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Abstract

Computer-aided analyses of cells in Whole Slide Images
(WSIs) have become an important topic in digital pathol-
ogy. Despite the recent success of deep learning in biomed-
ical research, these methods are still difficult to apply to
multi-gigabyte WSIs. To overcome this difficulty, a variety
of patch-based solutions have been introduced, which how-
ever all suffer from certain limitations compared to man-
ual examinations and often fail to meet the specificities of
cytological inspections. Here we introduce an alternative
scheme which incorporates clinical expertise in the selec-
tion process to automatically identify the clinically relevant
areas. By using a bone marrow smear dataset containing
22-gigapixel images of 153 patients, we introduce a novel
pipeline combining unsupervised and supervised method-
ologies to gradually select the most appropriate single-cell
regions, which are subsequently used in multiple medically
crucial Acute Myeloid Leukemia (AML) predictions. Our
approach is capable of dealing with a variety of common
WSI challenges, massively limits the manual annotation
effort, reduces the data by a factor of up to 99.9% and
achieves super-human performance on the final cytological
prediction tasks.

1. Introduction

Digital Whole Slide Images (WSIs) have been widely
adopted in pathology resulting in ever growing datasets of
multi-gigapixel images. As a consequence, the demand for
fully automatic analysis strategies has dramatically risen
over the last decade [22]. Especially deep learning algo-
rithms have proven to be powerful systems in biomedi-
cal image classification tasks and have also been used in
histopathology [15]. For example deep learning has been
used for tumor classification [21], cancer prediction [10],
metastases detection [1], survival analysis [28], or the pre-
diction of associated mutated genes [2].

Unfortunately, the analysis of WSI images using deep
machine learning strategies is still challenging for mainly
two reasons. Firstly, the extremely high resolution of WSIs
(often more than 100, 000 × 100, 000 pixel) renders a di-
rect application of state-of-the-art machine learning ap-
proaches impossible [5]. Secondly, the heterogeneity and
variance within WSI data often include huge areas of non-
informative, redundant, or even erroneous image propor-
tions [30]. For example, non-optimal fixations, staining
variabilities, inappropriate illumination, challenging image
tiling or focus and bleed-through artefacts can lead to huge
image areas with insufficient information [5].

1.1. Related Work

To overcome the above mentioned limitations a variety
of patch-based selection strategies have been proposed in
the past. Depending on the level of annotation three dif-
ferent selection strategies can be identified. On the low-
est level multiple WSIs are annotated on the level of pa-
tients. These methods usually focus on non-local informa-
tion by sampling candidate patches from all related WSIs
which are further aggregated to extract representative fea-
tures [31]. If the usage of multiple WSIs does not provide
enough patches, data augmentation has been used to further
increase the training data [29].

On the next level individual WSIs are annotated and sub-
sequent patch selection aggregates the information within
the image. For example Hou et al. used multi instance
learning to aggregate the information across glioma WSI for
histophathological image analysis [11]. In this two-stage
approach a convolutional neural network (CNN) was used
for patch selection followed by a support vector machine
(SVM) to classify images based on these patches. This ap-
proach has been extended by an attention-based aggregation
method [12] and further optimised to enable training with
limited GPU memory capacities [27].

The finest labelling granularity is achieved by patch level
annotations. For example, Korbar et al. used CNNs for
individual patch prediction followed by a majority voting-

1825



based colorectal polyp classifications [18]. A similar CNN-
based approach was also used to detect lymphocytes on
breast cancer WSIs [20] and other machine learning tech-
niques have been compared for multi-class breast cancer
histophathology based on patch level annotations [25].

