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Abstract

Making sense of large volumes of biological imaging
data without human annotation often relies on unsuper-
vised representation learning. Although efforts have been
made to representing cropped-out microscopy images of
single cells and single molecules, a more robust and gen-
eral model that effectively maps every voxel in a whole cell
volume onto a latent space is still lacking. Here, we use
variational auto-encoder and metric learning to obtain a
voxel-level representation, and explore using it for unsu-
pervised segmentation. To our knowledge we are the first to
present self-supervised voxel-level representation and sub-
sequent unsupervised segmentation results for a complete
cell. We improve upon earlier work by proposing an in-
novative approach to separate latent space into a semantic
subspace and a transformational subspace, and only use
the semantic representation for segmentation. We show that
in the learned semantic representation the major subcellu-
lar components are visually distinguishable and the seman-
tic subspace is more transformation-invariant than another
sample latent subspace of equal dimension. For unsuper-
vised segmentation we found that our model manages to au-
tomatically rediscover and separate the major classes with
errors demonstrating spatial patterns, and further dissect
the class not specified by reference segmentation into areas
with consistent textures. Our segmentation outperforms a
baseline by a large margin.

1. Introduction
Biologists use imaging, e.g. microscopy, to study loca-

tion, shape, amount, interaction, and dynamics of objects of
interest. Modern biological imaging is advancing towards
large-scale, high-resolution, and multi-dimension. On the
one hand, information from multiple sources, with finer de-
tails, and across multiple scales enables biologists to bet-

ter understand mechanisms behind phenomena by observ-
ing. At the same time it poses a challenge to extracting
hidden insights from this vast and ever-growing amount of
low-level signals.

Representation learning [1] has been used in biological
imaging to automatically extract features, reduce dimen-
sionality and characterise variation of microscopy data at
various scales, such as single cell phenotypes [17,36], intra-
cellular protein localization [11], and protein structure [2].
However, these studies are all limited to learning represen-
tations of objects using images completely containing the
objects of interest. Learning a representation for all voxels
in whole volumes using densely sampled image patches at
subcellular level has rarely been done.

In recent years, Focused Ion Beam Scanning Electron
Microscopes (FIB-SEM) are producing 3D large-scale near-
isotropic nanometer-resolution data, which provides views
of whole-cells with clear sub-organelle details [37]. This
opens up a unique opportunity for learning a voxel-level (se-
mantic) representation of intracellular architecture. A study
like this would give us a holistic and unbiased view into the
complete data distribution of appearances, forms, textures
or visual motifs of cellular internal organization, without a
focus on frequently studied objects. The learned represen-
tation could subsequently be clustered to achieve unsuper-
vised segmentation, which could serve as a starting point for
human-in-the-loop studies to achieve more precise segmen-
tation or discover spatial distribution patterns of subcellular
components.

Lately, learning a voxel-level latent representation for bi-
ological imaging data has been done in CIHS (capturing
implicit hierarchical structure) [9] by sampling a small im-
age patch around voxel of interest. The authors use Vari-
ational Auto-Encoder (VAE) [13, 24] to learn a latent rep-
resentation, which is subsequently clustered to achieve un-
supervised segmentation. The authors of CIHS addition-
ally used triplet loss [3,27] and hyperbolic geometry [18] to
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achieve an implicit hierarchical structure in which they be-
lieve biomedical volumes are organized in the latent space.
However, this work has only demonstrated quantitative re-
sults on a synthetic dataset and a brain-tumor dataset. They
described testing their algorithm on whole-cell cryoET vol-
umes, but only presented qualitative unsupervised segmen-
tation result demonstrating one mitochondrion.

