinogram) are back-transformed into a 2D image. We propose
two encoder-decoder based Fourier Image Transformer setups for
tomographic reconstruction. For “FIT: TRec”, subfigure (a), the
sinogram is converted into our proposed FDE which serves as in-
put to the encoder. The decoder predicts a dense Fourier spec-
trum from the latent encoding and provided Fourier query points.
In order to reduce high frequency fluctuations in this result, we
introduce a shallow conv-block after the iFFT (shown in black).
The setup is trained with the FC-Loss, see Section 3.2, and a
conventional MSE-loss between prediction and ground truth. For
“FIT: TRec + FBP”, sub-figure (b), we enrich the Fourier query
points with encoded information from the filtered backprojection
(FBP) [11, 24].

location. Concentric rings of Fourier coefficients around
the DC component are called Fourier rings. More central
Fourier rings contain lower frequencies, coefficients further
away from the DC component higher ones. Since we started
with a real-valued image x, we know that the Fourier spec-
trum is radially symmetric, which allows us to drop half of
X , resulting in Xh. A lower resolution real image xr of the
original image x can be obtained by masking all Fourier co-
efficients above a given radius r and computing the inverse
Fourier transform of the result. Effectively the real image
resolution depends entirely on the value of r, see Figure 2
for an example.

For the Fourier Domain Encoding (FDE) we convert the
complex Fourier coefficient rings into a 1D sequence start-
ing form the DC component followed by an unrolling of the
(half) Fourier rings from Xh

S = unroll(Xh) = [c1, c2, . . . , cN ]
T
, (3)

where ci – the words of our input sequence – correspond to
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the complex Fourier coefficients. The sequence S has the
interesting property that any sub-sequence Sj starting at c1
and ending at cj , j ∈ [2, N ] encodes the whole real image
at lower resolutions.

In order to proceed, we convert the complex Fourier co-
efficients ci into normalized amplitudes

ai =
2(|ci| − amax)

amax − amin
− 1 (4)

and phases

ϕi =
∠(ci)
π

, (5)

where amin and amax are minimum and maximum ampli-
tudes computed over all training images and the function ∠
returns the phase of a given Fourier coefficient. Hence, the
complex sequence S can now be described by the normal-
ized real-valued matrix

C =

[
a1 · · · aN
ϕ1 · · · ϕN

]T
(6)

with C ∈ RN×2.
Our final goal is to transform each word (ai, ϕi) into an

F -dimensional vector. To this end we feed C through a
single trainable linear layer that increases the feature di-
mensionality from 2 to F

2 , to which we concatenate an
F
2 -dimensional 2D positional encoding2 that represents the
original polar coordinates of the Fourier coefficient in the
original 2D Fourier spectrum Xh. The final FDE image
sequence is therefore E ∈ RN×F . The sub-sequence prop-
erty of Sj holds for Ej as well.

Predicted output words Z = [z1, . . . , zk], with zi ∈ RF ,
are fed through two linear layers that back-transform the F -
dimensional encoding of zi into predicted amplitudes and
phases ĉi = (âi, ϕ̂i), respectively. The output of the phase-
predicting layer is additionally passed through the tanh-
activation function to ensure that all phases are in [−1, 1].

3.2. Fourier Coefficient Loss

We train our Fourier Image Transformers (FITs) with a
loss function consisting of two terms, (i) the amplitude loss

Lamp(âi, ai) = 1 + (âi − ai)
2, (7)

computed between the predicted amplitudes âi and the tar-
get amplitudes ai, and (ii) the phase loss

L∠(ϕ̂i, ϕi) = 2− cos(ϕ̂i − ϕi), (8)

with ϕ̂i the predicted phase and ϕi the corresponding target
phase.

2We slightly adapted the 2D positional encoding of [28] to accept arbi-
trary (non integer) coordinates.