All above mentioned strategies are patch exhaustive
methods meaning that they incorporate the patches in a
straightforward way to classify the image. Since these
methods have a tendency to include non-informative and
redundant regions and are also often computationally ineffi-
cient, patch selective methods have been introduced. These
methods usually use low resolution representations of the
WSIs to identify the relevant patches. For example Mak-
soud et al. utilises down-scaled WSIs to determine patch
labels for the majority of autoimmune liver disease inves-
tigation cases [24]. In a different approach Katharopoulos
et al. extended the multi instance learning algorithm from
Hou et al. by selecting patches based on attention maps
for low resolution WSI representations [16]. Hashimoto et
al. use multi instance, domain adversarial, and multi-scale
learning to evaluate random patches on multiple magnifica-
tion levels [8]. To handle spatial and magnification based
patch selection in a unified framework Zhang et al. suggest
a novel attention mechanism on down-sampled WSIs fol-
lowed by patch selection mechanisms that also consider the
most informative magnification [30].

All above mentioned approaches either suffer from in-
accurate labels (i.e. patient or WSI level annotations) or
require tedious patch level annotations. Especially in the
latter annotation strategy medical experts have to inspect
a huge amount of often obviously non-informative image
regions which further aggravates the labelling situation.
Moreover, many attention-based patch selection strategies
have to operate on down-sampled images which is unac-
ceptable in situations where comparatively small structures
such as individual cells carry the most value. Especially
in cytology, where cell entities rather than broader image
regions (i.e. patches) are inspected by clinicians, none of
the above mentioned approaches incorporates cell selection
strategies from medical experts directly into the data reduc-
tion framework.

1.2. Contribution

In this paper we present a novel cell selection-based
WSI pipeline to classify Acute Myeloid Leukemia (AML)
in multi-gigabyte images for end-to-end cytological anal-
ysis. Our data reduction approach incrementally com-
bines unsupervised and supervised processing steps, allow-
ing to incorporate unbiased medical expert knowledge at
the very end of our cell selection process by means of a
cell image quality grading network, which ultimately lim-
its the annotation effort. We evaluated our approach using
a novel bone marrow smear dataset containing huge WSIs

(218, 944 × 103, 704 pixel resolution, approx. 42GB per
image) of 153 patients (total dataset size 6.43TB) which
comprises a variety of well-known challenges (e.g. stain-
ing variability, out-of-focus regions, image tiling artefacts
etc.). The algorithmically selected cells were analysed in a
clinical evaluation to predict two AML associated mutations
(NPM1 [3], FLT3 [4]) and the overall genetic risk accord-
ing to the European LeukemiaNet (ELN2017 [6]) classifi-
cation. NPM1 mutations can often be identified by blasts
with so-called cup-shaped nuclei, whereas FLT3 mutations
and ELN2017 genetic risk categories cannot be assessed
by the clinicians from the images directly. Moreover all
predictions are extremely relevant indicators for oncologi-
cal treatment decisions, rendering these characteristics ideal
candidates for our study. Our results indicate that our cell-
selection pipeline is capable of reducing the data by more
than 99.9% while effectively addressing the above men-
tioned challenges and enabling modern deep learning image
analysis procedures for fully-automatic cytological AML
prognostication with super-human performance.

2. Method
Our approach can be separated into a data reduction

pipeline (subsection 2.1) and clinical prediction architec-
tures (subsection 2.2), which are described in more detail
below.

2.1. Data Reduction

To enable deep learning-based WSI analysis massive
data reduction is necessary, which is usually achieved by
patch selection procedures [5]. Here we introduce an al-
ternative cell selection pipeline for the inference of clinico-
pathological features from AML cytomorphology which is
motivated by cytological WSI examinations. Medical ex-
perts mainly inspect individual and well-separated blasts
and residual haematopoietic cells to infer morphological
features. Avoiding dense cell clusters might help to miti-
gate the risk of possible data biases since mutated pheno-
types should be scattered sparsely accross the scan while
cell clusters likely belong to the same clone, thus not nec-
essarily adding any additional information in single-cell in-
spections.

This expert knowledge is reflected by our pipeline which
reduces the amount of data in three incremental levels as
illustrated in Figure 1:

Level One: 512 × 512 pixel multi-cell selections, in
which empty, blurry or too dense areas are filtered out.

Level Two: 80 × 80 pixel single-cell selections, addi-
tionally filtered by compactness.