In this work, we learn a largely transformation-invariant
representation of small 3D image patches, and use it for
unsupervised segmentation of whole-cell high-resolution
isotropic volumes. We first train a convolutional VAE using
ELBO loss and metric learning [8,15]. At inference time we
use the trained encoder to map unseen volumes onto a latent
sub-space. Finally, we cluster the latent representation to
achieve unsupervised segmentation. We only sample small
image patches for training and inference to take advantage
of lower data variation and higher data abundance at small
scale. We use data augmentation and metric learning to pull
semantically similar data together in a designated “seman-
tic” latent subspace. As a result, major semantic classes
are visually distinguishable in the designated “semantic” la-
tent subspace, which is more transformation-invariant than
another sample subspace with equal dimensionality. Clus-
tering this representation achieved unsupervised segmenta-
tion where the three major categories, nuclei, granules and
mitochondria, are well separated, and none of them are di-
vided into multiple clusters. Voxels categorized as unrecog-
nized in Reference Segmentation (RS) but mistakenly clus-
tered with nuclei and mitochondria demonstrate spatial pat-
terns visibly different from nuclei and mitochondria. They,
together with some other clusters, further dissect the un-
recognized RS class (which is unspecified cytoplasmic re-
gions) into components with distinct texture. We adapted
and compared to a baseline [9] across different settings. Our
model consistently performs better on the task of unsuper-
vised segmentation.

2. Related Work

2.1. Learning a representation of image patches us-
ing VAE and metric learning for unsupervised
segmentation

Our approach is inspired by CIHS [9] in that they both
use VAE as the base model and apply metric learning to
reorganize the latent space. They differ in a number of as-
pects. The authors of CIHS interpret biomedical imaging
data as implicit hierarchical structures, and organized their
pipeline around this view by using hyperbolic VAE [18]
and multi-scale sampling. We instead observe that texture
and local visual features alone are already largely sufficient
for telling apart some subcellular structures, while large
patches demonstrate too prominent variability for existing
data to completely cover. So we only sample small patches

for training and inference. We also conduct much more ag-
gressive data augmentation with a wider range of transfor-
mations. In addition, we adopt a different metric learning
method to more efficiently utilize samples. In the end, we
use the metric learning loss to encourage original patches
and transformed versions of themselves to be close to each
other only in a latent sub-space. This way the representation
is disentangled into semantic and transformation subspaces,
with the semantic subspace being largely transformation-
invariant.

2.2. Unsupervised segmentation by clustering im-
age patches

We think of the task of unsupervised segmentation or un-
supervised voxel classification as voxel clustering. To clus-
ter the voxels, we actually (1) sample an image patch cen-
tered at each voxel of interest, (2) put the image patches
into a neural network module to acquire vector representa-
tions, and (3) cluster the vector representations. This ap-
proach is preferable when global information in images is
not necessary for the success of the task. Examples fol-
lowing this paradigm include: JULE (lung cancer micro-
CT) [19], CAE (hyperspectral) [21], and IIC (satelite) [10].
These works chose either auto-encoders or convolutional
neural networks for representation learning. Compared to
these models, the benefits of using VAEs are (1) the repre-
sentation retains enough information about the overall ap-
pearance of the image patch, (2) the representation is a
coherent and meaningful distribution of observations in a
transformed space, and (3) because of (2) once trained the
model can be applied to infer unseen data and generate new
data.

2.3. Representation learning with VAE and metric
Learning

Clustering image patches for unsupervised segmentation
only works if representations of patches are distributed in
the latent space in a desirable way: representations of the
same semantic category are closer to each other than to
others, and ideally even form tight clusters. Without su-
pervision, a good way of enforcing this property is to use
metric learning [8, 15], such as triplet [3, 27], n-pair [30],
lifted embedding [31], batch hard / batch all [6], multi-
similarity [35]. Metric learning approaches pull anchor
patches closer to positive samples (usually transformed ver-
sion of anchors) and push them away from negative samples
(usually randomly selected samples) simultaneously, in the
representation space.

The idea of jointly training a VAE and triplet loss was
first explored by [12]. In this pioneering work, the joint
model outperforms both metric learning and generative
models alone. It divides the latent space into compart-
ments in order to utilize external information of different as-
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pects. Another recent modification to VAE is to maximize
the consistency between latent representations of original
and transformed versions of the same sample (CR-VAE)
[29]. This is achieved by minimizing mutual information
between original and transformed samples together with
ELBO loss. This variant of VAE has more transformation-
invariant latent representations. It is very similar to metric
learning but does not use any negative samples. CIHS [9]
first applied the idea of combining a VAE and metric learn-
ing on unsupervised segmentation.