The final Fourier coefficient loss LFC is the multiplica-
tive combination of both individual losses, given by

LFC(Ĉ,C) =
1

N

N∑
i=0

Lamp(âi, ai) · L∠(ϕ̂i, ϕi). (9)

3.3. FIT for Super-Resolution

The sub-sequence property of the Fourier domain encod-
ing (FDE) E, where each Ej encodes a lower resolution im-
age xj enables us to train an auto-regressive Fourier Image
Transformer for super-resolution (“FIT: SRES”).

This FIT for super-resolution (“FIT: SRes”) gets an FDE
sequence EN−1 = [e1, . . . , eN−1] as input and is trained
w.r.t. the correct target sequence Z = [z2, . . . , zN ], us-
ing the previously introduced Fourier coefficient loss LFC ,
computed on the back-transformed predicted amplitude and
phase values Ĉ = [ĉ2, . . . , ĉN ], where ĉi = (âi, ϕ̂i), as
explained in Section 3.1.

Once the transformer is trained, a sub-sequence Ej =
[e1, . . . , ej ], j ∈ [2, N ] is used to condition the trans-
former, which is then used in iterations to auto-regressively
predict the missing part of the complete sequence E =
[e1, . . . , eN ], i.e. filling in predicted high-frequency infor-
mation not contained in Ej (see Figure 2).

Note that the proposed super-resolution setup operates
exclusively on Fourier domain encoded data. All final pre-
diction images x̂ are generated by computing the inverse
Fourier transform on predictions Ĉ, which are rearranged
(rolled) into X̂h and completed to a full predicted Fourier
spectrum X̂ , i.e. x̂ = F−1(roll(Ĉ)).

3.4. FIT for Tomography

Our Fourier Image Transformer setup for tomographic
reconstruction (“FIT: TRec”) is based on an encoder-
decoder transformer architecture as shown in Figure 3.

As input to the encoder we use the Fourier Domain En-
coding (FDE) of a raw sinogram s. As described above,
s consists of P pixel columns [s1, . . . , sP ] of 1D projec-
tions of x at angles [α1, . . . , αP ]. The Fourier slice theo-
rem states, see also Section 2.2, that the discrete 1D Fourier
coefficients Ci = F(si) coincide with the values of the 1D
slice at angle αi through the 2D Fourier spectrum F(x). To
assemble the full FDE of a sinogram we need to combine
all Ci with the adequate positional encoding (using polar
coordinates) of all Fourier coefficients, as dictated by the
Fourier slice theorem and sketched in Figure 3.

Hence, the encoder creates a latent space representation
Z that encodes the full input sinogram s. This latent space
encoding is then given as input to the decoder. The decoder
is then used to predict all Fourier coefficients Ĉ, such that
the predicted reconstruction x̂ of x can be computed by x̂ =
F−1(roll(Ĉ)), where roll arranges the 1D sequence back
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Figure 4. Super-resolution results on MNIST. The top left triangles of (a,c,e) show 3× binned (low-res) MNIST inputs. Conditioned
by these inputs, our trained FIT auto-regressively generates results as shown in (b,d,f). Inputs and predictions are labeled with the peak
signal-to-noise ratio (PSNR) values computed w.r.t. ground truth images, shown in the lower-right half of (a,c,e). The examples in (a-
f) correspond to the 98th, 50th and 2nd percentile in terms of obtained PSNR over all MNIST prediction results. Box-plots show the
distribution of PSNR values of Fourier binned inputs and predicted outputs, respectively (mean in dashed gold and median in solid blue).
The Fourier ring correlation plot shows how predicted Fourier coefficients are improving w.r.t. true ground truth coefficients. Shaded areas
correspond to +/− 1 standard deviation. The correlation for the first 5 Fourier shells is 1 because these shells have been used as inputs to
the FIT.

into a discrete 2D Fourier spectrum. We call this setup “FIT:
TRec”.

Additionally, we propose a variation of this procedure,
called “FIT: TRec + FBP”, where the decoder not only re-
ceives the latent space encoding Z, but also FDEs of the
Fourier coefficients CFBP = F(FBP(s)), where FBP de-
notes the function computing the filtered backprojection of
a sinogram (see Figure 3).

Note that the implementation of “FIT: TRec” coincides
with “FIT: TRec + FBP”, with FBP being replaced by a
function ZERO which returns 0 for all inputs.