Level Three: 80×80 pixel single-cell selections, addi-
tionally filtered by a small neural network (called grad-
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Figure 1. Starting with a WSI Xi the inner most 24 tiles {Xi
x,y | x ∈ {2, ..., 5}, y ∈ {1, ..., 6}} are kept for further processing. Each tile

is split up into 512 × 512 pixel patches. These patches are successively filtered by blurriness with a Laplace filter L(·), segmented by K-
means K(·) in the CieLab colour space and refined with morphological transformations M(·) and filtered by cell area and counts, resulting
in the Level One dataset {pm′ , ..., pn′′}. Afterwards, 80× 80 pixel crops are extracted from the patches and filtered by compactness using
K-means clustering C(·). The remaining crops {cr, ..., cs′} constitute the Level Two dataset. Finally, the Level Two data is filtered by a
grading network g(·), creating the final Level Three dataset {cr′ , ..., cs′′}. These steps are executed for all WSIs and their respective tiles.

ing network) based on task agnostic expert annotations
of few single-cell images. These annotations classify a
cell’s overall condition, e.g. whether it’s a cell at all or
if it’s heavily damaged.

For each level different image representations are extracted,
namely a raw image crop and a crop in which the non-cell
background pixels are set to zero. Since the different data
reduction levels operate in a hierarchical fashion we will
describe our algorithm in an incremental fashion.

2.1.1 Level One

In a first step, the 218, 944 × 103, 704 original images
{X0, ..., XN} are divided into 8 × 8 grids, resulting in
12, 963 × 27, 368 patches Xi

x,y with i ∈ {0, .., N} and
x, y ∈ {0, ..., 7}. From each grid we dismiss the outer
four columns and the outer two rows, which are mostly

blank or consist of out of focus regions, so that the in-
nermost 24 large patches remain. The images are further
subdivided into 512 × 512 pixel patches {p0, ..., pn} and
the remaining out-of-focus regions are removed by convert-
ing the patches into single channel images which are con-
volved with a Laplace filter L(·). Blurry regions are ex-
cluded by removing patches with low variance values re-
sulting in a reduced set of patches {pm, ..., pn′} with n′ ≤ n
and m ∈ {0, ..., n′}.

Next, a segmentation strategy is used to separate the
bone marrow cells from the background leading to image
patches pcell

i . Our bone marrow smear images imposed
several challenges regarding the cell segmentation, namely
the non-optimal separability in RGB colour space, staining
variability and significant intensity differences due to differ-
ent illuminations, aging corners of the slides and different
camera settings. We therefore converted the image crops
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into the CieLab space [14] and reduced the colour informa-
tion to two dimensions a and b by omitting the L component
(i.e. the luminescence). The subsequent segmentation step
is motivated by the approach of Kumar and Udwadia [19].
First, the patches pi are clustered using the K-Means al-
gorithm K(·) [23] on the a and b channels. In contrast to
Kumar et al., in which the number of clusters was set to
k = 4 to identify the cytoplasm, nuclei, background and
other cells such as erythrocytes [19], we had to segment
entire blasts (cell nucleus including the cytoplasm). There-
fore we initialised K-Means with k = 3 and selected blast
cluster centroids based on the highest instead of the lowest
red colour value intensity. The cell masks pcell

i were cre-
ated by setting the non-cell clusters (i.e. neither cell nuclei
nor cytoplasm) to zero followed by morphological opera-
tions M(·) [7] to close small gaps within cells and remove
artefacts in the cytoplasm.

As mentioned above, only areas with well spread out
blasts are of interest so that crops containing cell clutter,
medullary nodule or other unwanted components have to be
excluded. This is done by extracting the individual contours
within pcell

i and assessing their absolute number and respec-
tive area coverage. Experimentally determined thresholds
for the minimum and maximum number of clusters as well
as the maximum area of a cell were used to extract the final
Level One 512× 512 pixel image crops {pm′ , ..., pn′′} and
{pcell

m′ , ..., pcell
n′′} with n′′ ≤ n′ and m′ ∈ {m, ..., n′′}.