2.4. Disentangling the latent space

In representation learning [1], a desirable characteristic
of learned representations is the disentanglement of variable
factors in the latent dimensions. Following this principle, a
series of generative models are designed with the ability to
separate certain variables, such as location, scale, angle, and
brightness [4, 5, 7, 16, 38]. This property is highly practical
in the field of structural biology, because in protein images,
the protein molecule appears in various locations and orien-
tations. For these images, VAE has been used to explicitly
separate the variables of rotation and translation, making
inference more invariant to these transformations and more
focused on semantic category, while enabling more control-
lable image generation [2, 25, 39].

3. Methods
3.1. Learning a voxel-level representation with im-

age patches, VAE and metric learning

Inspired by [9], we learn a voxel-level representation of
3D microscopy volumes. Clustering this representation as-
signs categories to each voxel, and achieves unsupervised
segmentation. In practice, because each voxel is only one
scalar, we follow the convention of existing work, and ac-
company it with surrounding voxels. So effectively we use
image patches to represent their center voxels. We use VAE
to learn the representation, and additionally apply metric
learning loss to make the representation more invariant to
common geometric and color transformations.

At training time (Figure 1 top row), anchor and posi-
tive patches are sampled using PyTorch grid sample func-
tion with fixed grid dimensions. For each anchor there are
multiple positive patches, whose centers are located within
a small spherical neighbourhood around the center of the
anchor. The stack, location and size of anchors are ran-
domly chosen following certain distributions, and positive
grids are further allowed to freely rotate and deform. An-
chor and positive patches are then augmented with geomet-
ric and color transformations. Both anchor and positive
patches go through forward pass of a convolutional VAE.

Like a standard ELBO loss, the objective function in-
cludes a reconstruction loss between input x and recon-

structed input µx, and a weighted KL-divergence between
standard normal and latent variable z [7, 13, 24]. Note that
we normalize the reconstruction term with batch size b and
volume of patch or sampling grid a3, and normalize the KL-
divergence term with b and latent dimension d such that

Lrecon =
1

ba3
∥x− µx∥2 , (1)

LKL =
1

bd
DKL(N (0, 1),N (µz, σ

2
z)) . (2)

Additionally, we use multi-similarity loss [35] to force the
representation of anchor patches to move closer to the repre-
sentations of its own positive patches and farther away from
all other anchor and positive patches. The multi-similarity
loss is only applied upon the first dMS dimensions of la-
tent mean µz. The multi-similarity term is normalized by
batch size (number of samples) and the total number of an-
chor and positive replicates within each sample (1 + npos)
so that

LMS =
1

b(1 + npos)

b∑
i=1

1+npos∑
j=1

{

1

α
log[1 +

∑
k ̸=j

exp(−α(S[j, i, k, i]− λ))]

+
1

β
log[1 +

1+npos∑
k=1

∑
l ̸=i

exp(β(S[j, i, k, l]− λ))]} . (3)

Here α, β and λ are fixed hyper-parameters. α and β act
as scales and λ is a margin. S is a pre-computed tensor
recording distances between all b samples and all 1 + npos

replicates, which means all b× (1+npos) anchors and pos-
itives within a batch. S[j, i, k, l] is the distance between µz

of sample i replicate j and sample l replicate k, using first
dMS latent dimensions. The final batch loss is a weighted
sum of all the loss terms, as

Lbatch = Lrecon + θKLLKL + θMSLMS . (4)

At inference time, we sample patches centered on each
voxel of the inference stacks, with fixed orientation and size
(Figure 1 bottom). Patches are fed into the encoder of the
VAE, and the semantic dimensions of the latent mean (µz)
are kept for clustering.

Clustering is conducted using Mini-Batch K-Means
(MBKM) implemented in scikit-learn [22, 28]. We chose
MBKM due to its scalability and performance. Each vali-
dation or test volume has approximately 0.5 billion vectors
and the representation has 8 dimensions. For such large
amount of data, most other clustering methods require sam-
pling and performed worse than MBKM. Mini-Batch GMM
based on PyMC [26] works without sampling but did not
achieve as good results as MBKM. After clustering, unsu-
pervised segmentation is completed.
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Figure 1. The overall pipeline for self-supervised representation learning and unsupervised segmentation. Training and inference phases
are shown in the upper and lower panels respectively. 3D stacks and patches are illustrated as 2D dot grids and squares. Anchor and
positive patches are represented as black and red squares.