We train “FIT: TRec” and “FIT: TRec + FBP” using the
LFC-loss of Eq.9. Additionally, we introduced a residual
convolution block consisting of two convolutional layers
(3 × 3 followed by 1 × 1) with dconv = 8 intermediate
feature channels. This conv-block (conv) receives the in-
verse Fourier transform of the predicted Fourier coefficients
x̂ = F−1(roll(Ĉ)) as input and is trained using the MSE-
loss between the predicted real-space image conv(x̂) and
the known ground truth image x. Hence, the full loss is the
sum over LFC and the MSE-loss.

In order to speed up training, we start by feeding only a
low-resolution subset of all Fourier coefficients Ci = F(si)
(and CFBP), and successively increase this subset over train-
ing until the full sets are used. This forces the FIT to first
learn good low resolution features and later learn to add
suitable high resolution predictions.

4. Experiments and Results
Here we describe the experiments we conduct with the

previously described super-resolution (“FIT: SRes”) and to-
mographic reconstruction (“FIT: TRec” and “FIT: TRec +
FBP”) setups. Note, all code used to create results reported
in this manuscript is available on GitHub3.

4.1. Data and Metrics for Super-Resolution

MNIST [14]: Original images are cropped to 27 × 27 pix-
els with the default PyTorch train-test split (in 60′000 and
10′000 images, respectively). The train images are further
split into 55′000 samples for training and 5′000 validation
images.

CelebA 128× 128 [19]: Original images are converted to
gray scale and downscaled to 63 × 63 pixels. The images
are randomly split into 20′000, 5′000 and 5′000 training,
validation and test samples, respectively.

We evaluate all results using (i) Fourier Ring Correla-
tion (FRC) [25] in Fourier space and (ii) the peak signal-
to-noise ratio (PSNR) in image space.

4.2. Data and Metrics for Computed Tomography

Data Preparation for Tomographic Reconstruction: As
described in Section 2.2, tomographic image reconstruction

3https : / / github . com / juglab /
FourierImageTransformer
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Figure 5. Super-resolution results on CelebA. On 3 input im-
ages (rows 1+2, 3+4, and 5+6) we show predictions of a trained
super-resolution FIT conditioned on 2, 4, 8 and 16 Fourier rings
(columns). Upper rows show the iFFT of the input FDEs used to
condition the FIT, lower rows depict the iFFT of the predicted re-
sults.

in 2D operates on a number of 1D projections of a given true
object x. Our tomographic simulation process is based on
the work by Leuschner et al. [17]. Furthermore, we chose
the detector length to be equal to the width of our chosen
object (i.e. ground truth image) we apply our synthetic to-
mography pipeline on. To avoid spurious contributions to
individual projections, we need to set all pixel intensities
outside the largest image-centered circle to 0 (hence, we
see only circular images in Figures 3, and 6).

MNIST [14]: Data is split and preprocessed as described
in Section 4.1. Additionally, for visualization purposes, we
min-clip all pixel intensities within the before-mentioned
largest image-centered circle to 50. Finally, we use this data
to compute P = 7 equally spaced projections which we
assemble in sinograms sjMNIST = [sj,1MNIST, . . . , s

j,P
MNIST].

Kanji [6]: Data is randomly split into 50′000 train, 5′000
validation and 5′000 test samples and all images are
cropped to 63×63 pixels, which are otherwise processed as
described for MNIST. Finally, we use this data to compute
P = 33 equally spaced projections which we assemble in
sinograms sjKanji = [sj,1Kanji, . . . , s

j,P
Kanji].

LoDoPaB [17]: The original train- and validation-data is
first reduced to 4′000 and 400 randomly chosen images re-
spectively and for testing all 3′553 images are used. All
selected images are downscaled to 111× 111 pixels and we
compute P = 33 equally spaced projections like for the
Kanji data.

All tomographic reconstruction experiments with “FIT:
TRec” and “FIT: TRec + FBP” and the FBP baseline are
evaluated using peak signal-to-noise ratio (PSNR) w.r.t.
available ground truth.