2.1.2 Level Two

The already reduced 512 × 512 pixel image crops pcell
i of

Level One can be further processed into single-cell im-
ages. For this purpose, 80× 80 pixel crops centered around
each cell in the images are extracted resulting in the set
{ccell

0 , ..., ccell
s }. For each single-cell crop its compactness,

which is defined as perimeter2

area , is additionally calculated. This
value indicates the roundness of the cell.

Based on the calculated values, a K-Means clustering
C(·) with k = 2 is performed. The resulting model can then
be used to filter images that do not contain cells based on an
experimentally derived threshold to compute the Level Two
dataset {ccell

r , ..., ccell
s′ } with s′ ≤ s and r ∈ {0, ..., s′}. To

also include cell crops with background intensities the same
regions were extracted from pi to derive {cr, ..., cs′}.

2.1.3 Level Three

Up to now our cell selection scheme only utilised colour in-
formation and simple geometric priors while substantially
reducing the amount of data to single-cell 80 × 80 image
crops. Even though this reduction was based on straight-
forward medical intuition, single-cell assessments as per-
formed by a clinical expert have not been included so far

Gradings 1 2 3 4 5 6
Quantity 36 103 78 148 296 845

Table 1. Gradings of Level Two single-cell images by a medical
expert.

resulting in crops containing damaged cells or staining arte-
facts. Since the incorporation of this type of knowledge
is far from trivial for conventional computer vision meth-
ods we applied a supervised deep learning paradigm for the
Level Three data reduction. Moreover and due to the unsu-
pervised selection scheme described above crop annotations
can be done efficiently on the selected areas of Level Two.
To further accelerate the labelling process medical experts
had to grade the selections into six discrete classes ranging
from no cell (6) over damaged cell (3) to valid cell (1).

This way 1, 506 crops were annotated in 2.5 hours and
the resulting gradings are given in Table 1. Subsequently,
we trained a ResNet18 [9] on this data, which was used
as a grading network g(·) to filter out single-cell images
of the grades 5 and 6. This results in the Level Three
datasets {ccell

r′ , ..., c
cell
s′′ } and {cr′ , ..., cs′′} with s′′ ≤ s′ and

r′ ∈ {r, ..., s′′}.

2.2. Architectures

To demonstrate the advantages of our incremental pro-
cessing pipeline we evaluated our data reduction strat-
egy by analysing the results of all crop levels in three
highly relevant AML classification tasks, namely the offi-
cial ELN2017 [6] genetic risk classification and two related
mutations called NPM1 [3] and FLT3 [4]. We tested four
different network architectures as backbone feature extrac-
tors: InceptionV3 [26], ResNet50 [9], ResNet18 [9] and a
modified version of ResNet18. In the modified ResNet18
the first 7 × 7 convolution was replaced by a 3 × 3 filter
and an additional residual block with a projection shortcut
replaced the first max pooling to enable the learning of fine
grained textual features of the cell.

Image crops resulting from Level Two and Three were
used in a multi instance learning approach (i.e. several im-
ages are used as an input at the same time) since not all
cell selections might show the respective phenotype. Since
Level One crops already incorporate multiple cells these
images were used in a single instance learning paradigm,
which also reduced the computational requirements for
these higher resolution crops.

For our multi instance learning approach we followed a
similar principle to Ilse et al. [13]. Each input crop is pro-
cessed by a backbone feature extractor with no classifica-
tion head, which outputs a 1 × 1 × d representation of the
image, where d stands for the dimensionality of the repre-
sentation depending on the backbone that was used.
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NPM1 FLT3 ELN2017
Reduction #Images Reduction #Images Reduction #Images

Level One - - - - 84.5% 157,142
Level Two - - - - 98.2% 710,944
Level Three 99.9% 200,276 99.8% 156,342 99.9% 142,270

Table 2. Overview of datasets used in the experiments. ”Reduc-
tion” indicates by what percentage the number of pixels has been
reduced compared to the original WSI selection.