3.2. Exploiting local and textural stereotypicality by
keeping patches small

Figure 2. Subcellular structures have plastic shapes but stereotyp-
ical texture. We take mitochondria as an example. (a) In many
cell types and under some imaging modalities, mitochondria have
repetitive parallel stripes or edges perpendicular to the direction
of their extension. They look stereotypical locally (the visual pat-
terns in magenta and red patches are similar). (b) The shape of
mitochondria is very flexible overall but this does not affect the
statement we made in (a). (c) Latent representation of patches.
Latent representation of red and magenta patches are already close
because they are similar in data space. Arrows: metric learning
pulls representations of cyan patches close to red and therefore
magenta. If this succeeds, representations of patches with stripes
form a cluster, regardless of orientation and scale. Clustering this
representation achieves unsupervised segmentation of mitochon-
dria. The scheme is illustrated in 2D for convenience.

The scale and shape of subcellular structures (e.g. mi-
tochondria) are sometimes rather diverse and flexible (Fig-
ure 2 b). But at a smaller scale, the texture and local vi-

sual features are more stereotypical or consistent across the
entire object and among different objects (Figure 2 a). In
other words, small patches within objects of the same class
demonstrate self-similarity after geometric and color trans-
formations (Figure 2: cyan patches are similar to magenta
patch after transformed into red patches).

Based on this observation, we speculate that sampling
small patches for voxel-level representation learning has
several benefits. First, the dimension of data (image
patches) decreases. Further, because the appearance of data
(image patches) is less variable at a smaller scale, they can
be represented by an even lower-dimensional latent space.
Lastly, data become more abundant. Since we have much
more data to fill in a much smaller representation space,
examples / observations become more dense for the latent
distribution, and the quality of the learned representation
should be much better.

Another benefit of using small patches is the reduction in
the amount of patches involving boundaries of subcellular
structures. This strengthens the argument that we can use
patches to represent voxels.

3.3. Data augmentation and metric learning for a
transformation-invariant representation

Our goal is to acquire a representation where semanti-
cally similar patches (Figure 2 magenta and cyan patches)
are close to each other and separated from other patches
(not illustrated). If this is achieved, simply clustering the
representation will achieve unsupervised segmentation.

However, at training time, it is not possible to correctly
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identify positive pairs like cyan and magenta patches, with-
out supervision. Fortunately, since magenta and red patches
already look similar, it is reasonable to believe that their la-
tent representations will also be close. Now we only need
the representations of cyan patches to be close to those of
red patches (transformed versions of cyan patches them-
selves). We use metric learning to achieve this goal.

However, if semantically similar patches with very dif-
ferent appearances (e.g. orientations and scale) are very
close in the representation space, information will be lost
and reconstruction will be affected. Here, metric learning
only act on a latent subspace. In this way we encourage this
subspace to become transformation-invariant, and the rest
of the latent space to facilitate reconstruction.

4. Experiments

4.1. Data

OpenOrganelle is an open online repository for high-
resolution cell and tissue imaging data with different spec-
imen types and imaging conditions [37]. Among these
datasets, we choose to test our method with a Focused Ion
Beam Scanning Electron Microscopy (FIB-SEM) dataset of
primary mouse pancreatic islets β cells “BetaSeg” [20], be-
cause mitochondria in this dataset have characteristic tex-
ture. We downloaded preprocessed data following a link
provided by their publication. Preprocessing includes crop-
ping cells out of whole tissue stacks and binning voxels,
lowering resolution from 4nm to 16nm.

The authors treated isolated pancreatic islets with either
high or low dosage of glucose. For each treatment group, a
large 3D volume containing multiple cells is acquired. Sub-
sequently they cut both volumes into smaller stacks, each
fully containing one cell. Eventually the data consists of
a low-glucose group of 3 stacks (cells) and a high-glucose
group of 4 stacks (cells).