4.3. Training Setup for Super-Resolution

We use a F = 256 dimensional FDE, with the positional
encoding being based on polar coordinates, i.e. Fourier co-
efficients of same frequency have the same radius. The FDE
is passed to a causal-linear transformer [12] with 8 layers,
8 self-attention heads, a query and value dimensionality of
32, dropout of 0.1, attention dropout of 0.1, and a dimen-
sionality of the feed-forward network of 1024.

This setup is trained auto-regressively, i.e. with a trian-
gular attention mask. We use the rectified Adam optimizer
(RAdam) [18] with an initial learning rate of 0.0001 and
weight decay of 0.01 for 100 epochs. The batch size is 32.
We half the learning rate on plateauing validation loss.

4.4. Results for Super-Resolution Tasks

Quantitative results for all conducted super-resolution
experiments on MNIST data are shown in Figure 4, where
we show (i) 3× binned low-res MNIST input images cor-
responding to Epre = [c1, . . . , c39], also sketched in Fig-
ure 2, (ii) corresponding ground truth MNIST images,
(iii) the predictions of the “FIT: SRes” network trained
on the MNIST data as described in Section 3.3, (iv) two
box-plots showing the distribution of PSNR values com-
puted between the ground truth images and the downscaled
inputs and predicted outputs, respectively, and (v) Fourier
ring correlation plots showing the correlation between our
predicted Fourier coefficients and the corresponding ground
truth.

In Figure 5, we show 3 sequences of super-resolution
results obtained with a FIT trained on the CelebA data. For
each image, we conditioned the trained transformer on 2,
4, 8, and 16 Fourier rings, respectively. This corresponds
to low-resolution images subject to 16×, 8×, 4×, and 2×
binning in Fourier space, respectively.
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Dataset Method PSNR

MNIST [14]

Baseline: FBP 17.87
FIT: TRec + FBP (Ours) 27.85
FIT: TRec (Ours) 27.90
Ablation: Only FBP 26.89
Ablation: Only Conv-Block 22.53

Kanji [6]

Baseline: FBP 22.06
FIT: TRec + FBP (Ours) 30.72
FIT: TRec (Ours) 25.99
Ablation: Only FBP 30.49
Ablation: Only Conv-Block 26.92

LoDoPaB [17]
(downscaled)

Baseline: FBP 26.89
FIT: TRec + FBP (Ours) 30.98
FIT: TRec (Ours) 21.90
Ablation: Only FBP 30.74
Ablation: Only Conv-Block 30.70

Table 1. Quantitative tomographic reconstruction results. We
report the average peak signal-to-noise ratio (PSNR) with respect
to ground truth, for each of the three used datasets. For each
dataset, we compare the results of our “FIT: TRec + FBP” and
“FIT: TRec” setups to results obtained with the filtered backpro-
jection (FBP) [11, 24] baseline, and the two ablation studies de-
scribed in Section 4.5.

4.5. Training Setup for Computed Tomography

Like before, we consistently use F = 256 dimensional
FDEs, and employ the linear encoder and decoder method
by Katharopoulos et al. [12]. More specifically, we use 4
transformer layers, 8 self-attention heads per layer, a query
and value dimensionality of 32, dropout of 0.1, attention
dropout of 0.1, and a dimensionality of the feed-forward
network of 1024. The residual conv-block has dconv = 8
intermediate feature channels.

All networks are optimized using RAdam [18], with an
initial learning rate of 0.0001 and weight decay of 0.01 for
300 (MNIST), 120 (Kanji), and 350 (LoDoPaB) epochs.
The batch size is 32. We half the learning rate on plateauing
validation loss.

Ablation Studies: We propose two ablation setups for all
tomographic reconstruction experiments.

First, we ask what influence the encoded latent space in-
formation Z, i.e. the output of the encoded sinogram, has on
the quality of the overall reconstruction x̂. To that end, we
perform ablation experiments for all 3 datasets, for which
we do not feed Z to the decoder. Technically this is im-
plemented by replacing the decoder by an encoder network
(since only one input remains to be fed). We label these
experiments “Only FBP”.