In line with recent work on patch-based WSI analy-
sis [30] we evaluated two alternatives of multi instance
learning, namely with and without an attention mechanism.
For the attention-based approach, each representation is
passed through a Multilayer Perceptron (MLP). The MLP
consists of two dense layers with 2048 and 1 neuron respec-
tively. The first layer uses ReLU and the second layer uses a
Sigmoid activation function. As a consequence, the output
of the MLP is a scalar that is multiplied by the correspond-
ing image representation of the used backbone, effectively
weighing its importance and therefore providing attention to
the different samples. In the non attention-based approach
no additional weighting is used. Finally, all (weighted or
non-weighted) representations are passed through a global
average pooling layer and a last dense layer to provide the
respective classification result.

3. Experiments
For all our experiments we used the TensorFlow frame-

work. The data reduction was performed in parallel on an
AMD Ryzen 9 5950X and a RTX 2080 was used to perform
training and inference of the deep learning architectures.
For optimisation, we used the Adam [17] optimiser with a
learning rate of lr = 0.001. The models for the Level One
dataset were trained for 10 epochs, while the multi-input
models for Level Two and Level Three were trained for 30
epochs. For all multi-input trainings the number of input
images has been set to 32. In addition, the training data
of a WSI is shuffled every epoch, meaning that the multi
instance learning input stacks are random combinations of
cell selections to avoid identical stacks during training. This
also decreases the tendency of having neighboring cells in
the same stack and also reduces potential overfitting, since
the network cannot memorize features of particular input
combinations.

3.1. Datasets

For our clinical study we evaluated three different and
highly relevant AML classification tasks:

ELN2017 stands for the genetic risk classification [6],
which was introduced by the European LeukemiaNet
in 2017. It is used to divide the molecular and cyto-
genetic alterations into the following three risk classes

with distinct outcome: favorable, adverse and inter-
mediate.

NPM1 is the abbreviation for the nucleophosmin gene.
It can be either mutated or wildtype. This genotype
has a major influence on the prognosis. In the past,
it has been shown that NPM1 mutations show subtle
morphological anomalies (i.e. blasts with cup shaped
nuclei) which can be recognised by a trained oncolo-
gist. [3]

FLT3 is the abbreviation for the fms like tyrosine ki-
nase 3 gene. It can be either mutated or wildtype. To
date, this mutation cannot be recognised in the WSIs
by a clinician. [4]

Since not all labels were available for each patient, the num-
ber of patients and thus the number of WSI slides used
differs between the experiments. An overview of resultant
dataset sizes is given in Table 2.

For training, we used a 5-fold cross-validation with
patient-wise splits. Each fold is therefore separated into
an 80% training and a 20% validation subset. Since the
number of extracted single-cell crops can vary greatly be-
tween scans, WSIs for which less than 100 cell crops were
found are not considered for the training. Moreover, for all
cross-validation sets for the binary classifications the train-
ing and validation sets were chosen to be close to uniform.
For the ELN2017 categorisation, the intermediate class was
strongly underrepresented, which prevented balanced splits.
Instead, we tried to balance this dataset with the main focus
on the classes favorable and adverse.

3.2. Results

In order to demonstrate the incremental benefit of our
multi-level processing pipeline we evaluated each level in-
dependently.

Level One Both of the Level One datasets (with and
without background) were used in combination with the
ELN2017 label to train a ResNet18. The larger ResNet50
architecture was trained, but only for the fifth cross-
validation fold due to the high computation time and since
we only wanted to examine, if a much deeper network
would pose a significant performance gain. The results
of these first trainings are listed in Table 3. The best
overall result of 0.567 validation accuracy was achieved
by a ResNet18 (for this 3-class classification problem) on
the dataset without background. Tendentiously the images
without background yielded a slightly higher validation ac-
curacy than the ones with the full background information.
For all folds it is noticeable that the values of the training
accuracy and loss with background show a much better per-
formance on the training set than those without background.
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Figure 2. Overview of experimental design. Each WSI is reduced by three different levels of data reduction. The resulting datasets (with
and without background) are evaluated using different machine learning strategies to derive three clinically relevant labels from the images.

ResNet18
(without background)

ResNet18
(with background)

Training Validation Training Validation
Loss Acc. Loss Acc. Loss Acc. Loss Acc.