The dataset contains binary segmentation masks of 7
categories (centrioles, nucleus, membrane, microtubules,
golgi, granules, mitochondria) generated by manual anno-
tation or supervised segmentation (with or without manual
curation). Some of these binary masks overlap. We use
these masks as RS after eliminating the overlaps between
the binary masks following the principle that manual an-
notation / curation should prevail. After preprocessing we
acquire in total 8 classes (the 7 plus the rest which we name
“unrecognized”). Out of the 8 classes, 4 (golgi, membrane,
microtubules, centrioles) are much smaller than the other 4
(nuclei, granules, mitochondria, unrecognized).

We only use the high dosage group for our experiments
because the stacks of low dosage group have low contrast
which results in loss of signal. We hold “cell 4” (d × h ×
w = 1022 × 545 × 1082) out for testing, and use “cell 1”
(1097 × 699 × 760), “cell 2” (1043 × 606 × 870), “cell

3” (1023 × 676 × 845) for 3-fold cross-validation. In each
round of cross-validation we train with 2 cells (stacks) and
infer with 1 cell (stack). At testing we train with cells 1,
2, 3 and infer with “cell 4”. During both cross-validation
and testing we trained for different lengths (2 or 3 million
anchors per stack). For comparison we trained CIHS with
10 million anchors per stack.

4.2. Hyperparameters

The sampling grid for anchor and positive patches have
16 points in each dimension. Their physical sizes vary from
4 to 12 at training and are fixed to be 8 at inference. This is
equivalent to resizing sub-volumes of sizes 5 to 13 (training)
and 9 (inference) into patches of size 16. At training phase,
each batch has 128 anchors and each anchor is accompanied
by 4 positives. We learn a 64-dimensional latent representa-
tion, out of which the first 8 receive self-supervision signal
from metric learning.

4.3. Representation

We use t-SNE [23, 32, 33] to visualize two latent sub-
spaces: dimension 1 to 8 (with self-supervision signal) and
9 to 16 (without self-supervision signal).

We sample the latent representation of test volume from
each RS class proportional to the sizes of the classes, then
use two subspaces, dimensions (dim) 1 to 8 and 9 to 16, to
fit 2 t-SNE models, and visualize them with 2 scatter plots
(transparent dots in Figure 3). Each RS class is marked by
a different color. As can be seen from Figure 3, the 3 major
RS categories are visually separable in the semantic sub-
space (dim 1 to 8, upper panel), but not in another latent
subspace (dim 9 to 16, lower panel).

We sampled from each RS class equally 4 patches and
transform them with rotation, scaling and translation. We
infer the original and transformed patches and acquire
their representations in the two subspaces (Figure 3 opaque
dots). We find that the semantic subspace is more invari-
ant to transformations, as the representations of transformed
patches are closer to the representations of original patches,
for the larger classes (unrecognized, nucleus, granules, mi-
tochondria). Since dim 9-16 are not trained differently than
dim 17-64, we speculate that dim 17-64 should also be less
transformation-invariant than dim 1 to 8.

4.4. Evaluating unsupervised segmentations

Following the practice of [9], we evaluate unsupervised
segmentation with Dice Similarity Coefficient (F1-score)
and Hungarian algorithm [14]. First, we calculate a con-
fusion matrix CnPr×nRS

by comparing RS and model pre-
diction. Here nRS = 4 and 4 ≤ nPr ≤ 10. Then, a
Dice matrix D of the shape as the confusion matrix is com-
puted: Dij =

2×Cij∑nRS
k=1 Cik+

∑nPr
l=1 Clj

. We use the SciPy lin-
ear sum assignment function to find the minimum weight
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Figure 3. Semantic subspace demonstrates better separation of
semantic classes and better transformation-invariance. Represen-
tation of cell 4 (test stack) is shown. Dimensionality reduction is
conducted using t-SNE. Top: latent dimensions 1 to 8. Bottom: la-
tent dimensions 9 to 16. Transparent markers: patches proportion-
ally sampled from each RS class and used to train t-SNE. Opaque
markers: patches uniformly sampled from each RS class (original
and transformed patches are connected by lines).

match of the cost matrix −D [34]. The number of entries
in this match is nM = min(nRS , nPr) = 4. The final Dice
score is the mean of D entries in this match.