The second ablation study asks, to what degree the conv-
block contributes to the overall reconstruction performance,

FBP Baseline TRec (Ours) TRec + FBP (Ours) Ground Truth
19.99 30.98 30.3

19.59 26.09 27.33

21.52 34.0 33.94
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FBP Baseline TRec (Ours) TRec + FBP (Ours) Ground Truth
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Figure 6. Tomographic reconstruction results. We show three
qualitative results for each used datasets. From left to right, we
show the input sinogram, reconstruction results obtained with fil-
tered backprojection (FBP) [11, 24], our results obtained with the
“FIT: TRec” setup, our results obtained with the “FIT: TRec +
FBP” setup, and the corresponding ground truth images. In the
top left corner of each reconstruction we show the peak signal-to-
noise ratio (PSNR) with respect to the ground truth image.

i.e. we want to verify that the convolution block alone is
not sufficient to solve the task at hand. Hence, we train
the conv-block on pairs of images (FBP(s),x), i.e. the fil-
tered backprojection of sinograms s and their correspond-
ing ground truth images x. We label these experiments
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“Only Conv-Block”.
For all ablation experiments all hyper-parameters not ex-

plicitly mentioned above are kept unchanged.

4.6. Results for Tomographic Reconstruction Tasks

Qualitative tomographic reconstruction results for all
three datasets we used are shown in Figure 6. For each
dataset, we show three input sinograms, the reconstruction
baseline obtained via filtered backprojection (FBP), our re-
sults obtained via “FIT: TRec”and “FIT: TRec + FBP”, and
the corresponding ground truth images.

In Table 1, PSNR numbers for all three datasets using
the FBP baseline, our “FIT: TRec + FBP” and “FIT: TRec”
training setups, and both ablation studies are given.

5. Discussion
We proposed the idea of Fourier Domain Encodings

(FDEs), a novel sequential image encoding, for which each
prefix represents the whole image at reduced resolution,
and demonstrated the utility of FDEs for solving two com-
mon image processing tasks with transformer networks, i.e.
super-resolution and tomographic image reconstruction.

For the super-resolution task we showed that Fourier Im-
age Transformer can be trained such that, when conditioned
on an FDE corresponding to a low-resolution input image,
can auto-regressively predict an extended FDE sequence
that can be back-transformed into a higher resolution out-
put. It is obvious, the information required to generate a
higher resolution image must be stored in the trained net-
work, and we have shown in Figure 5, how this learned
prior completes very low to moderate resolution inputs in
sensible ways. It is curious to see that eyes are the first
high-resolution structures filled in by the trained FIT. We
believe that this is a direct consequence of all training im-
ages being registered such that the eyes are consistently at
the same location.

For the tomographic reconstruction task, we employ an
encoder-decoder transformer that encodes a given FDE se-
quence corresponding to a given sinogram and can then be
used to predict Fourier coefficients at arbitrary query loca-
tions. We used the decoder to predict all Fourier coefficients
of a fully reconstructed image, which we could then visu-
alize via inverse Fourier transformation (iFFT). We noticed
that introducing a shallow residual convolution block after
the iFFT reduces unwanted high frequency fluctuations in
predicted results. While we see that this procedure leads
to very convincing results on MNIST, for more complex
datasets, results quickly deteriorate. Hence, we proposed
to additionally feed Fourier coefficients obtained by filtered
backprojection (FBP) into the decoder. This leads to much
improved results that outperform the FBP baseline, showing
that the FIT does contribute to solving the reconstruction
task.

Our results show that transformers, currently the domi-
nant approach for virtually all NLP tasks, can successfully
be applied to complex and relevant tasks in computer vision.
While this is encouraging, we see a plethora of possibilities
for future improvements. For example, the transformers we
used are rather small. We believe that an up-scaled version
of our training setups with more attention heads and more
layers would already lead to much improved results4. Still,
we also believe that there is plenty of room for methodolog-
ical improvements that do not require more computational
resources, making this line of research also accessible to
many other research labs around the globe.
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