0 0.810 0.623 2.075 0.567 0.404 0.869 4.713 0.475
1 0.794 0.657 1.109 0.493 0.448 0.850 3.004 0.504
2 0.781 0.656 1.073 0.558 0.472 0.838 1.395 0.553
3 0.795 0.644 0.984 0.535 0.363 0.891 2.449 0.505
4 0.735 0.688 1.432 0.481 0.354 0.900 2.775 0.475

Table 3. Results of the 5-fold cross-validation of the Level One
datasets without and with background for the ELN2017 label.

Additionally, the validation loss values are also a lot higher
in the experiments with background than in the trials with-
out background. These first results confirm the medical ex-
pert’s intuition, namely that only the cell parts of the images
contain relevant information. Moreover these results also
indicate background information can lead to more overfit-
ting, which shows itself in the better training but worse val-
idation performance of the models. To test whether deeper
architectures could yield better accuracies on the relatively
complex Level One crops we also evaluated a ResNet50
on this data [9]. However, the ResNet50’s results were in
line with the other Level One experiments. Even though
a better validation accuracy was achieved compared to the
ResNet18, its effect was very low. Considering the much
higher training time and memory overhead (especially for
the subsequently used multi instance learning) we discarded
the ResNet50 for the Level Two and Three experiments.

Level Two The results of the Level Two evaluation with
and without background for ELN2017 are listed in Table 4
and Table 5 respectively. A ResNet18 and the modified
version of ResNet18 were used as the backbone for non
attention-based multi instance learning with and without
background inclusion. The modified model provided over-
all better results compared to the conventional ResNet18.
This is why all further tests of Level Three do not include
the original ResNet18 version from [9].

The best result with a 0.763 validation accuracy was
achieved by an InceptionV3 network on the Level Two
dataset with background. Overall, however, it is not possi-
ble to tell which network performed best, as the best model
varies from fold to fold. Compared to the non attention-
based multi instance learning approaches, the attention-
based modified ResNet18 version seems to perform worse
or at least does not provide a significant performance im-
provement.

In evaluations on other labels, such as NPM1, the
attention-based approach also sometimes did not manage
to converge at all, thus only providing random predic-
tions. Since the attention mechanism has more computa-
tional overhead without any measurable benefit, we did not
evaluate it further on the Level Three data. With regard to
the question whether a dataset with or without background
provides better results or is more prone to overfitting, no
clear answer can be given. The test results are similar and
there is no indication of the Level Two dataset with back-
ground to be more prone to overfitting than the one without.
We hypothesise, that this is because large parts of the back-
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ResNet18 modified ResNet18 modified ResNet18
Attention based InceptionV3

Training Validation Training Validation Training Validation Training Validation
Loss Acc. Loss Acc. Loss Acc. Loss Acc. Loss Acc. Loss Acc. Loss Acc. Loss Acc.

0 0.342 0.924 2.961 0.568 0.339 0.926 3.461 0.539 0.350 0.921 3.027 0.530 0.693 0.693 1.034 0.608
1 0.499 0.865 5.510 0.397 0.603 0.813 2.700 0.492 0.584 0.838 6.415 0.433 0.451 0.809 4.323 0.444
2 0.277 0.938 3.129 0.498 1.050 0.700 2.555 0.500 1.028 0.679 1.619 0.523 0.193 0.922 4.105 0.481
3 0.272 0.945 2.866 0.632 0.253 0.940 1.893 0.653 0.620 0.778 1.467 0.573 0.654 0.733 1.113 0.652
4 0.475 0.858 3.459 0.614 0.256 0.942 3.564 0.759 0.295 0.926 2.539 0.688 0.410 0.832 1.650 0.705

Table 4. Results of the 5-fold cross-validation of the Level Two dataset without background for the ELN2017 label.

ResNet18 modified ResNet18 modified ResNet18
Attention based InceptionV3

Training Validation Training Validation Training Validation Training Validation
Loss Acc. Loss Acc. Loss Acc. Loss Acc. Loss Acc. Loss Acc. Loss Acc. Loss Acc.