4.5. Unsupervised segmentation

First we demonstrate that our method is able to automat-
ically rediscover subcellular structures without any annota-
tion. Cell 4 (test stack) is segmented by a model trained
with 2 million anchors each from cells 1, 2, 3 (Figures 4, 5).

As can be seen from the segmentation masks, the three
major classes nucleus, granules and mitochondria are well
separated with each other, as each of the three major RS
classes are covered by a separate mask (nucleus: blue, gran-
ules: red, mitochondria: green, Figure 4 b). This is also
evidenced quantitatively in Figure 5 b, where each of these
RS classes overlap almost exclusively with a separate pre-
diction class/row (nucleus / col 3: row 2, granules / col 7:
row 5, mitochondria / col 8: row 3). We further examine
how much these prediction classes overlap with other RS
classes (Figure 5 a rows 2, 3, 5). Mitochondria (col 8, row
3) and nucleus (col 3, row 2) each are clustered with some
voxels in the unrecognized class (col 1, row 3 and col 1, row
2), but these error areas demonstrate spatial patterns that are
visibly different from mitochondria and nuclei respectively
(col 1, row 3: orange in Figure 4 c; col 1, row 2: cyan).
Specifically, much of the orange area are located near cell
membrane, and also form a network-like clump to the top-
left of nucleus; much of cyan are near and connected to the
nucleus. We find out that both membrane and Golgi are
mostly clustered in prediction class 3, together with mito-
chondria. This can be explained by the fact that they look
similar (with stripes/edges) at a very small scale.

Interestingly, our algorithm automatically dissects the
unrecognized class (Figure 5 col 1) of RS into several cate-
gories with distinct textures (Figure 4 a, b, c). Row 1 (black
in b): smooth bright areas around granules. Row 2 (cyan in
c): rough dotted areas e.g. around nuclei. Row 3 (orange
in c): areas with stripes/edges like mitochondria, e.g. area
near membrane but in unrecognized category in RS. Row 4
(yellow in b): the major unrecognized class. Row 6 (white
in b): rather bright area with sparse dots and edges.

During cross validation, none of the clusters would be
assigned exclusively to any of the four smaller classes, no
matter which k we choose. This could be explained by the
fact that none of the clusters is small enough to only in-
clude one minor class. So now we only quantitatively eval-
uate with four RS classes, namely nucleus, granule, mito-
chondria, and unrecognized (which now includes the pre-
vious unrecognized, centriole, microtubule, membrane and
golgi). We compared our approach with CIHS [9] using
multiple k values for KMeans clustering and different train-
ing lengths for our model. Our model consistently performs
better in cross-validations and test (see Table 1). Figure 4
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K CIHS
(10M/stack)

Ours
(2M/stack)

Ours
(3M/stack)

4 0.363± 0.021 0.475± 0.016 0.471± 0.022
5 0.336± 0.060 0.590± 0.067 0.593± 0.040
6 0.317± 0.018 0.579± 0.080 0.673± 0.003
7 0.324± 0.065 0.606± 0.054 0.579± 0.049
8 0.334± 0.019 0.556± 0.066 0.534± 0.072
9 0.318± 0.035 0.564± 0.028 0.593± 0.017
10 0.305± 0.037 0.525± 0.030 0.612± 0.019

4 0.308 0.625 0.664
5 0.243 0.659 0.623
6 0.291 0.647 0.658
7 0.432 0.643 0.648
8 0.291 0.560 0.632
9 0.342 0.578 0.574
10 0.337 0.567 0.542

Table 1. F1-score (Dice similarity coefficient) for unsupervised
segmentation under 3-fold cross-validations (upper half of table)
and test (lower half of table). xM/stack means: x million anchor
patches are sampled from each training stack. In cross-validation
and testing models are trained with 2 and 3 stacks respectively.

d demonstrates segmentation by CIHS. Mitochondria, gran-
ules and parts of nucleus are not successfully separated.