0 0.201 0.975 4.068 0.535 0.249 0.958 5.827 0.577 0.430 0.886 4.197 0.545 0.365 0.852 1.418 0.632
1 0.246 0.964 7.401 0.307 0.255 0.958 6.291 0.353 0.350 0.918 4.653 0.416 0.485 0.803 2.184 0.484
2 1.007 0.746 4.034 0.453 0.281 0.937 2.881 0.506 0.924 0.658 1.356 0.514 0.184 0.930 6.668 0.524
3 0.233 0.956 2.082 0.599 0.295 0.934 2.444 0.691 0.499 0.858 1.777 0.701 0.578 0.777 1.340 0.558
4 0.218 0.973 2.296 0.710 0.215 0.970 2.485 0.707 0.586 0.813 3.306 0.632 0.249 0.904 1.923 0.763

Table 5. Results of the 5-fold cross-validation of the Level Two dataset with background for the ELN2017 label.

ground are already filtered out at this point, and only small
portions of the background around the single-cells are still
visible, largely removing a model’s tendency to overfit on
the training set.

Grading Network The unsupervised cell selection mech-
anism used to extract the Level Two crops is based on colour
and contrast heuristics and does not incorporate any expert
intuition on the descriptive potential of these cells. For ex-
ample, damaged cells or staining artefacts can also be in-
cluded so that these images need to be removed, so that only
samples that would have been chosen by a medical expert
remain. To integrate expert knowledge on the appearance of
informative cells we incorporated a dedicated grading net-
work as mentioned in subsubsection 2.1.3. Importantly, the
clinicians were only asked to grade cell selections, which
have been automatically selected by the Level Two pipeline
based on qualitative criteria such as no cell at all (grading
6) or valid cell (grading 1). No disease-related assessments
were considered so that gradings 1 to 4 refer to good to
medium overall cell crops and gradings 5 and 6 indicate
generally inappropriate cell representations.

The results of the expert gradings in absolute num-
bers are shown in Table 1. These results indicate that
there are still many uninformative single-cell images in the
dataset, which can potentially impede the classification per-
formance. For example, about 75% of all crops were con-
sidered inappropriate for cytological assessments and could
therefore impede the machine learning based classification
task.

The grading network was trained by aggregating grad-

ings 1 to 4 (useful condition) and gradings 5 and 6 (unsuit-
able condition). Given the imbalanced nature of these two
classes a loss weighting of 3 to 1 was used for training and
a validation accuracy of 0.881 was achieved. This perfor-
mance again indicates that medical experience can be ob-
jectified and serves as a powerful selection criterion for cy-
tological WSI analyses. Once trained the grading network
was used to predict cell selections to complete our Level
Three data reduction.

Level Three For the final training iteration, the Level
Three dataset without background was evaluated on the
ELN2017, NPM1 and FLT3 labels since Level Two studies
indicated superior results using this type of data. For each
label the modified ResNet18 and the InceptionV3 network
have been trained. The results are listed in Table 6, Ta-
ble 7 and Table 8. The results on the Level Three ELN2017
dataset show an improvement compared to Level Two. Es-
pecially the InceptionV3 architecture benefited from the ad-
ditional filtering and also appeared to be less volatile across
the different folds. In fact, the average validation loss over
all folds improved from 2.45 to 1.23 and the average vali-
dation accuracy increased from 0.578 to 0.659. The modi-
fied ResNet18 backbone improved with a reduced average
validation loss (2.83 to 2.41) and a slightly increased aver-
age validation accuracy could be measured (0.588 to 0.591).
The performance difference between the InceptionV3 and
ResNet18 backbone might be caused by the advantages of
the InceptionV3 model with respect to overfitting [26].

An overview of the ELN2017 classification accuracy for
each level (with and without background) is given in Fig-
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Figure 3. Boxenplot of validation accuracy for ELN2017 by data
reduction level including all tested backbones and background
modalities.

ure 3. Evidently Level One cell images achieve mediocre
performances across all experiments, which can be in-
creased by using individual cell images (Level Two). Due
to erroneous cell selections the overall performance is how-
ever more erratic resulting in a higher variance for Level
Two, especially when the background is included. The
grading network-based filtering can overcome this limita-
tion by stabilising the results while further improving the
performance so that the Level Three selections achieve the
best accuracy measured in our experiments.