4.6. Efficiency

On a computational node with 24 CPU cores (2.30GHz)
and 4 GPUs (GeForce RTX 2080 Ti; only one GPU used),
training takes 4h per million anchors for our method and
0.5h per million anchors for CIHS; inference (0.5 billion
voxels) takes 24h with our method and 4h with CIHS.

5. Conclusion and discussions
In this work, we introduced a model that learns a voxel-

level representation of volume microscopy data, and used it
to automatically segment whole-cell intracellular architec-
ture. In our learned representation, major semantic classes
are visually distinguishable. Clustering this representation
results in a unsupervised segmentation that successfully
separates nuclei, granules, and mitochondria, as none of
these structures are identified within multiple clusters. Parts
of unrecognized class that are mistakenly clustered with nu-
clei and mitochondria demonstrate spatial patterns that are
visually distinguishable with nuclei and mitochondria, re-
spectively. These regions together with other clusters, also
demonstrate distinct textural features and further dissect the
unrecognized class regions that are not specified by the RS.
Overall, this method provides an unbiased view into the tex-
tural similarities between different cellular components.

The learned representation and the unsupervised seg-

mentation open up many possibilities. The representation
can be readily applicable for weakly supervised segmenta-
tion that only requires a small amount of point annotation
or scribbles. It also enables interactive inspection across
the latent space and data space. For example, biologists
could click on a dot in the t-SNE plot and see which voxel it
represents. After this, users could even draw polygons and
assign class as they wish. The unsupervised segmentation
result can facilitate interactive post-processing by allowing
users to assign different categories to different connected
components of voxels of the same cluster. For example,
voxels near cell membrane make up a substantial part of
errors for mitochondria cluster. They are visually identi-
fiable as not mitochondria, and possibly not connected to
mitochondria. So in an interactive setting users could click
and change its class, making segmentation much more pre-
cise with a few clicks. Effectively, the representation and
unsupervised segmentation transformed a half billion voxel
dataset into a scatter plot and a division into a few compo-
nents, each demonstrating distinct characteristics and some
overlap considerably with known semantic classes. Impor-
tantly these are done with no human annotation at all.

Although the major categories are not overlapping
prominently in the representation space, they are not sep-
arated well enough for clustering to work robustly. Given
this non-perfect representation, segmentation could change
when the length of training or number of clusters varies.
And there might be no good k values for K-Means to pro-
duce a good enough unsupervised segmentation.

An innate problem of the proposed model is that it
does not tell apart areas of similar texture but with differ-
ent shape, such as mitochondria, Golgi apparatus and cell
membrane. In the future, we are interested in learning
a voxel-level representation that encodes not only a very
small neighbourhood around voxel of interest but also ap-
pearance at larger scale.
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Figure 4. Example of our unsupervised segmentation. (a) Raw
stack (section 627 of cell 4). The large oval rough structure with
bright and dark regions are nuclei. The cylinder shaped bright
or dark structures with stripes are mitochondria. The small round
dark structures wrapped by brighter surface are granules. (b) Qual-
itative segmentation result using K-Means (k = 6). The color leg-
end can be found in the right of Figure 5 b. Each color (segmen-
tation class) corresponds to a row in Figure 5 a and b. (c) Errors.
Orange is voxels clustered with mitochondria but are not. Cyan is
voxels clustered with nuclei but are not. (d) Qualitative segmenta-
tion result of CIHS also with k = 6 for hyperbolic K-Means.

Figure 5. Quantitative unsupervised segmentation result shown as
confusion matrices corresponding to Figure 4 b and c. Each row
is a prediction class / cluster; each column is a RS class. X la-
bels: names (in a) and sizes (in b) of RS classes. Y labels: sizes
of prediction classes / clusters. Confusion matrix in (a) is normal-
ized within row and the one in (b) is normalized within column.
Correspondence between confusion matrices rows and colors in
Figure 4 b (there is also legend to the right of the matrices): from
1 to 6 are black (mostly unrecognized and partially granules), blue
(mostly nuclei and partially unrecognized), green (mitochondria
and unrecognized), yellow (unrecognized), red (granule), white
(unrecognized). Correspondence between confusion matrices en-
tries and colors in Figure 4 c: cyan is row 2 column 1; orange is
row 3 column 1.
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