In a similar fashion the classification of NPM1 mutations
benefited from the more selective Level Three data reduc-
tion. Especially the InceptionV3 model achieved better per-
formances compared to Level Two cell selections and also
showed more stable trainings and less volatility with respect
to the different training folds. These findings support the
hypothesis that expert knowledge in the selection of cells is
advantageous for cytological examinations.

The results of the FLT3 classification are of particular
interest from a clinical point of view, since this type of mu-
tation cannot be inferred from manual WSI inspections di-
rectly. Surprisingly, classification performances similar to
NPM1 could be achieved with validation accuracies of more
than 0.7 in all folds with the only exception of one fold in
the InceptionV3 architecture (the model always predicted
the same label for this fold). This suggests that subtle spec-
tral features such as fine grained textual pattern are indica-
tive for FLT3 and are available in the WSI data which how-
ever escape current clinical examinations.

4. Discussion & Conclusion

In this paper we introduced a novel cell selection scheme
to analyse histological multi-gigabyte WSI dataset. In-
stead of using patch-based selection schemes, we used a
combination of supervised and unsupervised machine learn-
ing techniques to extract the most informative image re-

modified ResNet18 InceptionV3
Training Validation Training Validation

Loss Acc. Loss Acc. Loss Acc. Loss Acc.
0 0.402 0.908 2.641 0.625 0.541 0.774 2.015 0.666
1 0.629 0.808 4.756 0.599 0.948 0.548 0.754 0.702
2 0.796 0.662 1.543 0.575 0.610 0.727 1.357 0.579
3 0.738 0.728 2.124 0.420 0.997 0.452 1.301 0.586
4 0.526 0.849 1.004 0.738 0.840 0.596 0.732 0.764

Table 6. Results of the 5-fold cross-validation of the Level Three
dataset without background for the ELN2017 label.

modified ResNet18 InceptionV3
Training Validation Training Validation

Loss Acc. Loss Acc. Loss Acc. Loss Acc.
0 0.184 0.970 1.464 0.762 0.240 0.903 0.700 0.728
1 0.330 0.881 0.594 0.781 0.161 0.935 0.625 0.772
2 0.265 0.904 0.640 0.782 0.161 0.933 0.598 0.834
3 0.250 0.917 0.591 0.791 0.476 0.765 0.409 0.831
4 0.324 0.911 0.671 0.772 0.439 0.801 0.555 0.815

Table 7. Results of the 5-fold cross-validation of the Level Three
dataset without background for the NPM1 label.

modified ResNet18 InceptionV3
Training Validation Training Validation

Loss Acc. Loss Acc. Loss Acc. Loss Acc.
0 0.587 0.872 1.097 0.787 0.383 0.818 0.756 0.832
1 0.256 0.913 0.457 0.836 0.438 0.804 0.466 0.755
2 0.481 0.834 0.842 0.748 - - - -
3 0.403 0.854 0.658 0.734 0.345 0.847 1.507 0.786
4 0.789 0.816 0.722 0.812 0.371 0.849 2.159 0.723

Table 8. Results of the 5-fold cross-validation of the Level Three
dataset without background for the FLT3 label.

gions making it particularly suitable for cytological inves-
tigations. We evaluated our pipeline on a novel bone mar-
row smear dataset and classified three important character-
istics for acute myeloid leukemia diagnostics. To the best of
our knowledge our algorithm is the first approach to achieve
very good performances on those tasks while automatically
processing entire WSI data. Furthermore it is able to reduce
the amount of data by more than 99.9%.

In the future we will evaluate our cell selection scheme
on different datasets and will extend the classification out-
puts based on the clinical records of the patients. We
will also investigate alternative processing steps along our
pipeline and will use our model in an extended clinical
study to demonstrate its translational applicability.
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